
Database Management Systems

ElasticSearch

1

Search in a nutshell

1. Take a query string

2. Match it against a document collection

• Perform full text search, handle synonyms

3. Calculate a set of relevant results

• Score documents by relevance

4. Display a sorted list

2

3

ElasticSearch

• Real-time distributed search and analytics engine

• Scalable and efficient data exploration

● Full-text search

● Highlighted search snippets, search as you type,

did-you-mean, more-like-this

● Structured search

● Analytics

● Real-time query answers on mixed data types

(e.g., text and structured data)

4

ElasticSearch

● Popular examples

○ GitHub uses ElasticSearch to query 130+B lines of

code.

○ Wikipedia provides full-text search with highlighted

snippets

○ StackOverflow combines both full-text and

geolocation queries for recommending related

questions and answers

5

ElasticSearch

● Document-oriented (JSON) search engine

● Complex data structures that may contain dates,

geo locations, text, other objects, arrays of values

● Built on Lucene search engine library

● Documents are indexed and searchable

● Highly available and horizontally scalable

6

ElasticSearch strong points

• The horizontal scaling capabilities of ElasticSearch
make it suitable for a great variety of applications

• Its RESTful API allows programmers to write most of
the operations in any programming language

• JSON-based interactions make it machine- and
human-friendly

• Any modification to stored (indexed) documents is
recorded in transaction logs that are replicated in
multiple nodes to avoid data loss

ElasticSearch

Data representation

7

8

Parallel to relational representation

• Data is stored in named entries belonging to a variety
of data types

• SQL calls such an entry a column while in
ElasticSearch it is called field

In ElasticSearch (similarly to other NoSQL databases) a
field can contain multiple values of the same type (list of
values)

ElasticSearch: field SQL: column

9

Parallel to relational representation

• Data objects are represented as rows (SQL) or
documents (ElasticSearch)

• Columns and fields are part of a row (SQL) or a
document (ElasticSearch)

Row format in SQL is strict and follows a predefined
schema.
Documents are more flexible and can contain a variety
of fields (they do not follow a strict schema)

ElasticSearch: document SQL: row

10

Parallel to relational representation

An index is like a table in a relational database

ElasticSearch: index SQL: table

ElasticSearch: cluster SQL: database

In Elasticsearch the indices are grouped in a cluster.

ES cluster index document field

SQL database table row column

Recap

11

The index term

The index term is overloaded

• (noun) An index stores a collection of documents

• (verb) To index a document means to insert a

document in an index

● If the document already exists, it is replaced

12

The index term

The index term is overloaded

● (inverted index) Additional structure that

accelerates data retrieval

● Similar to a traditional relational index

● Every field in a document is indexed in ES

● All inverted indices are used during search

● Non-indexed fields (if any) are not searchable

13

Document

● A document is the top-level (root) object

serialized into JSON

● It is uniquely identified by the pair

● Index: where the document (object) is stored

● Id: the identifier of the document

● Can be provided or uniquely generated by ES

Elastic Search

Querying and searching

14

15

Searching

Search options

• Structured query on specific fields, possibly
sorted

• similar to SQL query

• Full-text query

• finds all documents matching the search
keywords

• returns them sorted by relevance

• Combination of the two

16

Key concepts

• Mapping

• How the data in each field is interpreted

• ES dinamically generates a mapping by
“guessing” data types

• E.g. it may recognize a date type

• Analysis

• How full text is processed to make it searchable

• Query DSL (Domain Specific Language)

• Elastic Search query language

17

Exact values

• Traditional data types (e.g., integer, float, date,
but also string)

• A value must match exactly the query

• Similar to SQL

• Examples: date, user ID, but also exact strings
such as username or email address

• Question answered

“Does this document match the query?”

18

Full text

• Textual data, usually written in some human
language

• Typical search is within the textual field

• Examples: text of a tweet, body of an email

• Question answered

“How well does this document match the query?”

• Notion of relevance of a document for a query

19

Full text

• For full text queries, it is also important
understanding the intent

• abbreviations

• e.g., USA vs United States of America

• singulars/plurals, verb conjugation

• e.g., cat vs cats, does vs did vs to do

• synonyms

• e.g., game vs competition

• order of words building a context

• e.g., fox news hunting vs fox hunting news

20

Indexing full text

• ES builds an inverted index on every full-text
field

• Designed for fast full-text search

• Inverted index

• List of all the unique words that appear in any
document in the collection

• For each word: list of the documents in which it
appears

21

Indexing full text

• Similar to analytic indices in books

list of pagesword

22

Analysis

1. Tokenization of a block of text into individual
terms suitable for an inverted index

2. Normalization into a standard form to improve
their retrieval (or recall) in queries

• Terms are not exactly the same, but similar
enough to be still relevant

• Lowercase vs uppercase

• Stemming, i.e., reduction to the root form

• e.g., cats vs cat

• Synonym management

• For searching, both indexed text and query
string must be analyzed in the same way

23

Analyzer

• Analyzers provide the following functions

• Character filters: cleans the string before
tokenization

• e.g., converts & to and

• Tokenizers: split the string into individual words

• e.g., by considering white spaces or punctuation
as separators

• Token filters: operate on single terms

• change terms (e.g., to lowercase)

• remove (e.g., stopwords)

• add terms (e.g., synonyms)

• Built-in analyzers are provided by ES

24

Filter vs Query

• A filter is used for fields containing exact values

• It provides a boolean matches/does not match
answer for every document

• A query is (typically) used for full-text search

• It also asks the question: How well does this
document match?

• calculates how relevant each document is to the
query

• assigns it a relevance _score, which is later used
to sort matching documents by relevance

• The concept of relevance is well suited to full-
text search

• there is seldom a completely “correct” answer

25

Filter vs Query

• Filter execution is more efficient

• Filters are typically used to reduce the number
of documents that have to be examined by a
query

• Hint

• use query clauses for full-text search or for any
condition that should affect the relevance score

• use filter clauses for everything else

26

ElasticSearch Query

• Expressed in Query DSL

• Submitted as formatted JSON in the body of an
HTTP request

• Example: empty query

• returns all documents in all indices

• Search on a specific index

POST /_search

{}

POST index1/_search

{}

27

Query DSL

• The top level field in an ElasticSearch query is always
query

• the query type is specified one level below

POST departments/_search

{

“query”: {

“match” : { “name” : ”John” }

}

}

28

Query DSL

• The top level field in an ElasticSearch query is always
query

• the query type is specified one level below

• the query operates on the department index

• specified in the URI

• it performs the search operation

POST departments/_search

{

“query”: {

“match” : { “name” : ”John” }

}

}

29

Query DSL

POST departments/_search

{

“query”: {

“match” : { “name” : ”John” }

}

}

• Query

Find all the documents in the department index that
have a field name containing the term John in it.

• Query type: match query

30

Compound queries

Compound queries are complex queries specifying
multiple matching criteria

POST departments/_search

{

"query": {

"bool": {

"should": [

{"match": {"name": "John"}},

{"match": {"name": "Mark"}}

],

"minimum_should_match":1,

"must":{

{"match": {"title": "developer"}}

}

"must_not":{

{"match": {“lastname": “Smith"}}

}

}

}

}

bool specifies the
compound query

31

Compound queries

POST departments/_search

{

"query": {

"bool": {

"should": [

{"match": {"name": "John"}},

{"match": {"name": "Mark"}}

],

"minimum_should_match":1,

"must":{

{"match": {"title": "developer"}}

}

"must_not":{

{"match": {“lastname": “Smith"}}

}

}

}

}

must corresponds to the
AND condition

should specifies the OR
condition

must_not specifies the
NOT condition

32

The match query

• Can be used for both full-text and exact queries

• On a full-text field

• it analyzes the query string with the correct
analyzer before executing the search

• it returns a relevance score _score for the search

• On an exact field or a not_analyzed string field

• it searches the exact value

• it returns a relevance score _score of 1

• When a bool query is specified on full-text fields

• It combines the _score from each must or should
clause that matches

33

Query DSL

POST rooms,students/_search {...}

• It is possible to specify multiple indices to be searched
in the query URI

• When a number of documents can be returned as
query result, by default the top 10 relevant results are
returned

Earlier versions of ElasticSearch include index types that
have been deprecated since version 7.0.

ElasticSearch

Data modifications

34

35

Insert

Insert of a new single document is performed by means of a POST
operation
• Name of index
• JSON document to be indexed

POST /index_name/<id>

{

JSON document

}

index_name: name of the index in which the document should be
inserted
<id>: optional parameter that associate the document with a specific
identifier
• If the ID is not provided, ElasticSearch creates a unique identifier

for the document (e.g., W0tpsmIBdwcYyG50zbta)

36

Update

• Documents in ES are immutable

• To update a document, it is reindexed

• When a document is updated, ES

1. Retrieves the old document

2. Modifies the retrieved copy

3. Deletes the old document

4. Indexes the new document (the copy)

• Internally, the old version of the document is not

deleted immediately

• It is not accessible

• Deleted documents are cleaned in background

37

Update

The update of a document is performed using a POST request
• Name of the index
• Unique ID of the document
• the fields to be updated and the associated new values

PUT index_name/123/_update

{

"color" : "red",

}

This update request modifies the document with ID=123 setting the
value of the “color” field to “red”.

38

Delete

The deletion of a document is performed using a DELETE request
• Name of the index
• Unique ID of the document

DELETE index_name/id

This operation removes a JSON document from the specified index
• Document removal is not immediate

ElasticSearch

Results scoring

39

40

Relevance

• In ElasticSearch, relevance is represented by a value

• floating-point number

• computed for each document matching the query

• stored as _score for each document in the search result

• higher _score values correspond to more relevant

documents

• Sorting by relevance is performed by considering the

_score variable

• by default, documents in a query result are sorted by

descending value of the _score field

41

ElasticSearch Scoring

1. Compute matching results for the query

• Compute relevance score for all documents in the

query result

2. Select top relevance documents (hits)

• Default is 10 hits (documents)

3. (optional) Rescore documents

• more computationally expensive algorithm

42

Relevance score computation

• Need to compute the similarity between

• The query

• Each document

• Each document may contain a (different) subset of the

query terms

43

Relevance score computation

1. Select documents matching the query

• Boolean model

• Fast computation

2. Evaluate the importance (weight) of each term in a

document with respect to the query

• Term importance evaluated with TF/IDF (Term

Frequency/Inverse Document Frequency) score

• Document and query are represented in vector form

(Vector Space Model)

3. Evaluate the similarity of the vector representation of

the query and the document

44

TF/IDF scoring function

The TF/IDF scoring function takes into account

Term frequency

• How often does the term appear in the field? The

more often, the more relevant.

Inverse document frequency

• How often does each term appear in the index? The

more often, the less relevant.

Field-length norm

• How long is the field? The longer it is, the less likely it

is that words in the field will be relevant.

45

Term frequency

• Term frequency is defined by

Tf(t in d) = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

• frequency is the number of times the term t appears in

document d

46

Inverse document frequency

• Inverse document frequency is defined by

Idf(t) = 1 + log (numDocs/(docFreq + 1))

• numDocs is the number of documents in the index

• docFreq is the number of documents that contain the

term

47

Field-length norm

• Field-length norm is defined by

norm(d) = 1 / 𝑛𝑢𝑚𝑇𝑒𝑟𝑚𝑠

• numTerms is the number of terms in the field

48

TF/IDF scoring function

• The scoring function is based on a combination of the

three factors

• Term frequency

• Inverse document frequency

• Field-length norm

• They are calculated and stored at index time

• They are used to calculate the weight of a single term

in a document

• Other methods can be used

• Queries usually contain more than one term

• Need a way to combine multiple terms

49

Vector Space Model

• It represents both query and document as (term)

vectors

• It provides a way to compare a multi-term query

against a document

• A query (or document) is represented as a vector

• The vector size is the number of terms in the query

• Each vector element is the weight of one term,

calculated with TF/IDF scoring

• Vectors can be compared by measuring the angle

between them

50

Measuring similarity

• Vectors can be compared by measuring the angle

between them

• Cosine similarity

• The angle between a document vector and a query

vector is used to compute the similarity between a

document and a query

• It assigns to the document its relevance score for the

query

51

VSM Example

Consider the query
- happy hippopotamus

Considering the TF-IDF heuristics
- happy is a common word and should have low weight (e.g., 2)
- hippopotamus is uncommon and should have a higher weight

(e.g., 5)

The 2-dimensional vector associated to the query is

[2, 5]

52

VSM Example

Consider the three documents:
- I am happy in summer.
- After Christmas I’m a hippopotamus.
- The happy hippopotamus helped Harry.

It is possible to create a vector for each document
- Document 1: (happy, ____________) -> [2,0]
- Document 2: (___ , hippopotamus) -> [0,5]
- Document 3: (happy, hippopotamus) -> [2,5]

ElasticSearch

Horizontal scalability

53

54

Sharding

• Sharding is a technique to divide an index in smaller

partitions

• Each partition is a shard

• Each document belongs to a single shard

• Each shard is an instance of a Lucene index

• When data is written to a shard

1. It is periodically (every 1 second) written into a new

immutable Lucene segment on disk

2. It becomes available for querying

• Shards are the elementary units in which data is

distributed on nodes in a cluster

55

Shards

Index

Shard A Shard B Shard C

56

Clusters

• A cluster is a collection of multiple machines (nodes in

the cluster)

• Shards can be stored in any node within the cluster

Shard A

Shard B

Shard C

Shard D

Node 1 Node 2

Cluster

57

Sharding

Why is sharding important?

• It allows splitting data in smaller chunks, and thereby
scaling on large volumes of data
• Data may be distributed across multiple nodes within a

cluster
• Shards can be stored on smaller disks

• E.g., it is possible to store 1TB of data even without a single
node with that disk capacity

• Operations can be distributed across multiple nodes and
thereby parallelized
• Performance is increased, because multiple machines can

potentially work on the same query.

• Shards may be replicated on different nodes to increase
availability

ElasticSearch

Document versioning

58

59

Optimistic concurrency control

• ElasticSearch uses optimistic concurrency control

• It assumes that conflicts are unlikely to happen

• However, if the underlying data has been modified
between reading and writing, the update will fail

• Different from ACID transactions that need locking

• The process is “simple” for centralized data
management

60

Modification propoagation

• ElasticSearch data may be distributed on different
nodes in a cluster

• Shards may be replicated on different nodes (replica
shards)

• When documents are created, updated, or deleted,
the new version of the document has to be replicated
to other nodes in the cluster

• The primary copy is always written first

• The replication requests are sent in parallel and may
arrive at their destination out of sequence

61

Document versions

• Elasticsearch needs a way of ensuring that an older
version of a document never overwrites a newer
version

• Every document has a _version number that is
incremented whenever a document is changed

• Elasticsearch uses this _version number to ensure
that changes are applied in the correct order

• if an older version of a document arrives after a new
version, it can be ignored

• the _version number is used to ensure that conflicting
changes made by applications do not result in data
loss

62

Document versions

• APIs that update or delete a document accept a
version parameter

• can apply optimistic concurrency control only when
needed

