Theses

Daniele Apiletti, Elena Baralis, Luca Cagliero, Tania Cerquitelli, Silvia Chiusano, Paolo Garza, Danilo Giordano, Alessandro Fiori

General information

- Duration: 4-6 months full time
 - equivalent overall duration if part time

Internal thesis

- cooperation on active research topic or research project
- good programming and analytical skills required
- supervised by a group member
- can work at home or in our lab (LAB5)
- External thesis (stage)
 - supervised by external tutor

To get more info on specific topics please contact the reference person of the thematic area of interest by email (name.surname@polito.it)

Main topics

- Data mining and machine learning algorithms
 - Design and implementation of novel ML algorithms
- Data science pipeline
 - Design, personalization and implementation of KDD processes in diverse application areas
 - Industry, health, finance, ...
- Big data analytics
 - Design of scalable data mining and machine learning algorithms
 - Design of scalable KDD processes
- Database management
 - Data warehouse and NoSQL data modeling

Data mining and machine learning algorithms

- Clustering and semi-supervised clustering
- Scalable data mining algorithms for big data
 - E.g., (approximate) clustering
- Time series analysis
 - Forecasting models, trend detection
- Textual data analysis
 - Summarization, clustering, classification
- Predictive maintenance for
 - Industrial processes, robots, automotive components, ...

Data science pipeline

- Design and implementation of *personalized KDD* processes
- Black-box *prediction interpretation*
- KDD process automation by means of self-tuning and concept drift detection techniques
- Semantic enrichment by means of entity recognition and latent-based models
- Theory-guided data science, blending data-driven modeling with domain-provided knowledge

Big data mining

- Study of innovative, parallel, and distributed data mining approaches for
 - Pattern mining algorithms
 - Clustering techniques
 - Classification algorithms
- Design and development of novel parallel algorithms based on the Spark framework
- Exploitation of the novel algorithms for big data analytics applications (e.g., network traffic data, fraud detection, social networks)
- Analysis modules based on HADOOP and Spark Ecosystems

REFERENCE PERSON: PROF. PAOLO GARZA

Automation in the data analytics process

- Tailor the analytic steps to the different key aspects of the data under analysis
- Automate the analytic workflow to reduce manual user interventions
- Translate the domain-expert knowledge into automated procedures
- Automatically configure input parameters by means of self-tuning strategies
- Design informative dashboards and explanation techniques to support the translation of the extracted knowledge into effective actions

REFERENCE PERSON: PROF. TANIA CERQUITELLI

Conversational data science

Objective: making data analysis accessible to all and **democratizing the data science**, through:

- self-tuning algorithms
- friendly interaction between user and a data analysis engine through a conversational approach
- complexity of the analysis hidden to the user

Opens issue:

- define ad hoc self tuning strategies for each considered algorithm
- offer a friendly and dialogue-based interaction to the user, properly handling its requests
- choose the most suitable visualization to show the results to the user

REFERENCE PERSON: PROF. TANIA CERQUITELLI

- Predictive model performance usually degrades over time
 - New incoming data can widely differ from the data distribution on which the model was trained
 - Not all possible classes (labels) are known at training time
 - Real time predictions performed on new unseen data may be misleading or totally wrong

Deep Natural Language Processing

- Vector representations of text data
 - Trained using Deep Learning architectures
 - Commonly used to address NLP tasks
 - Examples: Word2Vec, BERT, BART, PEGASUS, GPT-3
- Current issues
 - Multimodal/multilingual text summarization
 - Extract a concise descriptions of multimodal/multilingual data sources
 - Generative sentiment analysis
 - Apply generative models to address sentiment analysis
 - Automatic text paraphrasing
 - Reformulate text in natural language by conveying the same meaning with different words

REFERENCE PERSON: PROF. LUCA CAGLIERO

Time series forecasting

- Design multivariate supervised models for predicting time series directions/values
 - Application of regression/classification models in different domains
 - Seq2Seq, Reinforcement Learning, and Transformer models

- Understanding the behavior of machine learning models
 - From the individual and subgroup perspective

Exploring the relationship with the desiderata of XAI research

REFERENCE PERSON: PROF. ELENA BARALIS

Explaining End-to-End SLU models

 Characterizing the behavior of End-to-End (E2E) Spoken Language Understanding (SLU) systems

- Understanding system behavior from the subgroup perspective
- Explaining model errors and anomalous behaviors

Explaining Transformers

- Analyzing and explaining transformer models
- Focus on Natural Language Models

 Characterize shortcomings (e.g., gender bias) and propose regularization techniques

XAI in NLP

Goal: Designing innovative XAI solutions that offer a level of transparency greater than existing methods tailored to NLP

 We currently implemented an XAI solution, named T-EBAnO, producing local and global explanations for deep neural networks in text classification tasks

<u>Open Issues</u>

- A quantitative XAI evaluation methodology
- Comparison with other XAI techniques
- Extending the approach to tasks other than classification (e.g., Q&A)
- Exploit the XAI explanations for re-training the models in case of wrong predictions or correct predictions but for the wrong reason, with the human-in-the-loop feedbacks

REFERENCE PERSON: PROF. TANIA CERQUITELLI

Cross-lingual sentiment embeddings

Extraction of embeddings based on the sentiment of words

- e.g. for sentiment analysis tasks
- Not trivial for languages other than English
- Focus on the adoption of *propagation techniques* from English to other languages

x	x's nearest neighbors	Cosine similarity	10 9.5 9.9 9.8 9.9
excellent	eccellente	0.575	excellent
	ottimo	0.513	055
	apprezzabile	0.369	0.513
	buon	0.367	• accollanta
	adatto	0.322	ottimo

REFERENCE PERSON: PROF. ELENA BARALIS

Spatio-temporal data mining

- Problem
 - We are overloaded by heterogeneous spatio-temporal data
 - Satellite images and measurements (e.g., Copernicus data)
 - Ground-based sensor measurements
 - Etc.
- Thesis goals
 - Design and implement data mining algorithms for
 - Describing spatio-temporal phenomena
 - By means of sequential and/or graph-based patterns
 - Predicting spatio-temporal events
 - By means of graph-based patterns and ST-GNN (Spatio-Temporal Graph Neural Networks)

Theory-guided Data Science

- Data science models, although successful in several domains, have limited applicability in scientific problems involving complex phenomena
- Theory-guided data science blends data-driven models with domain-provided knwoledge
 - leveraging existing scientific knowledge for improving the effectiveness of data science models
- Examples
 - intelligent supply chains, business process optimizations, medical image recognition
 - exploiting Graph Neural Networks as a mean to model complex systems and inter/intra relationships among them and their components

REFERENCE PERSON: DANIELE APILETTI

REFERENCE PERSON: PROF. SILVIA CHIUSANO

Digital Cultural Heritage

Development of a web-based digital atlas for historical buildings

- Store heterogeneous information (building structure, textual documentation, pictures, video, ...) on geo-located historical buildings
- Support geo-referenced queries to retrieve information on buildings located in a geographic area
- Profile user interaction with the system and guide end-user in identifying the information of interest

Adopted technologies: data repository: MongoDB; backend: Django; frontend: JQuery, Bootrstrap, Leaflet, TinyMCE.

REFERENCE PERSON: PROF. SILVIA CHIUSANO

Apps for e-Education

designer.polito.it)

DesignER

- Web-Based Application for Computer-Aided Design of Relational Databases
- Guide users in the conceptual and logical design of a relational database through a tutoring-based approach
- Profile user design patterns and user mistakes in design process

REFERENCE PERSON: PROF. SILVIA CHIUSANO

Development of a platform for unplugged coding

- Coding courses are currently offered at pre-school and primary schools
- this thesis aims at developing a platform to help teachers to realize unplugged coding exercises and to be able to share them with the school community in a simple and intuitive way

REFERENCE PERSON: PROF. ALESSANDRO FIORI

Manufacturing optimization

- Exploration and development of deep-learning techniques to optimize KPIs of future scheduling from historical data of the manufacturing process
 - E.g., reduce the overall duration, maximize throughput, shape energy consumption, etc.

Contraction of the second seco

Vehicle sensor-data analysis

- Identifying anomalies and patterns in sensor data collected from vehicles
 - Operational time series to profile vehicle behavior
 - Contextual information, e.g., maintenance interventions
- Example

optimizing garbage-collection operations and procedures by analyzing sensor data collected from trucks and their maintenance interventions

Creativity-injection into AI-powered multimedia storyboards

Video Sequence

Research objectives:

- Cinematographic **shot** classification
- Movie Genre Classification based on the editing techniques
- Modeling **user creativity** profiling
- Inferring creativity-based production storyboards
- Creativity-based production storyboards with human-in-theloop

Open issues

- Few labeled datasets available
- Unbalanced class distribution
 - User creativity is hard to be modeled

24

Machine Learning on HPC

Objective: Modeling and predicting the job/activity time on HPC by exploiting machine learning algorithms

Data Science Pipeline for Defect Prediction

Thanks to the Industry 4.0 the manufacturing **processes** expose many data about production

- conditions: environment conditions, wear and tear of the machines, etc.
- parameters: oven temperature, production speed, components characteristics, etc.

Conditions and parameters affect the outcome of the production line and can lead to **defects** in the final product

defects that are detected only at <u>the end</u> of the production by specific test procedures

The thesis aims to

- identify the most important conditions/parameters describing and healthy/defect production
- create a Machine Learning pipeline to predict the outcome (healthy/defect) based on the production conditions/parameters

The thesis leverages real production line data

REFERENCE PERSON: PROF. DANILO GIORDANO