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ML pipeline

Notebooks — Jupyter
E.g. jupyter notebooks N
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In this Notebook we explore the Lorenz system of differential equations:
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Celaboratory, or *Colab’ for short, allows you te write and execute Pythen in your browses, with

« Zero configuration required
« Free aocess to GPUs

Yoy
Whether you're a student, 2 data scientist or an Al researcher, Colab can make your work easier. Watch Introduction to Colab te learn more, or

just rted below!

To ~ Getting started

The document you are reading is not a static web page, but anir it called a Colab that lets you write and execute
code.

For example, here is a code cell with a short Python script that computes a value, stores itin a variable, and prints the result:
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select it with a click and then either pr

s the play button 1c the left of the code, or use the keyboard

shorteut "Command/Ctrl+Enter”. To edit the code, just click the cell and start editing.




ML pipeline
Scripts

- Multiple files
- Sequential run

- From data import to model
prediction

data=load data(data location)
data selected-select data(data)
processed data-preprocess data(data selected)

transformed data-transform data(processed data)

model-=modeling(processed data)




ML pipeline
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ML in production... or not?

Why do 87% of data science projects

never make it into production?

VB Staff July 19,2019 4:10 AM Al

October 16,2018 | Contributor: Kasey Panetta

I ra n Sfo r m 2 O Through 2020, 80% of Al projects will remain alchemy, run by wizards whose talents

will not scale in the organization.

Saﬂ Fl’a ﬂCISCO. _J U Ly 1O & In the past five years, the increasing popularity and hype surrounding Al techniques

have led to an increase in projects across organizations. However, the overwhelming

#V BT RANSFO RM hype has also led to unreasonable expectations from the business. Further, change is

outpacing the production of competent professionals, which means that Al is more an

% ‘\;__4 1 art form than a science. The lack of a common language among all parties remains as a
» barrier to scalability, as does how specific and narrow most Al skill sets remain.

o/ \ Combining new skills with Al-based automation will unlock scale potential.

https://venturebeat.com/2019/07/19/why-do-87-of-data-science-projects-never-make-it-into-production/
https://www.gartner.com/smarterwithgartner/qgartner-top-strateqic-predictions-for-2019-and-beyond/



https://venturebeat.com/2019/07/19/why-do-87-of-data-science-projects-never-make-it-into-production/
https://www.gartner.com/smarterwithgartner/gartner-top-strategic-predictions-for-2019-and-beyond/

ML systems

- Machine learning code
- Modeling

- Feature extraction and engineering

Feature extraction




Hidden technical debt in ML systems
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Sculley, David, et al. "Hidden technical debt in machine learning systems." Advances in neural information processing systems. 2015. NIPS'15



Technical debt

Concept of software development

The implied cost of additional rework caused by choosing an easy (and
limited) solution instead of using a better approach that would
take longer and is harder to implement

In software development, technical debt may be handled by:
- refactoring code
- improving unit tests
- deleting dead code
- reducing dependencies
- improving documentation



Technical debt in ML pipelines

Not only code level...
- maintenance problems of traditional code

... at the system level

Data

Directly influences the behavior of ML systems



Technical debt in ML pipelines

Entanglement

Machine learning systems mix input together, entangling them and
the isolation of improvement and components is difficult

CACE issue: Changing Anything Changes Everything

e.g. If an input feature changes, then the importance, weights or use of the remaining
features may all change as well (or not).

CACE applies to input signals, hyper-parameters, learning settings,
sampling methods, convergence thresholds, data selection..




Technical debt in ML pipelines

Entanglement

Mitigation strategy:
- Isolate models
- Monitoring
- detecting changes in prediction behavior as they occur.
- ML systems must be designed so that feature engineering and
selection changes are easily tracked.



Technical debt in ML pipelines

Unstable Data Dependencies

- Input features may be produced by other systems
- Problem: some data inputs are unstable, changing behavior over time.
- E.g. they are output of another ML model that updates over time

- E.g. they are generated by a model that was refactored or reconfigured
(calibration)



Technical debt in ML pipelines

Unstable Data Dependencies

Mitigation strategy
- Monitoring:
- track the changes
- Versioning
- Create a versioned copy of a given signal
- Problems
- “model staleness’, i.e. predictive power of a ML model decreasing
over time
- the cost to maintain multiple versions of the same signal over time



Technical debt in ML pipelines

Underutilized Data Dependencies

- For code, we may have packages or functions mostly unneeded
- For data dependencies, we may have data inputs that provided just
a little incremental modeling benefit (or none if unneeded)
- also unneeded over time

Problem: they represent an unnecessarily vulnerability to change of the
ML system



Technical debt in ML pipelines

Underutilized Data Dependencies

Examples

e-Features. — Features that increase model performance of just a very small €
but there is a high complexity overhead to include and maintaining them

Correlated Features. — ML methods may have difficulty detecting the
correlation and credit the two correlated features equally or only the non-causal
one is used as input. We may have problem if later the behavior changes and
correlations change.

Legacy Features. — A feature F that is included in a model early in its
development but over time, F is made redundant by new features but this goes
undetected.

Bundled Features. — A group of features is evaluated to be beneficial. All of

features in the groups are added as input without considering the one that actually
add values.



Technical debt in ML pipelines

Underutilized Data Dependencies

- Mitigation strategy
- Monitoring:
- track the changes, especially changes in correlations and
redundancy features
- Detect them
- Exhaustive leave-one-feature-out evaluations that should
be performed regularly to identify and remove
unnecessary feature



Technical debt in ML pipelines

Configuration Debt Configuration

In ML systems we have a wide range of configurable options:

- as which features are used, how data is selected, a wide variety of
algorithm-specific learning settings, potential pre- or post-processing,
verification methods, etc

Problem: mistakes in configuration can be costly, leading to serious loss
of time, waste of computing resources, or production issues



Technical debt in ML pipelines
Configuration Debt

Example of principles of good configuration systems™:

- It should be easy to specify a configuration as a small change from a previous
configuration.

- It should be hard to make manual errors, omissions, or oversights.

- It should be easy to see, visually, the difference in configuration between two
models.

- It should be easy to automatically assert and verify basic facts about the
configuration: number of features used, transitive closure of data dependencies,
etc.

- It should be possible to detect unused or redundant settings.

- Configurations should undergo a full code review and be checked into a

repository.

* Sculley, David, et al. "Hidden technical debt in machine learning systems." Advances in neural information processing systems. 2015. NIPS'15



ML pipeline

Selected Processed Transformed Model Results
Data data data data (predictions)

Monitor
input distribution

Data dependencies
- Changing data, Underutilized data, Unstable data

Monitor the distribution of inputs to detect changes
- If the model is not able to adapt to the change — effect on
predictions



ML pipeline

Data ingestion Data selection DELE . Modeling LAoeEE]
preprocessing deployment

Selected Processed Transformed Model Results
Data data data data (predictions)
Monitor Monitor (prediction)
input distribution output distribution

Monitor the distribution of outputs to detect changes
- Observe effect of change and data dependency on the output

e.g. fraud detection problem, training is highly imbalanced (99% transactions are legal
and 1% are fraud). But over time, the system labels 20% of transactions as fraudulent.



ML pipeline DGl

Selected Processed Transformed Model Results
Data data data data (predictions)
Monitor R Monitor model Monitor (prediction)
input distribution quality output distribution

Monitor the quality of the model
- Monitor model performance on new test data to test model quality




Model staleness - Model drifting

Data can change over time

A model that was initially working could later degrade due
to a data drift or concept drift.

Concept drift refers to the change in the relationships
between input and output data in the underlying problem
over time.

Mitigation approach
- Monitoring the model performance

Modeling

Model

Y

Monitor model
quality

{ﬁ




Model staleness - Model drifting

Monitoring the model performance
If the model falls below an acceptable performance threshold

- Model retraining
- Deploying the new model

Static models Refreshed models
s :
W\
2 2
>
Time Time

Image credit https://databricks.com/blog/2019/09/18/productionizing-machine-learning-from-deployment-to-drift-detection.html



https://databricks.com/blog/2019/09/18/productionizing-machine-learning-from-deployment-to-drift-detection.html

Versioning

Versioning: store and assign an unique identifier

- Code
- Model (and its hyperparameters) m Ifl W
- Data “:ﬂ
- Data
- Features Pacbygte rm
Goal I
- Reproducibility Data Version Control

- Failure tolerance
- Version comparison (e.g. old vs new model)
- Understanding how data and results change over time



Data ingestion Data selection - -

Selected Processed Transformed Model Results
Data data data data (predictions)
Monitor Monitor Monitor model Monitor (prediction)

input distribution schema quality output distribution
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Metadata layer DG fash

Data ingestion Data selection - -

Selected Processed Transformed Model Results
Data data data data (predictions)
Monitor Monitor Monitor model Monitor (prediction)
input distribution schema quality output distribution

Metadata layer




Metadata layer

Keep track
- Results and their properties and location

- Configuration between components — execution records 1
- Interaction among components — flow through the pipeline
o TensorFlow Extended
=2 o

Metadata tracking tools

- ML Metadata library in
TensorFlow Extended

- Comet ML
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Data sources and features

Y
N
— —

~ “ O

Retrieve and manage data from multiple sources

Data ETL (Extract Transform Load) pipelines

Data ingestion

Data




ML pipeline in production - Data

Data source

Data ingestion Data selection - -

Selected Processed Transformed Model Results
Data data data data (predictions)
Monitor Monitor Monitor model Monitor (prediction)
input distribution schema quality output distribution

Metadata layer




ML pipeline in production - Data

Data source

Data ingestion Data selection - -

Selected Processed Transformed Model Results
Data data data data (predictions)
Monitor Monitor Monitor model Monitor (prediction)
input distribution schema quality output distribution

Metadata layer

Orchestration layer




Orchestrator

=
= -

ML Pipeline — workflow

Result

A workflow consists of an orchestrated and repeatable sequence of tasks,
executed sequentially and/or concurrently

Orchestrator is a workflow management system that
- Build, connect, and maintain complex workflows



Orchestrator DyGissa

=
= -

Result

Directed acyclic graph (DAG) l
WQ

Steps of the pipeline form a DAG
- Model task relationships and dependencies



ML pipeline in production

Data source

Data ingestion Data selection - -

Selected Processed Transformed Model Results
Data data data data (predictions)
Monitor Monitor Monitor model Monitor (prediction)
input distribution schema quality output distribution

Metadata layer

Orchestration layer




Production-ready ML architecture

Data source (Feature Store)
Adhoc ETL, Data warehouses, Queues

Data manipulation

Ingest data

Split

Transform

~N

Training Serving
e N s
Serve
[ Train
Monitor
[ Evaluate
Cont. training
o J o A

Experiment tracking

e.g. Caching of intermediate pipeline artifacts, Versioning

Orchestration

Resource provisioning, distributed computation of large operations, logging, monitoring

https://blog.maiot.io/



https://blog.maiot.io/

TFEX - Tensorflow Extended

' [ oSS EEEEEE TS 1
' DATA INGESTION | TENSORFLOW TENSORFLOW ESTIMATOR OR TENSORFLOW ' VALIDATION | TENSORFLOW
, X DATA VALIDATION TRANSFORM KERAS MODEL MODEL ANALYSIS ! OUTCOMES . SERVING
L e e e
ExampleGen StatisticsGen
SchemaGen Trainer Model Server
Example
Validator )

ﬁ Metadata Store ﬁ

Orchestrator - Apache Airflow, Kubeflow

https://www.tensorflow.org/tfx



https://www.tensorflow.org/tfx

Orchestration

Workflow management tools

Apache Airflow (Airbnb)
Luigi (Spotify)
Kubeflow (Google)

Azkaban (LinkedIn)

Kubeflow

2




Luigi

Open source workflow management system
developed by Spotify

i *
Luigi addresses all the “plumbing” associated with a
data pipeline "
- Chain many tasks
- Automate the task running
- Handle failures ‘

A

The steps of a workflow are task, single unit of work




Luigi properties

- Workflow management -_> @

- Dependency resolution

- Persistence of task state -_> @

- ldempotency property

Completed tasks are not run twice
- Re-use previously computed outputs
- Automatically, without manually specifying it
- Failure management

- Smoothly resume data workflow after a failure.



. B - (AL
Failure management DyGigg

In case of failure of a component of the pipeline, the system is able to
- detect from which part of the workflow run again
- resume dependent task from the intermediate step

D
ki O
-;@H-ﬁ%\ T



Luigi properties

Lazy evaluation
- delays the evaluation of task dependencies and workflow until its target is
needed and avoids repeated evaluations
Visualization
- Graphical representation of the progress of the task in the data pipeline
Parametrize and re-run tasks on a schedule with the help of an external
trigger s—— e S =
Command line integration

Simple
- Small overhead for a task <

- Connecting components is easy and intuitive. s o S g S g
Python based A U S A S S W S



Luigi - Cons
- No scheduler

- Luigi doesn't sync tasks to workers for you, schedule, alert, or monitor
like other tools do (as Apache Airflow).

- It also has no native support for distributed execution.



Luigi building blocks

- Target 8 @

-  Parameter
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Luigi building blocks DG s

Task
- Each step of a workflow
- Usually a single unit of work
- Where computation is done

- Consume and produce targets
- property of atomicity — recommended to output just one target

Task

Result

O




o B
Luigi building blocks DG
Target
- Any kind of output generated by the task 8 @)

e.g. a file, a checkpoint of the workflow

- Connect the task in the workflow

Targets

Result



Luigi building blocks

Parameters
- Parameters of Task to perform parameterize tasks.
- E.g. versions, hyper-parameters of module

Model type
Hyper-parameters of the model

=
= -

Version of the dataset

Result



Luigi - define Tasks

import luigi

class MyTask(luigi.Task):

ﬂdef run(self):
' f = self.output().open('w')
: print >>f, "hello, world"
1 f.close()

name__ == ' _main__ ':
luigi.run

The business logic of the task | | Wherglt writes output

What other tasks it depends on

/

Parameters for this task

https://luigi.readthedocs.io/en/stable/tasks.html



https://luigi.readthedocs.io/en/stable/tasks.html

Run Luigi workflows

Use the command line specifying the module name and the task in the project
directory

$ luigli --module <module name> <task name> --
<parameterl name> <par value> ..

To execute the entire workflow, we specify the last task

<modul name> needs to be in our PYTHONPATH
We can add the current working directory to the PYTHONPATH with

PYTHONPATH="'."' luigi --module <modul name>...




Luigi - Case Study
Case study on COVID-19 data

https://github.com/elianap/luigi-covid-pipeline

Objectives
- Create a daily report of COVID-19 situation in Italy
- Weekly model and predict for the next week the trend
of variables of interest



https://github.com/elianap/luigi-covid-pipeline

Luigi - COVID-19 ML pipeline

Import data
Pre-process data
To generate a daily report
- Generate some statistics or plots
In our example — plot of the trend of some variable of interest
- Aggregate in a single report
In our example — single html page
To weekly model and predict trends
- Transform the data
- Model (regression)
- Predict the trend for a variable of interest
- Plot the trend



Luigi - COVID-19 ML pipeline - DAG

Download | @
Dataset




Luigi - COVID-19 ML pipeline - DAG
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Luigi - COVID-19 ML pipeline - DAG
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Luigi - COVID-19 ML pipeline - DAG

Daily report of the trend
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Luigi - COVID-19 ML pipeline - DAG
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Luigi - COVID-19 ML pipeline - DAG
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Weekly model and predict trends




Luigi - COVID-19 ML pipeline - DAG

Download | @
Dataset




DownloadDataset

class DownloadDataset (luigi.Task) :

dataset version DateParameter (default-datetime.date.today())

dataset name Parameter (default="covidIT")
columns ita eng {"data": "date", "stato": "country",... }
data url "https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-

andamento-nazionale/dpc-covidl9-ita-andamento-nazionale.csv"

output folder os.path.join (output dir, "dataset")



DownloadDataset

class DownloadDataset (luigi.Task) :

dataset version DateParameter (default-datetime.date.today())

dataset name Parameter (default="dataset")

def output (self) :
LocalTarget ( os.path.join(self.output folder,

f"{self.dataset name} v{self.dataset version}.csv"




DownloadDataset

class DownloadDataset (luigi.Task) :

dataset version DateParameter (default-datetime.date.today())

dataset name Parameter (default="dataset")

def run(self) :

df data self.load data(self.data url, columns new names=self.columns eng)

Path (self.output folder) .mkdir (parents=True, exist ok=True)

df data.to csv(self.output () .path)




DownloadDataset

class DownloadDataset (luigi.Task) :

dataset version DateParameter (default-datetime.date.today())

dataset name Parameter (default="dataset")

def load data(self, data url, columns new names=None) :
data pd.read csv(data url)
columns new names:
data.rename (columns=columns new names, inplace=True)
data["date"] pd.to datetime (data["date"])
data.set index("date", inplace=True)

data



Run DownloadDataset Luigi task

PYTHONPATH="'."' luigi --module covid pipeline DownloadDataset



Luigi - COVID-19 ML pipeline - DAG

-0



DataPreProcessing

class DataPreProcessing(luigi.Task) :

dataset version DateParameter (default-datetime.date.today())
dataset name Parameter (default="dataset")

output folder os.path.join (output dir, "processed")

def requires (self):

DownloadDataset (self.dataset version, self.dataset name)




DataPreProcessing

class DataPreProcessing(luigi.Task) :

def output (self) :
LocalTarget ( os.path.join( self.output folder,

f"{self.dataset name} processed v{self.dataset version}.csv"

) )



DataPreProcessing

class DataPreProcessing(luigi.Task) :

deF—runtseld
e rumnr{sex

df data pd.read csv(self.input () .path, index col="date")

df data self.preprocess data(df data)

Path (self.output folder) .mkdir (parents=True, exist ok=True)

df data.to csv(self.output () .path)



DataPreProcessing

class DataPreProcessing(luigi.Task) :

def preprocess data(self, df data):

df data["diff death"] df data["death"].diff ()

df data["diff intensive care"] df data["intensive care"].diff ()

df data["diff performed tests"] df data["performed tests"].diff ()

df data["diff recovered"] = df data["recovered"].diff ()

df data["ratio molecular"] = ( df data["total positives molecular test"] /

df data["swabs test molecular"]
df data["ratio antigenic"] =df data["total positives antigenic test rapid"]/

df data["swabs test antigenic rapid"]

df data



Luigi - COVID-19 ML pipeline - DAG
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Luigi - COVID-19 ML pipeline - DAG
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AggregatelnReport

class AggregatelnReport (luigi.Task) :

# ——> Alternative for dynamic report -->
run as —--attributes '[ "total positive", "recovered", "ratio molecular" ]'
# attributes = ListParameter (default=["total positive",

"recovered", "ratio molecular"])

attributes ["total positive", "recovered","ratio molecular"]

def output (self) :
LocalTarget ( os.path.join( self.output folder,

f"{self.dataset name} report trends v{self.dataset version}.html"))



AggregatelnReport

class AggregatelnReport (luigi.Task) :

def requires (self):

{

attribute: PlotTrend(self.dataset version, self.dataset name, attribute)

attribute self.attributes

def run(self) :

path by attribute {k: self.input () [k].path k self.input () }

plots html self.getHTMLTrends (path by attribute)
#fwrite in file
open (self.output () .path, "w") fp:
plot html plots html:
fp.write (plot html)



AggregatelnReport

class AggregatelnReport (luigi.Task) :

def requires (self):

{

attribute: PlotTrend(self.dataset version, self.dataset name, attribute)

attribute self.attributes

delf run (self):
path by attribute {k: self.input () [k].path

k self.input () }

plots html self.getHTMLTrends (path by attribute)
#fwrite in file
open (self.output () .path, "w") fp:
plot html plots html:
fp.write (plot html)



AggregatelnReport

class AggregatelnReport (luigi.Task) :

def requires (self):

{

attribute: PlotTrend(self.dataset version, self.dataset name, attribute)

attribute self.attributes

def getHTMLTrends (self, path by attribute) :

plots html [
f"<h2 style='text-align: center'>{k}</h2>\n<p style='text-align:

center'><img src='{path by attribute[k]}' style='width: 50%; height: 50%' /> </p>"
k path by attribute

plots html



Luigi - COVID-19 ML pipeline - DAG
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AggregatelnReport

Luigi Task Visualizer http://localhost:8082

Dependency Graph

@ railed @BggregateinReport
. Running

. Batch Running

Pending

. Done
@ Disabled

@ unknown @hotTrend @otTrend @BlotTrend

@ Truncated

@DataPreProcessing

@@ownloadDataset
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DataTransform - Windowing

window
N
A e
O
O O
O @
O
t-4 t-3 t-4 t-3 t

t+1  t+2 t+3



DataTransform - Windowing
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DataTransform - Windowing
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Weekly model and predict trends




