
- 1 -

Data Science and Database Technology

Practice #5 – Oracle Optimizer

Queries

Query #1
SELECT *
FROM emp, dept
WHERE emp.deptno = dept.deptno AND emp.job = 'ENGINEER';

Change the optimizer goal from ALL ROWS (best throughput) to FIRST_ROWS (best response

time) by means of the following hint. Set different values for n.

SELECT /*+ FIRST_ROWS(n) */ *
FROM emp, dept
WHERE emp.deptno = dept.deptno AND emp.job = 'ENGINEER';

• A Hash Join is performed on DEPTNO, following the filtering of the rows on the Job attribute.

Access to the table: full (= read all rows).

• The cost represented in the right column is cumulative. This increases in fact following the

path from the leaves to the root of the tree of the execution plan. For each operation the cost of

- 2 -

the latter is increased. In this example the leaves of the tree are 2: the two table accesses on dept

and emp, with respective costs 3 and 120. Going up the tree, the costs of the two accesses are

added together with the cost of the Hash Join (3 + 120 + 1 = 124). The hash join has a unit cost.

Query #2

Disable the hash join method by means of the following hint: (/*+ NO_USE_HASH(e d) */)

SELECT /*+ NO_USE_HASH(e d) */ d.deptno, AVG(e.sal)
FROM emp e, dept d
WHERE d.deptno = e.deptno
GROUP BY d.deptno;

With hint NO_USE_HASH:

- 3 -

• DEPTNO = ITEM_1: when the Group By is executed, a view is created in which the key

attribute (DEPTNO) is renamed with ITEM_1. ITEM_1 also becomes the view index for

quick access to groups.

• The GROUP BY operation appears twice. The innermost one represents the advance of the

group by (anticipated before the join). The outermost one represents Group By in the initial

position, before the advance. In fact, if we observe the cumulative cost, this only increases

with the internal group by (which does the work) and not with the external one (which must no

longer group as the groups have already been created by the innermost one).

With hint USE_HASH:

• A hash join is used here. The group by, on the other hand, is not anticipated. Despite the hash

join, the sequence of these operations remains less efficient than the previous point (probably

due to the failure to advance the GROUP BY).

Query #3

 Disable the hash join method by means of the following hint: (/*+ NO_USE_HASH(e d) */)

- 4 -

SELECT /*+ NO_USE_HASH(e d) */ ename, job, sal, dname
FROM emp e, dept d
WHERE e.deptno = d.deptno
AND NOT EXISTS
 (SELECT * FROM salgrade WHERE e.sal = hisal);

Note. To write the schema of the query in relational algebra, the operator “NOT EXISTS”

could be rewritten with a NOT IN. Indeed:

SELECT ename, job, sal, dname

FROM emp e, dept d

WHERE e.deptno = d.deptno

AND e.sal NOT IN

 (SELECT hisal FROM salgrade);

Queries #4

Select one or more secondary structures to optimize the following query:

select avg(e.sal) from

emp e where e.deptno <

10 and
e.sal > 100 and e.sal < 200;

- 5 -

Compare query performance using distinct secondary structures on different attributes

with the one achieved by a unique secondary structure on multiple attributes.

Without indexes:

With indexes (secondary) on sal and deptno:

create index SalIndex on EMP(sal)

create index DepIndex on EMP(deptno)

- 6 -

• Indexes are used to select (access predicates) rows based on Sal and Deptno.

• An access predicate indicates, in the case of a B + Tree index, that the data is selected based on

a certain attribute by descending the tree hierarchy

(logarithmic cost). The leaves of the tree group the data in such a way "Coarse" (= a leaf can

contain many values for the indexed attribute).

• For this reason, an access predicate is often followed by a filter predicate, in which the data in

the selected tree leaf is analyzed. During the filter predicate, a finer filter is then performed on the

attribute values. This operation has a linear cost (all data in the leaf is analyzed).

• In this example the B + Tree is used to select Sal> 100, then linear search is used to select data

with Sal <200.

• Subsequently, the index on DeptNo is used to select the departments.

- 7 -

• The Hash Join is used to combine (through row id) the results obtained by filtering with the two

indexes (intersection of the rows that satisfy the conditions).

Query #5

Select one or more secondary structures to optimize the following query:

select dname from

dept
where deptno in (select deptno

from emp
 where job = 'PHILOSOPHER');

Index to emp (job), since the internal query filters this attribute. An additional index on emp

(deptno) would not help the join, since before the join a filter is performed on Job, which

requires the index on the Job and an access by row id.

• The system performs an index reading on JOB to filter the EMP rows.

• It then performs an access by row id (OPTIONS = BY INDEX) to access the content of the

other attributes of EMP.

• Finally it performs a hash join with the DEPT table

- 8 -

Query #6

Select one or more secondary structures to optimize the following query (remove already

existing indexes to compare query performance with and without indexes):

select e1.ename, e1.empno, e1.sal, e2.ename, e2.empno, e2.sal from

emp e1, emp e2
where e1.ename <> e2.ename and e1.sal < e2.sal
and e1.job = 'PHILOSOPHER' and e2.job = 'ENGINEER';

Indix on emp(job), emp(name) and emp(sal):

