

DataBase and Data Mining Group

- Unsupervised technique that analyzes the data distribution to generate N partitions
 - Unsupervised = it only requires a features matrix

Import a model

from sklearn.cluster import KMeans

Build model object

km = KMeans(n_clusters = 5)

- The hyperparameter n_clusters specifies the number of centroids (= number of clusters)
 - Default is 8 (buy may change across different library versions)

Apply clustering to input data

Out[1]: [3, 1, 1, 1, 2, 2, 0]

- This operation assigns data to their respective cluster
 - X is the 2D NumPy array with input features (features matrix)
 - y pred is a 1D array with cluster labels

1.0	5	1.5
1.4	10	0.3

Example: DBSCAN

from sklearn.cluster import DBSCAN

```
cl_alg = DBSCAN(eps=3, min_samples=2)
```

 Example: Hierarchical clustering, n_clusters=5, average linkage

```
from sklearn.cluster import AgglomerativeClustering
```

```
cl_alg = AgglomerativeClustering(5, linkage='average')
```


- Internal metrics: use only the information of the features matrix
 - E.g. Silhouette, SSE

```
from sklearn.metrics import silhouette_score, silhouette_samples
silh_avg = silhouette_score(X, clusters)
silh_i = silhouette_samples(X, clusters)
```

- Silhouette is a number in the range [-1, 1]
- Higher values mean higher cluster quality
 - Clusters are well separated and cohesive

- Assessing clustering results
 - External metrics: compare a clustering result with some ground-truth labels
 - E.g. Adjusted Rand Score, Fowlkes-Mallows index

from sklearn.metrics import adjusted_rand_score

ars = adjusted_rand_score(c_truth, c_pred)

- The ARS score ranges in [0, 1]
- It is close to 1 when data in the predicted clusters is grouped in a similar way compared with ground truth

- Adjusted Rand Score (ARS)
 - Does not check for equality of target and predictions
 - It checks whether data are clustered in the same way
 - Example:
 - $c_{truth} = [1, 1, 2, 2, 2, 1]$
 - c_pred = [2, 2, 1, 1, 1, 2]
 - ARS(c_truth, c_pred) is 1

PoliTo

 4d-Scikitlearn-Clustering.ipynb

