
Lab 5

The objective of this laboratory is to start playing around with Apache Spark. We provide you

a template in Java, from which you can write your first application.

The workflow for building and executing an Apache Spark application is the same as the one

we used with Hadoop: once unzipped the template, import and open the project in your IDE

(VS Code) by using the option “import project”, modify it, and then export a jar associated with

your application. Then, submit this job by means of spark-submit on the cluster (you must

execute spark-submit inside a terminal of the jupyter.polito.it gateway to submit your

application on the cluster):

spark-submit --class it.polito.bigdata.spark.example.SparkDriver -deploy-

mode client --master yarn SparkProject.jar arguments

Notice how in the template we did not, even if possible, configure the Spark master (we did

not use the setMaster(…) method) and other settings explicitly in the main class of the driver.

In this way, you can always submit the same jar on any configuration, either Spark standalone

locally or a Yarn cluster. The main advantage of this method is for testing your application: first

you can try your application on your machine (if you are using maven), on a sample file, and

then safely submit the same application for the real work.

Only if you are using maven-based project, you can also run Spark applications locally inside

VS Code. In that case you must explicitly set the Spark master in your application by invoking

the method setMaster(“local”) on the SpakConf object in the main method.

 public static void main(String[] args) {

 SparkConf conf = new SparkConf()

 .setAppName("Application name")

 .setMaster("local");

1. Problem specification
If you completed Lab 1, you should now have (at least one) files with the word frequencies in

the Amazon food reviews, in the format word\tfreq, where freq is an integer (a copy of the

output of Lab 1 is available in the HDFS shared folder /data/students/bigdata-01QYD/Lab2/).

Your task is to write a Spark application to filter these results, analyze the filtered data and

compute some statistics on them.

Task 1
The first filter you should implement in your application is the following:

• Keep only the lines of the input data containing words that start with a user-provided

prefix. The prefix is one of the arguments of your application.

The returned RDD contains the set of lines (word\tfreq) that satisfy the filtering operation.

Print on the standard output of the driver the following statistics, based on the content of the

RDD returned by the filtering operation:

• The number of selected lines

• The maximum frequency (maxfreq) among the ones of the selected lines (i.e., the

maximum value of freq in the lines obtained by applying the filter).

The application has three arguments: (1) input folder, (2) output folder, and (3) prefix

Task 2
Extend the previous application to further filter the analyzed data. Specifically, in the second

part of your application, among the lines selected by the first filter, you have to apply another

filter to select only the most frequent words. Specifically, your application must select those

lines that contain words with a frequency (freq) greater than 80% of the maximum frequency

(maxfreq) computed before.

Hence, implement the following filter:

• Keep only the lines with a frequency freq greater than 0.8*maxfreq.

Finally, perform the following operations on the selected lines (the ones selected by applying

both filters):

• Count the number of selected lines and print this number on the standard output

• Save the selected words (without frequency) in an output folder (one word per line)

2. Testing the application

1. Run you application on the cluster by using the command based on spark-submit. Test your

application selecting only the lines containing the words starting with "ho" from the content

of the input HDFS folder /data/students/bigdata-01QYD/Lab2/

Steps to submit a Spark application on the cluster by using spark-submit:

• Open a browser and connect to jupyter.polito.it

• Copy the jar file associated with your application from your PC to the local file

system of the gateway (use the drag and drop approach you already used in the

previous labs)

• Open a Terminal on the gateway jupyter.polito.it

• Execute the following command inside the Terminal

spark-submit --class it.polito.bigdata.spark.example.SparkDriver
--deploy-mode client --master yarn SparkProject.jar
/data/students/bigdata-01QYD/Lab2/ HDFSOutputFolder "ho"

Analyze the content of the output HDFS folder.

How to access logs files

If you are connecting from outside Polito you can proceed as follows to retrieve the log files

from the command line:

1. Open a Terminal on the gateway jupyter.polito.it

2. Execute the following command in the Terminal:

yarn logs -applicationId application_1521819176307_2195

The last parameter is the application/job ID. You can retrieve the job ID of your application

following one of these procedures:

• Submit the job (with the flag --deploy-mode client on the spark-submit

command) and adding the following command at the beginning of your application

System.out.println("ApplicatioId: "+JavaSparkContext.toSparkContext(sc).applicationId());

• With the following command on the terminal, substituting sXXXXX with your username

yarn application -list -appStates ALL|grep 'sXXXXXX'

 Shut down JupyterHub container
As soon as you complete all the tasks and activities on JupyterHub environment,

please remember to shut down the container to let all your colleagues in all the sessions

connect on JupyterHub and do all the lab activities.

1. Go into File -> Hub Control Panel menu

2. A new browser tab opens with the “Stop My Server” button. Click on it and

wait till it disappears.

1.

2.

Click the “Stop My

Server” button

