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ML pipeline
Notebooks
E.g. jupyter notebooks

- Prototyping

- Exploratory and evaluation
phase

- Share results and analysis



ML pipeline
Scripts

- Multiple files

- Sequential run

- From data import to model 
prediction



ML pipeline

https://xkcd.com/2054



ML in production… or not?

https://venturebeat.com/2019/07/19/why-do-87-of-data-science-projects-never-make-it-into-production/
https://www.gartner.com/smarterwithgartner/gartner-top-strategic-predictions-for-2019-and-beyond/

https://venturebeat.com/2019/07/19/why-do-87-of-data-science-projects-never-make-it-into-production/
https://www.gartner.com/smarterwithgartner/gartner-top-strategic-predictions-for-2019-and-beyond/


ML systems

- Machine learning code
- Modeling

- Feature extraction and engineering

….

ML code

Feature extraction



Hidden technical debt in ML systems

Sculley, David, et al. "Hidden technical debt in machine learning systems." Advances in neural information processing systems. 2015. NIPS'15



Technical debt 
Concept of software development

The implied cost of additional rework caused by choosing an easy (and 
limited) solution instead of using a better approach that would

take longer and is harder to implement

In software development, technical debt may be handled by:
- refactoring code
- improving unit tests
- deleting dead code
- reducing dependencies
- improving documentation



Technical debt in ML pipelines

Not only code level...
- maintenance problems of traditional code

… at the system level

Data

Directly influences the behavior of ML systems



Technical debt in ML pipelines
Entanglement

- Machine learning systems mix input together, entangling them and 
the isolation of improvement and components is difficult

CACE issue: Changing Anything Changes Everything

e.g. If an input feature changes, then the importance, weights or use of the remaining 
features may all change as well (or not).

CACE applies to input signals, hyper-parameters, learning settings, 
sampling methods, convergence thresholds, data selection..



Entanglement

Mitigation strategy:
- Isolate models
- Monitoring

- detecting changes in prediction behavior as they occur.
- ML systems must be designed so that feature engineering and 

selection changes are easily tracked.

Technical debt in ML pipelines



Unstable Data Dependencies

- Input features may be produced by other systems
- Problem: some data inputs are unstable, changing behavior over time.

- E.g. they are output of another ML model that updates over time
- E.g. they are generated by a model that was refactored or reconfigured 

(calibration)

Technical debt in ML pipelines



Unstable Data Dependencies

Mitigation strategy
- Monitoring:

- track the changes
- Versioning

- Create a versioned copy of a given signal
- Problems

- “model staleness”, i.e. predictive power of a ML model decreasing 
over time

- the cost to maintain multiple versions of the same signal over time

Technical debt in ML pipelines



Underutilized Data Dependencies

- For code, we may have packages or functions mostly unneeded
- For data dependencies, we may have data inputs that provided just 

a little incremental modeling benefit (or none if unneeded)
- also unneeded over time

Problem: they represent an unnecessarily vulnerability to change of the 
ML system

Technical debt in ML pipelines



Underutilized Data Dependencies

Examples
- ɛ-Features. → Features that increase model performance of just a very small ɛ 

but there is a high complexity overhead to include and maintaining them
- Correlated Features. → ML methods may have difficulty detecting the 

correlation and credit the two correlated features equally or only the non-causal 
one is used as input. We may have problem if later the behavior changes and 
correlations change.

- Legacy Features. → A feature F that is included in a model early in its 
development but over time, F is made redundant by new features but this goes 
undetected.

- Bundled Features. → A group of features is evaluated to be beneficial. All of 
features in the groups are added as input without considering the one that actually 
add values.

Technical debt in ML pipelines



Underutilized Data Dependencies

- Mitigation strategy
- Monitoring:

- track the changes, especially changes in correlations and 
redundancy features

- Detect them
- Exhaustive leave-one-feature-out evaluations that should 

be performed regularly to identify and remove 
unnecessary feature

Technical debt in ML pipelines



Configuration Debt

In ML systems we have a wide range of configurable options:
- as which features are used, how data is selected, a wide variety of 

algorithm-specific learning settings, potential pre- or post-processing, 
verification methods, etc

Problem: mistakes in configuration can be costly, leading to serious loss 
of time, waste of computing resources, or production issues

Configuration

Technical debt in ML pipelines



Configuration Debt

Example of principles of good configuration systems*:
- It should be easy to specify a configuration as a small change from a previous 

configuration.
- It should be hard to make manual errors, omissions, or oversights.
- It should be easy to see, visually, the difference in configuration between two 

models.
- It should be easy to automatically assert and verify basic facts about the 

configuration: number of features used, transitive closure of data dependencies, 
etc.

- It should be possible to detect unused or redundant settings.
- Configurations should undergo a full code review and be checked into a 

repository.

* Sculley, David, et al. "Hidden technical debt in machine learning systems." Advances in neural information processing systems. 2015. NIPS'15

Technical debt in ML pipelines
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Data dependencies
- Changing data, Underutilized data, Unstable data

Monitor the distribution of inputs to detect changes
- If the model is not able to adapt to the change → effect on 

predictions
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Monitor the distribution of outputs to detect changes
- Observe effect of change and data dependency on the output

e.g. fraud detection problem, training is highly imbalanced (99% transactions are legal 
and 1% are fraud). But over time, the system labels 20% of transactions as fraudulent.

Monitor (prediction) 
output distribution
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Monitor the quality of the model
- Monitor model performance on new test data to test model quality

Monitor (prediction) 
output distribution

Monitor model 
quality



Model staleness - Model drifting
Data can change over time

A model that was initially working could later degrade due 
to a data drift or concept drift.

Concept drift refers to the change in the relationships 
between input and output data in the underlying problem 
over time.

Mitigation approach
- Monitoring the model performance

Monitor model 
quality

Modeling

Model



Monitoring the model performance
If the model falls below an acceptable performance threshold
- Model retraining
- Deploying the new model

Model staleness - Model drifting

Image credit https://databricks.com/blog/2019/09/18/productionizing-machine-learning-from-deployment-to-drift-detection.html

https://databricks.com/blog/2019/09/18/productionizing-machine-learning-from-deployment-to-drift-detection.html


Versioning
Versioning: store and assign an unique identifier
- Code 

- Model (and its hyperparameters)

- Data
- Data
- Features

Goal
- Reproducibility
- Failure tolerance
- Version comparison (e.g. old vs new model)
- Understanding how data and results change over time

Data Version Control
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Metadata layer
Keep track
- Results and their properties and location
- Configuration between components → execution records
- Interaction among components  → flow through the pipeline

Metadata tracking tools
- ML Metadata library in

TensorFlow Extended 
- Comet ML



Data sources and features
Data ingestion

Data

Retrieve and manage data from multiple sources

Data ETL (Extract Transform Load) pipelines 
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ML Pipeline → workflow

A workflow consists of an orchestrated and repeatable sequence of tasks, 
executed sequentially and/or concurrently

Orchestrator is a workflow management system that
- Build, connect, and maintain complex workflows

Data Ingestion

Result
Data 

preprocessing

Import the 
model

Inference

Orchestrator



Data Ingestion

Result
Data 

preprocessing

Import the 
model

Inference

Orchestrator

Directed acyclic graph (DAG)

Steps of the pipeline form a DAG
- Model task relationships and dependencies
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Production-ready ML architecture

https://blog.maiot.io/

https://blog.maiot.io/


TFX - Tensorflow Extended

Metadata Store

Orchestrator - Apache Airflow, Kubeflow

https://www.tensorflow.org/tfx

https://www.tensorflow.org/tfx


Orchestration

Workflow management tools

- Apache Airflow (Airbnb)

- Luigi (Spotify)

- Kubeflow (Google)

- Azkaban (LinkedIn)



Luigi
Open source workflow management system 
developed by Spotify

Luigi addresses all the “plumbing” associated with a 
data pipeline
- Chain many tasks
- Automate the task running
- Handle failures

The steps of a workflow are task, single unit of work



Luigi properties
- Workflow management

- Dependency resolution

- Persistence of task state 

- Idempotency property

- Completed tasks are not run twice

- Re-use previously computed outputs

- Automatically, without manually specifying it

- Failure management

- Smoothly resume data workflow after a failure.

Task B

Task A

Task C

α

β



Failure management
In case of failure of a component of the pipeline, the system is able to

- detect from which part of the workflow run again
- resume dependent task from the intermediate step

Data Ingestion

Result
Data 

preprocessing

Import the 
model

Inference



Luigi properties
- Lazy evaluation

- delays the evaluation of task dependencies and workflow until its target is 
needed and avoids repeated evaluations

- Visualization
- Graphical representation of the progress of the task in the data pipeline

- Parametrize and re-run tasks on a schedule with the help of an external 
trigger

- Command line integration
- Simple

- Small overhead for a task
- Connecting components is easy and intuitive.

- Python based



Luigi - Cons
- No scheduler

- Luigi doesn't sync tasks to workers for you, schedule, alert, or monitor 
like other tools do (as Apache Airflow).

- It also has no native support for distributed execution.



Luigi building blocks

- Task

- Target 

- Parameter



Luigi building blocks
Task
- Each step of a workflow

- Usually a single unit of work 
- Where computation is done
- Consume and produce targets

- property of atomicity → recommended to output just one target

Data Ingestion

Result
Data 

preprocessing

Import the 
model

Inference

Task



Luigi building blocks
Target
- Any kind of output generated by the task

- e.g. a file, a checkpoint of the workflow

- Connect the task in the workflow

Data Ingestion

Result
Data 

preprocessing

Import the 
model

Inference

Targets



Luigi building blocks
Parameters
- Parameters of Task to perform parameterize tasks.

- E.g. versions, hyper-parameters of module

Data Ingestion

Result
Data 

preprocessing

Import the 
model

Inference

Model type
Hyper-parameters of the model

Version of the dataset



Luigi  - define Tasks

https://luigi.readthedocs.io/en/stable/tasks.html

Task B

Task A

Task C

α

β

https://luigi.readthedocs.io/en/stable/tasks.html


Run Luigi workflows
Use the command line specifying the module name and the task in the project 
directory

$ luigi --module <module_name> <task_name> --
<parameter1_name> <par_value> ..

To execute the entire workflow, we specify the last task

<modul_name> needs to be in our PYTHONPATH 
We can add the current working directory to the PYTHONPATH with 
PYTHONPATH='.' luigi --module <modul_name>... 



Luigi - Case Study
Case study on COVID-19 data

https://github.com/elianap/luigi-covid-pipeline

Objectives
- Create a daily report of COVID-19 situation in Italy
- Weekly model and predict for the next week the trend 

of variables of interest

https://github.com/elianap/luigi-covid-pipeline


- Import data
- Pre-process data
- To generate a daily report

- Generate some statistics or plots
In our example → plot of the trend of some variable of interest

- Aggregate in a single report
In our example → single html page

- To weekly model and predict trends
- Transform the data
- Model (regression)
- Predict the trend for a variable of interest
- Plot the trend 

Luigi - COVID-19 ML pipeline



Luigi - COVID-19 ML pipeline - DAG
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Luigi - COVID-19 ML pipeline - DAG

Download
Dataset

Data 
PreProcessing

PlotTrend

Plot Future 
Trend

PlotTrend

PlotTrend

Aggregate In
A Report

Data
Transform Modeling PredictTrend

Weekly model and predict trends



Luigi - COVID-19 ML pipeline - DAG
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class DownloadDataset(luigi.Task):

dataset_version = DateParameter(default=datetime.date.today())

dataset_name = Parameter(default="covidIT")

columns_ita_eng = {"data": "date", "stato": "country",... }

data_url = "https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-

andamento-nazionale/dpc-covid19-ita-andamento-nazionale.csv"

output_folder = os.path.join(output_dir, "dataset")

DownloadDataset



class DownloadDataset(luigi.Task):

dataset_version = DateParameter(default=datetime.date.today())

dataset_name = Parameter(default="dataset")

....

def output(self):

return LocalTarget( os.path.join(self.output_folder,

f"{self.dataset_name}_v{self.dataset_version}.csv"

))

DownloadDataset



DownloadDataset
class DownloadDataset(luigi.Task):

dataset_version = DateParameter(default=datetime.date.today())

dataset_name = Parameter(default="dataset")

....

def run(self):

df_data = self.load_data(self.data_url, columns_new_names=self.columns_eng)

Path(self.output_folder).mkdir(parents=True, exist_ok=True)

df_data.to_csv(self.output().path)



DownloadDataset
class DownloadDataset(luigi.Task):

dataset_version = DateParameter(default=datetime.date.today())

dataset_name = Parameter(default="dataset")

....

def load_data(self, data_url, columns_new_names=None):

data = pd.read_csv(data_url)

if columns_new_names:

data.rename(columns=columns_new_names, inplace=True)

data["date"] = pd.to_datetime(data["date"])

data.set_index("date", inplace=True)

return data



Run DownloadDataset Luigi task

PYTHONPATH='.' luigi --module covid_pipeline DownloadDataset
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DataPreProcessing
class DataPreProcessing(luigi.Task):

dataset_version = DateParameter(default=datetime.date.today())

dataset_name = Parameter(default="dataset")

output_folder = os.path.join(output_dir, "processed")

def requires(self):

return DownloadDataset(self.dataset_version, self.dataset_name)



DataPreProcessing
class DataPreProcessing(luigi.Task):

…

def output(self):

return LocalTarget( os.path.join( self.output_folder,

f"{self.dataset_name}_processed_v{self.dataset_version}.csv"

))



DataPreProcessing
class DataPreProcessing(luigi.Task):

…

def run(self):

df_data = pd.read_csv(self.input().path, index_col="date")

df_data = self.preprocess_data(df_data)

Path(self.output_folder).mkdir(parents=True, exist_ok=True)

df_data.to_csv(self.output().path)



DataPreProcessing
class DataPreProcessing(luigi.Task):

…

def preprocess_data(self, df_data):

df_data["diff_death"] = df_data["death"].diff()

df_data["diff_intensive_care"] = df_data["intensive_care"].diff()

df_data["diff_performed_tests"] = df_data["performed_tests"].diff()

df_data["diff_recovered"] = df_data["recovered"].diff()

df_data["ratio_molecular"] = ( df_data["total_positives_molecular_test"] /

df_data["swabs_test_molecular"]

df_data["ratio_antigenic"] =df_data["total_positives_antigenic_test_rapid"]/

df_data["swabs_test_antigenic_rapid"]

return df_data
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AggregateInReport
class AggregateInReport(luigi.Task):

...

# --> Alternative for dynamic report -->

run as --attributes '[ "total_positive", "recovered", "ratio_molecular" ]'

# attributes = ListParameter(default=["total_positive",

"recovered", "ratio_molecular"])

#

attributes = ["total_positive", "recovered","ratio_molecular"]

def output(self):

return LocalTarget( os.path.join( self.output_folder,

f"{self.dataset_name}_report_trends_v{self.dataset_version}.html"))



AggregateInReport
class AggregateInReport(luigi.Task):

...

def requires(self):

return {

attribute: PlotTrend(self.dataset_version, self.dataset_name, attribute)

for attribute in self.attributes

}

def run(self):

path_by_attribute = {k: self.input()[k].path for k in self.input()}

plots_html = self.getHTMLTrends(path_by_attribute)

... #write in file

with open(self.output().path, "w") as fp:

for plot_html in plots_html:

fp.write(plot_html)



AggregateInReport
class AggregateInReport(luigi.Task):

...

def requires(self):

return {

attribute: PlotTrend(self.dataset_version, self.dataset_name, attribute)

for attribute in self.attributes

}

def run(self):

path_by_attribute = {k: self.input()[k].path for k in self.input()}

plots_html = self.getHTMLTrends(path_by_attribute)

... #write in file

with open(self.output().path, "w") as fp:

for plot_html in plots_html:

fp.write(plot_html)



AggregateInReport
class AggregateInReport(luigi.Task):

...

def requires(self):

return {

attribute: PlotTrend(self.dataset_version, self.dataset_name, attribute)

for attribute in self.attributes

}

def getHTMLTrends(self, path_by_attribute):

plots_html = [

f"<h2 style='text-align: center'>{k}</h2>\n<p style='text-align: 

center'><img src='{path_by_attribute[k]}'  style='width: 50%; height: 50%' /> </p>"

for k in path_by_attribute

]

return plots_html
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AggregateInReport
Luigi Task Visualizer http://localhost:8082
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DataTransform - Windowing
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DataTransform - Windowing
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DataTransform - Windowing
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