
   
Data Management and Visualization   

Politecnico di Torino   

NoSQL in MongoDB – Practice 6   

Part 1 - Compass  
The practice purpose is to become familiar with MongoDB Compass tool. In this practice you are required to 
explore data and write some queries to retrieve data from a NoSQL database based on MongoDB.  

  

1) Setup and remote database connection  
  

MongoDB Compass Install (Windows/Linux)  
Download MongoDB Compass using one of the following links:   
● Ubuntu (.deb): https://downloads.mongodb.com/compass/mongodb-compass_1.18.0_amd64.deb ● 

RedHat (.rpm): https://downloads.mongodb.com/compass/mongodb-compass-1.18.0.x86_64.rpm  
● Windows (.exe) 64 bit: https://downloads.mongodb.com/compass/mongodb-compass-1.18.0-win32-

x64.exe  
● Mac OS (.dmg):  

https://downloads.mongodb.com/compass/mongodb-compass-1.18.0-darwin-x64.dmg  

Install and open the application  

  

Connection Setup  
  

1. Connect to the remote database using the following connection parameters:  
a. Hostname: bigdatadb.polito.it  
b. Port: 27017  
c. Authentication: Username/Password  
d. Username: Compass  
e. Password: Compass19!  
f. Authentication database: dbdmg  
g. SSL: Unvalidated (insecure)  

2. (Optional) Specify a Favourite Name to easily connect to the database in the future.  
3. Click on Connect.  
4. Access to dbdmg   
5. Access to a specific partition (Parkings/Bookings).  



  

2) Problem specifications  
The database contains Car Sharing information divided into two main collections: Bookings and Parkings. The 
most relevant information for each collection is shown in Table 1 (Parkings) and 2 (Bookings).   
  
   

Name  Type  Description  

_id  objectid  Document identifier.  

address  string  Parking address of the vehicle.  

city  string  City location of the vehicle.  

engineType  string  Identifier of the engine type of the vehicle.  

exterior  string  
String describing the external condition of the vehicle during 
the parking.  

final_date  date  Date and hour of the end of the parking period.  

fuel  int32  Fuel level (0-100) during the parking period.  

init_date  date  Date and hour of the beginning of the parking period.  

interior  string  
String describing the internal condition of the vehicle during 
the parking.  

loc  coordinates  Coordinate of the parking location.  

plate  int32  Identifier of the vehicle’s plate.  

smartphoneRequired  boolean  
Boolean value denoting if the smartphone is required to 
start/finish the parking.  

vendor  string  Company owner of the vehicle.  

vin  string  Identifier of the chassis of the vehicle.  

  
 Table 1: Parkings  database info.   
  
    

Name  Type  Description  

_id  objectid  Document identifier.  

car_name  string  Vehicle’s model  

city  string  City location where the vehicle has been booked.  



distance  int32  Distance covered during the vehicle renting.  

driving  Array   

distance   int32  
Distance covered during the vehicle 
renting (in meters).  

duration  int32  Duration of the renting (in seconds)  

engineType  string  Identifier of the engine type of the vehicle.  

exterior  string   
String describing the external condition of the vehicle during the 
renting.  

final_address  string   Address of the final position of the renting period.  

final_date  date  Date and hour of the end of the renting period.  

final_fuel  int32  Fuel level (0-100) at the end of the renting period.  

init_address  int32  Address of the starting position of the renting period.  

init_date  date  Date and hour of the beginning of the renting period.  

init_fuel  int32  Fuel level (0-100) at the beginning of the renting period.  

interior  string  
String describing the internal condition of the vehicle during the 
renting.  

plate  int32  Identifier of the vehicle’s plate.  

smartphoneRequired  boolean  
Boolean value denoting if the smartphone is required to start/finish 
the parking.  

vendor   string  Company owner of the vehicle.  

walking  Array   

distance   int32  
Walk distance to reach the vehicle  (in 
meters).  

duration  int32  
Duration of the walking trip to reach the 
vehicle (in seconds).  

  
 Table 2: Bookings  database info.   
  
  
  
 
 
 
 
 
    



3) Analyze the database using the Schema analyzer  
  

  
  
  

  
  
  

1. ((Bookings) Identify the most common percentage(s) of fuel level at the beginning of the renting 
period.  

2. (Bookings) Identify the most common percentage(s) of fuel level at the end of the renting period.  
3. (Parkings) Identify the time range(s) with most parking requests (start parking).  
4. (Parkings) Identify the time range(s) with most booking requests (end parking).  
5. (Parkings) Visualize on the map the vehicles having the fuel level lower than 5%.  

  
  
  
  
  



4) Querying the database  
  

  
  

1. (Parkings) Find the plates and the parking addresses of the vehicles that begin the booking (end 
parking) after 2017-09-30 at 6AM.  
(Hint: it is possible to use the function Date("<YYYY-mm-ddTHH:MM:ss>") )  

2. (Parkings) Find the addresses and the level of fuel of the vehicles that during the parking period had 
at least 70% of fuel level. Order the results according to descending value of fuel level.  

3. (Parkings) Find the plate, the engine type and fuel level for ‘car2go’ vehicles (vendor) with good 
internal and external conditions.  

4. (Bookings) For the renting that required a walking distance greater than 15 Km (to reach the vehicle), 
find the hour and the fuel level at the beginning of the renting period. Order results according to 
decreasing initial fuel level.   
  

  

5) Data Aggregation  
  
5. (Bookings) Group documents according to their fuel level at the end of the renting. For each group, 

select the average fuel level at the beginning of the renting period.   
6. (Bookings) Select the average driving distance for each vendor. On average, for which vendor the 

users cover longer distances?   
  

  
  
    
  

 



Part 2 – MongoDB   
  
The objective of the second part of the practice is to connect to a MongoDB instance, create and 
successfully populate a collection of documents. Then, visually explore the newly created collection 
and query the database exploiting different MongoDB functionalities and patterns. MongoDB is 
already installed at LABINF.  

1)Practise Setup   
LABINF 

a. Create a local folder (e.g.: C:\Users\<S123456>\Desktop\mongo_database) and save its path, 
from now on called: my_database_path. This folder will contain the DB generate with 
MongoDB.  
  

b. Navigate to C:\Program Files\MongoDB\4.0\bin and open a command shell in the location 
(maiusc + right-click -> open command window here).  
( E.g. cd C:\Program Files\MongoDB\4.0\bin).  
  

c. Run the following command:   
mongod –-dbpath my_database_path  

  

Practice at home - MongoDB community Edition  
 

To on your PC, you need to install MongoDB Server. 

You can install MongoDB by following the official guide for your operating system.  
- Linux  
- Mac OS  
- Windows  

  
For installation on Mac OS, you can follow the official guide (which makes use of Homebrew).  
  

Verify the installation   
For the next steps, you need to know how to run mongod commands from the terminal. 
For Linux and Mac OS the commands should be directly available (the executables are 
loaded into a directory in $ PATH). For Windows, you will need to use the full path (e.g. 
"C:\Program Files\MongoDB\Server\4.4\bin\mongod.exe").  

  
Output example on Windows:   



   
  

DB creation  
To create a db, it is necessary to execute mongod specifying the parameter --dbpath, 
that is the path on filesytem where we want to create our database.   
mongod –-dbpath my_database_path   

  
To create the db in the directory my_database_path   

  
Ubuntu - If you have an error:  
systemctl unmask mongod  

   
 

2) Creating the database collection (Windows/Linux)  
  

a. Download the Restaurants database in json format from the course website   
E.g. ”C:\Documents\lab\MongoDB\restaurants_collection.json”  
  

b. Open another Command Shell in the folder of MongoDB (previous location)  
  

c. Run the following command:   
mongoimport -–db=restaurantsDB -–collection=restaurants  
--file=”C:\Documents\lab\MongoDB\restaurants_collection.json” --jsonArray (Modify 
the json path based on your own configuration)   

 
Alternative:  



mongo  use restaurantsDB   
db.restaurants.insertMany(<file content>)  

 
  

d. Run the following command: mongo   
You are now logged into the Mongo Shell.  

  
e. Activate the restaurants db:  

use restaurantsDB  
  

 
  

f. In order to check the success of the import, run the command:  
db.restaurants.find().pretty()  

 
  

  
  

3) Query on Restaurants database  
Each document of the collection has a structure with the following fields:  
{_id: <ObjectId>,  
name: <string>, // name of the restaurant tag: 
<list[string]>, // tags assigned by the users 
orderNeeded: <boolean>, // if the user should 
reserve maxPeople:<int>, // maximum number of 
customers review:<float>, // average vote  
cost:<string>, // classification of the menu price. Categories are: low, medium 
and high location:{type:"Point",coordinates:[<lat>,<long>]}, // geographical 
point contact:{ phone:<string>, // telephone of the restaurant facebook:<string> 
// link to the facebook page }  
}  

 
Running queries of interest:  
a. Find all restaurants whose cost is medium  
b. Find all restaurants whose review is bigger than 4 and cost is medium or low   



c. Find all restaurants that can contain more than 5 people and:   
i. whose tag contains "italian" or "japanese" and cost is medium or high   

OR  
ii. whose tag does not contain neither "italian" nor "japanese", and whose review is 

higher than 4.5  
d. Calculate the average review of all restaurants   
e. Count the number of restaurants whose review is higher than 4.5 and can  contain more than 

5 people  
f. Run query n. d) using the Map-Reduce paradigm   
g. Run query n. e) using the Map-Reduce paradigm   
h. Find the restaurant in the collection which is nearest to the point [45.0644, 7.6598] Hint: 

remember to create the geospatial index.  
i. Find how many restaurants in the collection are within 500 meters from the point [45.0623, 

7.6627]   
  

  


