
ML in production
Automation of ML pipelines with Luigi

Eliana Pastor

Eliana Pastor

Post-doc

Main research topics
- Explainable AI
- Fairness in ML
- Exploratory data analysis
- Predictive Maintenance
- Industrial ML

ML pipeline

Data
preprocessing

Data
transformation Modeling Model

deploymentData ingestion Data selection

Data Selected
data

Processed
data

Transformed
data Model Results

(predictions)

ML pipeline
Notebooks
E.g. jupyter notebooks

- Prototyping

- Exploratory and evaluation
phase

- Share results and analysis

ML pipeline
Scripts

- Multiple files

- Sequential run

- From data import to model
prediction

ML pipeline

https://xkcd.com/2054

ML in production… or not?

https://venturebeat.com/2019/07/19/why-do-87-of-data-science-projects-never-make-it-into-production/
https://www.gartner.com/smarterwithgartner/gartner-top-strategic-predictions-for-2019-and-beyond/

https://venturebeat.com/2019/07/19/why-do-87-of-data-science-projects-never-make-it-into-production/
https://www.gartner.com/smarterwithgartner/gartner-top-strategic-predictions-for-2019-and-beyond/

ML systems

- Machine learning code
- Modeling

- Feature extraction and engineering

….

ML code

Feature extraction

Hidden technical debt in ML systems

Sculley, David, et al. "Hidden technical debt in machine learning systems." Advances in neural information processing systems. 2015. NIPS'15

Technical debt
Concept of software development

The implied cost of additional rework caused by choosing an easy (and
limited) solution instead of using a better approach that would

take longer and is harder to implement

In software development, technical debt may be handled by:
- refactoring code
- improving unit tests
- deleting dead code
- reducing dependencies
- improving documentation

Technical debt in ML pipelines

Not only code level...
- maintenance problems of traditional code

… at the system level

Data

Directly influences the behavior of ML systems

Technical debt in ML pipelines
Entanglement

- Machine learning systems mix input together, entangling them and
the isolation of improvement and components is difficult

CACE issue: Changing Anything Changes Everything

e.g. If an input feature changes, then the importance, weights or use of the remaining
features may all change as well (or not).

CACE applies to input signals, hyper-parameters, learning settings,
sampling methods, convergence thresholds, data selection..

Entanglement

Mitigation strategy:
- Isolate models
- Monitoring

- detecting changes in prediction behavior as they occur.
- ML systems must be designed so that feature engineering and

selection changes are easily tracked.

Technical debt in ML pipelines

Unstable Data Dependencies

- Input features may be produced by other systems
- Problem: some data inputs are unstable, changing behavior over time.

- E.g. they are output of another ML model that updates over time
- E.g. they are generated by a model that was refactored or reconfigured

(calibration)

Technical debt in ML pipelines

Unstable Data Dependencies

Mitigation strategy
- Monitoring:

- track the changes
- Versioning

- Create a versioned copy of a given signal
- Problems

- “model staleness”, i.e. predictive power of a ML model decreasing
over time

- the cost to maintain multiple versions of the same signal over time

Technical debt in ML pipelines

Underutilized Data Dependencies

- For code, we may have packages or functions mostly unneeded
- For data dependencies, we may have data inputs that provided just

a little incremental modeling benefit (or none if unneeded)
- also unneeded over time

Problem: they represent an unnecessarily vulnerability to change of the
ML system

Technical debt in ML pipelines

Underutilized Data Dependencies

Examples
- ɛ-Features. → Features that increase model performance of just a very small ɛ

but there is a high complexity overhead to include and maintaining them
- Correlated Features. → ML methods may have difficulty detecting the

correlation and credit the two correlated features equally or only the non-causal
one is used as input. We may have problem if later the behavior changes and
correlations change.

- Legacy Features. → A feature F that is included in a model early in its
development but over time, F is made redundant by new features but this goes
undetected.

- Bundled Features. → A group of features is evaluated to be beneficial. All of
features in the groups are added as input without considering the one that actually
add values.

Technical debt in ML pipelines

Underutilized Data Dependencies

- Mitigation strategy
- Monitoring:

- track the changes, especially changes in correlations and
redundancy features

- Detect them
- Exhaustive leave-one-feature-out evaluations that should

be performed regularly to identify and remove
unnecessary feature

Technical debt in ML pipelines

Configuration Debt

In ML systems we have a wide range of configurable options:
- as which features are used, how data is selected, a wide variety of

algorithm-specific learning settings, potential pre- or post-processing,
verification methods, etc

Problem: mistakes in configuration can be costly, leading to serious loss
of time, waste of computing resources, or production issues

Configuration

Technical debt in ML pipelines

Configuration Debt

Example of principles of good configuration systems*:
- It should be easy to specify a configuration as a small change from a previous

configuration.
- It should be hard to make manual errors, omissions, or oversights.
- It should be easy to see, visually, the difference in configuration between two

models.
- It should be easy to automatically assert and verify basic facts about the

configuration: number of features used, transitive closure of data dependencies,
etc.

- It should be possible to detect unused or redundant settings.
- Configurations should undergo a full code review and be checked into a

repository.

* Sculley, David, et al. "Hidden technical debt in machine learning systems." Advances in neural information processing systems. 2015. NIPS'15

Technical debt in ML pipelines

Data
preprocessing

Data
transformation Modeling Model

deploymentData ingestion Data selection

Data
Selected

data
Processed

data
Transformed

data Model Results
(predictions)

Monitor
input distribution

ML pipeline

Data dependencies
- Changing data, Underutilized data, Unstable data

Monitor the distribution of inputs to detect changes
- If the model is not able to adapt to the change → effect on

predictions

Data
preprocessing

Data
transformation Modeling Model

deploymentData ingestion Data selection

Data
Selected

data
Processed

data
Transformed

data Model Results
(predictions)

Monitor
input distribution

ML pipeline

Monitor the distribution of outputs to detect changes
- Observe effect of change and data dependency on the output

e.g. fraud detection problem, training is highly imbalanced (99% transactions are legal
and 1% are fraud). But over time, the system labels 20% of transactions as fraudulent.

Monitor (prediction)
output distribution

Data
preprocessing

Data
transformation Modeling Model

deploymentData ingestion Data selection

Data
Selected

data
Processed

data
Transformed

data Model Results
(predictions)

Monitor
input distribution

ML pipeline

Monitor the quality of the model
- Monitor model performance on new test data to test model quality

Monitor (prediction)
output distribution

Monitor model
quality

Model staleness - Model drifting
Data can change over time

A model that was initially working could later degrade due
to a data drift or concept drift.

Concept drift refers to the change in the relationships
between input and output data in the underlying problem
over time.

Mitigation approach
- Monitoring the model performance

Monitor model
quality

Modeling

Model

Monitoring the model performance
If the model falls below an acceptable performance threshold
- Model retraining
- Deploying the new model

Model staleness - Model drifting

Image credit https://databricks.com/blog/2019/09/18/productionizing-machine-learning-from-deployment-to-drift-detection.html

https://databricks.com/blog/2019/09/18/productionizing-machine-learning-from-deployment-to-drift-detection.html

Versioning
Versioning: store and assign an unique identifier
- Code

- Model (and its hyperparameters)

- Data
- Data
- Features

Goal
- Reproducibility
- Failure tolerance
- Version comparison (e.g. old vs new model)
- Understanding how data and results change over time

Data Version Control

Data
preprocessing

Data
transformation Modeling Model

deploymentData ingestion Data selection

Data
Selected

data
Processed

data
Transformed

data Model Results
(predictions)

Monitor (prediction)
output distribution

Monitor
input distribution

Monitor model
quality

Monitor
schema

Data
preprocessing

Data
transformation Modeling Model

deploymentData ingestion Data selection

Data
Selected

data
Processed

data
Transformed

data Model Results
(predictions)

Monitor (prediction)
output distribution

Monitor
input distribution

Monitor model
quality

Monitor
schema

Metadata layer

Metadata layer

Metadata layer
Keep track
- Results and their properties and location
- Configuration between components → execution records
- Interaction among components → flow through the pipeline

Metadata tracking tools
- ML Metadata library in

TensorFlow Extended
- Comet ML

Data sources and features
Data ingestion

Data

Retrieve and manage data from multiple sources

Data ETL (Extract Transform Load) pipelines

Data
preprocessing

Data
transformation Modeling Model

deploymentData ingestion Data selection

Data
Selected

data
Processed

data
Transformed

data Model Results
(predictions)

Monitor (prediction)
output distribution

Monitor
input distribution

Monitor model
quality

Monitor
schema

Data source

ML pipeline in production - Data

Metadata layer

Data
preprocessing

Data
transformation Modeling Model

deploymentData ingestion Data selection

Data
Selected

data
Processed

data
Transformed

data Model Results
(predictions)

Monitor (prediction)
output distribution

Monitor
input distribution

Monitor model
quality

Monitor
schema

Data source

ML pipeline in production - Data

Metadata layer

Orchestration layer

ML Pipeline → workflow

A workflow consists of an orchestrated and repeatable sequence of tasks,
executed sequentially and/or concurrently

Orchestrator is a workflow management system that
- Build, connect, and maintain complex workflows

Data Ingestion

Result
Data

preprocessing

Import the
model

Inference

Orchestrator

Data Ingestion

Result
Data

preprocessing

Import the
model

Inference

Orchestrator

Directed acyclic graph (DAG)

Steps of the pipeline form a DAG
- Model task relationships and dependencies

Data
preprocessing

Data
transformation Modeling Model

deploymentData ingestion Data selection

Data
Selected

data
Processed

data
Transformed

data Model Results
(predictions)

Monitor (prediction)
output distribution

Monitor
input distribution

Monitor model
quality

Monitor
schema

Data source

ML pipeline in production

Metadata layer

Orchestration layer

Production-ready ML architecture

https://blog.maiot.io/

https://blog.maiot.io/

TFX - Tensorflow Extended

Metadata Store

Orchestrator - Apache Airflow, Kubeflow

https://www.tensorflow.org/tfx

https://www.tensorflow.org/tfx

Orchestration

Workflow management tools

- Apache Airflow (Airbnb)

- Luigi (Spotify)

- Kubeflow (Google)

- Azkaban (LinkedIn)

Luigi
Open source workflow management system
developed by Spotify

Luigi addresses all the “plumbing” associated with a
data pipeline
- Chain many tasks
- Automate the task running
- Handle failures

The steps of a workflow are task, single unit of work

Luigi properties
- Workflow management

- Dependency resolution

- Persistence of task state

- Idempotency property

- Completed tasks are not run twice

- Re-use previously computed outputs

- Automatically, without manually specifying it

- Failure management

- Smoothly resume data workflow after a failure.

Task B

Task A

Task C

α

β

Failure management
In case of failure of a component of the pipeline, the system is able to

- detect from which part of the workflow run again
- resume dependent task from the intermediate step

Data Ingestion

Result
Data

preprocessing

Import the
model

Inference

Luigi properties
- Lazy evaluation

- delays the evaluation of task dependencies and workflow until its target is
needed and avoids repeated evaluations

- Visualization
- Graphical representation of the progress of the task in the data pipeline

- Parametrize and re-run tasks on a schedule with the help of an external
trigger

- Command line integration
- Simple

- Small overhead for a task
- Connecting components is easy and intuitive.

- Python based

Luigi - Cons
- No scheduler

- Luigi doesn't sync tasks to workers for you, schedule, alert, or monitor
like other tools do (as Apache Airflow).

- It also has no native support for distributed execution.

Luigi building blocks

- Task

- Target

- Parameter

Luigi building blocks
Task
- Each step of a workflow

- Usually a single unit of work
- Where computation is done
- Consume and produce targets

- property of atomicity → recommended to output just one target

Data Ingestion

Result
Data

preprocessing

Import the
model

Inference

Task

Luigi building blocks
Target
- Any kind of output generated by the task

- e.g. a file, a checkpoint of the workflow

- Connect the task in the workflow

Data Ingestion

Result
Data

preprocessing

Import the
model

Inference

Targets

Luigi building blocks
Parameters
- Parameters of Task to perform parameterize tasks.

- E.g. versions, hyper-parameters of module

Data Ingestion

Result
Data

preprocessing

Import the
model

Inference

Model type
Hyper-parameters of the model

Version of the dataset

Luigi - define Tasks

https://luigi.readthedocs.io/en/stable/tasks.html

Task B

Task A

Task C

α

β

https://luigi.readthedocs.io/en/stable/tasks.html

Run Luigi workflows
Use the command line specifying the module name and the task in the project
directory

$ luigi --module <module_name> <task_name> --
<parameter1_name> <par_value> ..

To execute the entire workflow, we specify the last task

<modul_name> needs to be in our PYTHONPATH
We can add the current working directory to the PYTHONPATH with
PYTHONPATH='.' luigi --module <modul_name>...

Luigi - Case Study
Case study on COVID-19 data

https://github.com/elianap/luigi-covid-pipeline

Objectives
- Create a daily report of COVID-19 situation in Italy
- Weekly model and predict for the next week the trend

of variables of interest

https://github.com/elianap/luigi-covid-pipeline

- Import data
- Pre-process data
- To generate a daily report

- Generate some statistics or plots
In our example → plot of the trend of some variable of interest

- Aggregate in a single report
In our example → single html page

- To weekly model and predict trends
- Transform the data
- Model (regression)
- Predict the trend for a variable of interest
- Plot the trend

Luigi - COVID-19 ML pipeline

Luigi - COVID-19 ML pipeline - DAG

Download
Dataset

Luigi - COVID-19 ML pipeline - DAG

Download
Dataset

Data
PreProcessing

Luigi - COVID-19 ML pipeline - DAG

Download
Dataset

Data
PreProcessing

PlotTrend

PlotTrend

PlotTrend

Luigi - COVID-19 ML pipeline - DAG

Download
Dataset

Data
PreProcessing

PlotTrend

PlotTrend

PlotTrend

Aggregate In
A Report

Luigi - COVID-19 ML pipeline - DAG

Download
Dataset

Data
PreProcessing

PlotTrend

PlotTrend

PlotTrend

Aggregate In
A Report

Daily report of the trend

Luigi - COVID-19 ML pipeline - DAG

Download
Dataset

Data
PreProcessing

PlotTrend

PlotTrend

PlotTrend

Aggregate In
A Report

Data
Transform

Luigi - COVID-19 ML pipeline - DAG

Download
Dataset

Data
PreProcessing

PlotTrend

PlotTrend

PlotTrend

Aggregate In
A Report

Data
Transform Modeling

Luigi - COVID-19 ML pipeline - DAG

Download
Dataset

Data
PreProcessing

PlotTrend

PlotTrend

PlotTrend

Aggregate In
A Report

Data
Transform Modeling PredictTrend

Luigi - COVID-19 ML pipeline - DAG

Download
Dataset

Data
PreProcessing

PlotTrend

Plot Future
Trend

PlotTrend

PlotTrend

Aggregate In
A Report

Data
Transform Modeling PredictTrend

Luigi - COVID-19 ML pipeline - DAG

Download
Dataset

Data
PreProcessing

PlotTrend

Plot Future
Trend

PlotTrend

PlotTrend

Aggregate In
A Report

Data
Transform Modeling PredictTrend

Weekly model and predict trends

Luigi - COVID-19 ML pipeline - DAG

Download
Dataset

class DownloadDataset(luigi.Task):

dataset_version = DateParameter(default=datetime.date.today())

dataset_name = Parameter(default="covidIT")

columns_ita_eng = {"data": "date", "stato": "country",... }

data_url = "https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-

andamento-nazionale/dpc-covid19-ita-andamento-nazionale.csv"

output_folder = os.path.join(output_dir, "dataset")

DownloadDataset

class DownloadDataset(luigi.Task):

dataset_version = DateParameter(default=datetime.date.today())

dataset_name = Parameter(default="dataset")

....

def output(self):

return LocalTarget(os.path.join(self.output_folder,

f"{self.dataset_name}_v{self.dataset_version}.csv"

))

DownloadDataset

DownloadDataset
class DownloadDataset(luigi.Task):

dataset_version = DateParameter(default=datetime.date.today())

dataset_name = Parameter(default="dataset")

....

def run(self):

df_data = self.load_data(self.data_url, columns_new_names=self.columns_eng)

Path(self.output_folder).mkdir(parents=True, exist_ok=True)

df_data.to_csv(self.output().path)

DownloadDataset
class DownloadDataset(luigi.Task):

dataset_version = DateParameter(default=datetime.date.today())

dataset_name = Parameter(default="dataset")

....

def load_data(self, data_url, columns_new_names=None):

data = pd.read_csv(data_url)

if columns_new_names:

data.rename(columns=columns_new_names, inplace=True)

data["date"] = pd.to_datetime(data["date"])

data.set_index("date", inplace=True)

return data

Run DownloadDataset Luigi task

PYTHONPATH='.' luigi --module covid_pipeline DownloadDataset

Luigi - COVID-19 ML pipeline - DAG

Download
Dataset

Data
PreProcessing

DataPreProcessing
class DataPreProcessing(luigi.Task):

dataset_version = DateParameter(default=datetime.date.today())

dataset_name = Parameter(default="dataset")

output_folder = os.path.join(output_dir, "processed")

def requires(self):

return DownloadDataset(self.dataset_version, self.dataset_name)

DataPreProcessing
class DataPreProcessing(luigi.Task):

…

def output(self):

return LocalTarget(os.path.join(self.output_folder,

f"{self.dataset_name}_processed_v{self.dataset_version}.csv"

))

DataPreProcessing
class DataPreProcessing(luigi.Task):

…

def run(self):

df_data = pd.read_csv(self.input().path, index_col="date")

df_data = self.preprocess_data(df_data)

Path(self.output_folder).mkdir(parents=True, exist_ok=True)

df_data.to_csv(self.output().path)

DataPreProcessing
class DataPreProcessing(luigi.Task):

…

def preprocess_data(self, df_data):

df_data["diff_death"] = df_data["death"].diff()

df_data["diff_intensive_care"] = df_data["intensive_care"].diff()

df_data["diff_performed_tests"] = df_data["performed_tests"].diff()

df_data["diff_recovered"] = df_data["recovered"].diff()

df_data["ratio_molecular"] = (df_data["total_positives_molecular_test"] /

df_data["swabs_test_molecular"]

df_data["ratio_antigenic"] =df_data["total_positives_antigenic_test_rapid"]/

df_data["swabs_test_antigenic_rapid"]

return df_data

Luigi - COVID-19 ML pipeline - DAG

Download
Dataset

Data
PreProcessing

Luigi - COVID-19 ML pipeline - DAG

Download
Dataset

Data
PreProcessing

PlotTrend

PlotTrend

PlotTrend

Luigi - COVID-19 ML pipeline - DAG

Download
Dataset

Data
PreProcessing

PlotTrend

PlotTrend

PlotTrend

Aggregate In
A Report

Daily report of the trend

AggregateInReport
class AggregateInReport(luigi.Task):

...

--> Alternative for dynamic report -->

run as --attributes '["total_positive", "recovered", "ratio_molecular"]'

attributes = ListParameter(default=["total_positive",

"recovered", "ratio_molecular"])

#

attributes = ["total_positive", "recovered","ratio_molecular"]

def output(self):

return LocalTarget(os.path.join(self.output_folder,

f"{self.dataset_name}_report_trends_v{self.dataset_version}.html"))

AggregateInReport
class AggregateInReport(luigi.Task):

...

def requires(self):

return {

attribute: PlotTrend(self.dataset_version, self.dataset_name, attribute)

for attribute in self.attributes

}

def run(self):

path_by_attribute = {k: self.input()[k].path for k in self.input()}

plots_html = self.getHTMLTrends(path_by_attribute)

... #write in file

with open(self.output().path, "w") as fp:

for plot_html in plots_html:

fp.write(plot_html)

AggregateInReport
class AggregateInReport(luigi.Task):

...

def requires(self):

return {

attribute: PlotTrend(self.dataset_version, self.dataset_name, attribute)

for attribute in self.attributes

}

def run(self):

path_by_attribute = {k: self.input()[k].path for k in self.input()}

plots_html = self.getHTMLTrends(path_by_attribute)

... #write in file

with open(self.output().path, "w") as fp:

for plot_html in plots_html:

fp.write(plot_html)

AggregateInReport
class AggregateInReport(luigi.Task):

...

def requires(self):

return {

attribute: PlotTrend(self.dataset_version, self.dataset_name, attribute)

for attribute in self.attributes

}

def getHTMLTrends(self, path_by_attribute):

plots_html = [

f"<h2 style='text-align: center'>{k}</h2>\n<p style='text-align:

center'> </p>"

for k in path_by_attribute

]

return plots_html

Luigi - COVID-19 ML pipeline - DAG

Download
Dataset

Data
PreProcessing

PlotTrend

PlotTrend

PlotTrend

Aggregate In
A Report

Daily report of the trend

AggregateInReport
Luigi Task Visualizer http://localhost:8082

Luigi - COVID-19 ML pipeline - DAG

Download
Dataset

Data
PreProcessing

PlotTrend

PlotTrend

PlotTrend

Aggregate In
A Report

Data
Transform

DataTransform - Windowing

window

t-4 t-3 t-4 t-3 t
t+1 t+2 t+3

DataTransform - Windowing

window

t-4 t-3 t-4 t-3 t
t+1 t+2 t+3

DataTransform - Windowing

t-4 t-3 t-4 t-3 t
t+1 t+2 t+3

window

Luigi - COVID-19 ML pipeline - DAG

Download
Dataset

Data
PreProcessing

PlotTrend

PlotTrend

PlotTrend

Aggregate In
A Report

Data
Transform Modeling

Luigi - COVID-19 ML pipeline - DAG

Download
Dataset

Data
PreProcessing

PlotTrend

PlotTrend

PlotTrend

Aggregate In
A Report

Data
Transform Modeling PredictTrend

Luigi - COVID-19 ML pipeline - DAG

Download
Dataset

Data
PreProcessing

PlotTrend

Plot Future
Trend

PlotTrend

PlotTrend

Aggregate In
A Report

Data
Transform Modeling PredictTrend

Luigi - COVID-19 ML pipeline - DAG

Download
Dataset

Data
PreProcessing

PlotTrend

Plot Future
Trend

PlotTrend

PlotTrend

Aggregate In
A Report

Data
Transform Modeling PredictTrend

Weekly model and predict trends

