
Data Science Lab
Lab #10

Politecnico di Torino

Intro
In this laboratory, you will learn more about clustering techniques. You will first implement your own
version of the K-means algorithm. Then you will apply it to different datasets and evaluate the performance
achieved. In the last part of the laboratory you will work on textual data, a domain where the data
preparation phase is crucial to any subsequent task. Specifically, you will try to detect topics out of a set
of real-world news data. Then, you will describe each cluster through frequent itemset mining.

1 Preliminary steps

1.1 NumPy
As you may have already understood, the Python language comes with many handy functions and third-
party libraries that you need to master to avoid boilerplate code. In many cases, you should leverage them
to focus on the analysis process rather than its implementation.
That said, we listed a series of libraries you can make use of in this laboratory:

• NumPy

• scikit-learn

• Natural Language Toolkit

• SciPy

We will point out their functions and classes when needed. In many cases, their full understanding de-
creases significantly your programming effort: take your time to explore their respective documentations.
Make sure you have this library installed. As usual, if not available, you need to install it with pip install
wordcloud (or any other package manager you may be using). The wordcloud library is a word cloud
generator. You can read more about it on its official website.

1.2 Datasets
For this lab, three different datasets will be used. Here, you will learn more about them and how to retrieve
them.
The firsts two are synthetic datasets, i.e. they contain data that has been generated by hand to match a
specific scientific need. Synthetic data are often used to test machine learning algorithms under conditions
that are unlikely to occur with real-world data. Both datasets have been used in Fränti and Sieranoja 2018.
You can find them and many more (eventually, more complex) on their official web page.
The third dataset instead is a real-world dataset containing textual news belonging to different topics.

1

https://numpy.org/
https://scikit-learn.org/stable/
https://www.nltk.org/
https://www.scipy.org/
https://amueller.github.io/word_cloud/

1.2.1 Synthetic 2-D Gaussian clusters

The first dataset contains several two-dimensional points distributed among separated globular clusters.
Globular clusters are also known as Gaussian clusters. In a Gaussian cluster, points coordinates follow a

Gaussian distribution that share the samemean. In the context of probability theory, a Gaussian cluster is a
specific case of amixture of probability distributions, where every component follows a normal distribution.
Remember that, given a mean µ and a standard deviation σ, the probability density function of a normal
variable is:

N(x;µ;σ) =

√
1

2πσ2
exp

(
− 1

2σ2
(x− µ)2

)
A comprehensive description of mixtures of distributions can be found in the Probability and Infor-

mation Theory chapter of Goodfellow, Bengio, and Courville 2016. Figure 1 shows some examples of
N -dimensional clusters.

0 5 10

x1

(a) 1-D Gaussian cluster

0 5 10

0

5

10

15

x1

x2

(b) 2-D Gaussian cluster

(c) 3-D Gaussian cluster

Figure 1: Gaussian clusters obtained from {x1, x2, x3} ∼ N(x; 5; 3)

For your convenience, we generated a 2D dataset and saved it as a txt file. You can download it at:

https://raw.githubusercontent.com/dbdmg/data-science-lab/master/datasets/2D_gauss_clusters.txt

2

https://en.wikipedia.org/wiki/Normal_distribution
https://www.deeplearningbook.org/contents/prob.html
https://www.deeplearningbook.org/contents/prob.html

Each of the 5,000 rows contains the x and y coordinates of a single point. These points are grouped in
the Euclidean space in 15 different globular clusters.

1.2.2 Chameleon

This synthetic dataset was originally introduced in Karypis, Han, and Kumar 1999. It contains again two-
dimensional data points distributed along interleaved clusters with different shapes. For your convenience,
we parsed the original dataset and saved it as a txt file. You can download it at:

https://raw.githubusercontent.com/dbdmg/data-science-lab/master/datasets/chameleon_clusters.txt

Each of the 8,000 rows contains the x and y coordinates of a single point. These points are grouped in
the Euclidean space in 6 different clusters.

1.2.3 20 Newsgroups

The 20 Newsgroups dataset was originally collected in Lang 1995. It includes approximately 20,000
documents, partitioned across 20 different newsgroups, each corresponding to a different topic.

For the sake of this laboratory, we chose T ≤ 20 topics and sampled uniformly only documents belong-
ing to them. As a consequence, you have K ≤ 20, 000 documents uniformly distributed across T different
topics. You can download the dataset at:

https://github.com/dbdmg/data-science-lab/blob/master/datasets/T-newsgroups.zip?raw=true

Each document is located in a different file, which contains the raw text of the news. The name of the file
in an integer number and corresponds to its ID.

3

2 Exercises
Note that exercises marked with a (*) are optional, you should focus on completing the other ones first.

2.1 K-means design and implementation
This exercise will focus on the K-means clustering technique. You will implement your own version of the
algorithm and then you will test it on the two synthetic datasets.

1. Load the synthetic 2-D dataset containing Gaussian clusters.

2. Plot the data points as a scatter chart using the Matplotlib library. At first sight, you should see
15 different globular clusters. Given this distribution, which could be the most suitable clustering
technique among the ones that you known? Why?

3. Focus now on the K-means technique. You can find a thorough explanation of the algorithm on the
course slides on clustering (slides 16-22).
Later in this laboratory you will use the scikit-learn package. Many of its functionalities are
exposed via an object-oriented interface. With this paradigm in mind, implement now the K-means
algorithm and expose it as a Python class. Try to solve this exercise by using numpy APIs. The bare
skeleton of your class should look like this (you are free to add as many functions as you want):

class KMeans:
def __init__(self, n_clusters, max_iter=100):

self.n_clusters = n_clusters
self.max_iter = max_iter
self.centroids = None
self.labels = None

def fit_predict(self, X):
"""Run the K-means clustering on X.

:param X: input data points, array, shape = (N,C).
:return: labels : array, shape = N.
"""
pass

The core method is fit_predict. It should execute the K-means with K=self.n_clusters finding
the centroids and assigning the label to each data point. Note that the class is intended to be stateful:
it must keep track of the obtained centroids and labels. The max_iter parameter should be used to
specify how many iterations are allowed for the main loop of the algorithm.

4. Once you get to a fully functional version of your class, load also the Chameleon data (see Section
1.2.2) and run the K-means algorithm on both the datasets. Feel free to run multiple times the
algorithm varying n_clusters (i.e. K). For each run, you will get two list of labels. In the next
points you will try to inspect the results you obtained.

5. (*) Since you are working with two-dimensional data, you are able to visualize them and inspect the
results after an algorithm run. Specifically, using the Matplotlib package, create a figure containing
a scatter plot with you original data points. Then, draw onto the figure itself the centroids you
obtained with a different marker and color (e.g. marker="*", color="red"). Create this chart for
both your datasets. Where are your centroids located? Based on this, can you assess which clustering
was successful and which not (or, in other words, which dataset the K-means was more efficient on)?
Can you figure why?

6. (*) Let’s improve your K-means class with an additional visualization tool. Add two parameters
to your fit_predict method: plot_clusters=False and plot_step=5. If plot_clusters is set
to True, the intermediate positions of your centroids should be displayed every plot_step loop
iterations. Also, choose a different color for each cluster and assign it to every point belonging to it.
Figure 2 shows one of such intermediate charts.

4

http://dbdmg.polito.it/wordpress/wp-content/uploads/2019/10/DSL-4-DMClustering.pdf

Figure 2: 2-D Gaussian synthetic dataset: clusters found at the 10th iteration with k=10.

2.2 Evaluate clustering performance
In this exercise you will evaluate the clustering performance of your K-means implementation. To do so,
you will exploit the Silhouette measure. You can read more about it on Wikipedia.

1. Design and implement two different functions to compute the Silhouette. One should compute the
metric for each sample, the other should compute the average silhouette score (you will find several
evaluation scores like this in scikit-learn). Try to solve this exercise by using numpy APIs. You can
start from this structure:

def silhouette_samples(X, labels):
"""Evaluate the silhouette for each point and return them as a list.

:param X: input data points, array, shape = (N,C).
:param labels: the list of cluster labels, shape = N.
:return: silhouette : array, shape = N
"""
pass

def silhouette_score(X, labels):
"""Evaluate the silhouette for each point and return the mean.

:param X: input data points, array, shape = (N,C).
:param labels: the list of cluster labels, shape = N.
:return: silhouette : float
"""
pass

Note that the array labels is the one you generated in the previous exercise, point 4.

2. Implement a function to plot the silhouette values sorted in ascending order. This kind of chart is
particularly useful to inspect the overall performance of a clustering technique. In an ideal case, the
curve is heavily shifted towards the value 1 on the y-axis, i.e. most of the points have been assigned

5

https://en.wikipedia.org/wiki/Silhouette_(clustering)

coherently. Create the chart for both your datasets and discuss the results. Do these plots match
the clustering performance that you expected looking at the scatter plots from the previous exercise,
point 5? Again, can you identify on which dataset the K-Means is performing better?

3. (*) Until now, knowing in advance the number of clusters included in our datasets (either via specifi-
cations or by visualizing them) has made us able to chose the number K accordingly. This is typically
not the case in real situations, either because there are more than two or three dimensions in your
data or worse, a clear cluster subdivision does not exist at all. Turning the problem around, the
most common task becomes choosing the K value that leads to the best possible clustering division.
For what concerns the silhouette measure, the higher is the average silhouette the better are the
intra-cluster cohesion and the inter-cluster separation.

Warning: the silhouette, like several other indices, is based on a geometrical distance. Maxi-
mizing such indices assures the best geometrical solution. However, the semantical meaning of
the clusters could not be reflected. Can you imagine a way to address the problem?

!

Define a function that, given a set of K values and a dataset, plots a line chart with the values of the
average silhouette obtained for each K. By simply looking at it, you should be able to identify the
best K for the task. Is it the one that you expected beforehand? Can you spot a trend (e.g. the higher
the K value the higher the average silhouette)? Discuss this especially for the Chameleon dataset.

6

2.3 Newsgroups clustering
In this exercise you will build your first complete data analytics pipeline. More specifically, you will load,
analyze and prepare the newsgroups dataset to finally identify possible clusters based on topics. Then,
you will evaluate your process through any clustering quality measure.

1. Load the dataset from the root folder. Here the Python’s os module comes to your help. You can use
the os.listdir function to list files in a directory.

2. Focus now on the data preparation step. As you have learned in laboratory 2, textual data needs to
be processed to obtain a numerical representation of each document. This is typically achieved via
the application of a weighting schema.
Choose now one among the weighting schema that you know and transform each news into a nu-
merical representation. The Python implementation of a simple TFIDF weighting schema is provided
in section 2.3.1, you can use it as starting point.
This preprocessing phase is likely going to influence the quality of your results the most. Pay enough
attention to it. You could try to answer the following questions:

• Which weigthing schema have you used?
• Have you tried to remove stopwords?
• More generally, have you ignored words with a document frequency lower than or higher than

a given threshold?
• Have you applied any dimensionality reduction strategy? This is not mandatory, but in some

cases it can improve your results. You can find more details in Appendix 2.4.

3. Once you have your vector representation, choose one clustering algorithm of those you know and
apply it to your data.

4. You can now evaluate the quality of the cluster partitioning you obtained. There exists many metrics
based on distances between points (e.g. the Silhouette or the Sum of Squared Errors (SSE)) that
you can explore. Choose one of those that you known and test your results on your computer.

5. Consider now that our online system will evaluate your cluster quality based on the real cluster la-
bels (a.k.a. the ground truth, that you do not have). Consequently, it could happen that a cluster
subdivision achieves an high Silhouette value (i.e. geometrically close points were assigned to the
same cluster) while the matching with the real labels gives a poor score (i.e. real labels are hetero-
geneous within your clusters).
In order to understand how close you came to the real news subdivision, upload your results to our
online verification system (you can perform as many submission as you want for this laboratory, the
only limitation being a time limit of 5 minutes between submissions). Head to Section ?? to learn
more about it.

2.3.1 A basic TFIDF implementation

The transformation from texts to vector can be simplified by means of ad-hoc libraries like Natural Lan-
guage Toolkit and scikit-learn (from now on, nltk and sklearn). If you plan to use the TFIDF weighting
schema, you might want to use the sklearn’s TfidfVectorizer class. Then you can use its fit_transform
method to obtain the TFIDF representation for each document. Specifically, the method returns a SciPy
sparse matrix. You are encouraged to exhaustively analyze Tfidf Vectorizer’s constructor parameters since
they can significantly impact the results. Note for now that you can specify a custom tokenizer object
and a set of stopwords to be used.

For the sake of simplicity, we are providing you with a simple tokenizer class. Note that the TfidfTo-
kenizer’s tokenizer argument requires a callable object. Python’s callable objects are instances of classes
that implement the __call__ method. The class makes use of two nltk functionalities: word_tokenize
and the class WordNetLemmatizer. The latter is used to lemmatize your words after the tokenization.
The lemmatization process leverages a morphological analysis of the words in the corpus with the aim to
remove the grammatical inflections that characterize a word in different contexts, returning its base or
dictionary form (e.g. {am, are, is}⇒ be; {car, cars, car’s, cars’}⇒ car).
For what concerns the stop words, you can use again a nltk already-available function: stopwords.
The following is a snippet of code including everything you need to get to a basic TFIDF representation:

7

https://docs.python.org/3/library/os.html#module-os
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://docs.scipy.org/doc/scipy/reference/sparse.html
https://www.nltk.org/api/nltk.tokenize.html#module-nltk.tokenize
https://www.nltk.org/_modules/nltk/stem/wordnet.html
https://www.nltk.org/_modules/nltk/corpus.html

from sklearn.feature_extraction.text import TfidfVectorizer
from nltk.tokenize import word_tokenize
from nltk.stem.wordnet import WordNetLemmatizer
from nltk.corpus import stopwords as sw

class LemmaTokenizer(object):
def __init__(self):

self.lemmatizer = WordNetLemmatizer()

def __call__(self, document):
lemmas = []
for t in word_tokenize(document):

t = t.strip()
lemma = self.lemmatizer.lemmatize(t)
lemmas.append(lemma)

return lemmas

lemmaTokenizer = LemmaTokenizer()
vectorizer = TfidfVectorizer(tokenizer=lemmaTokenizer, stop_words=sw.words('english'))
tfidf_X = vectorizer.fit_transform(corpus)

2.4 Cluster characterization by means of word clouds and itemset mining
In many real cases, the real clustering subdivision is not accessible at all1. Indeed, it is what you want to
discover by clustering your data. For this reason, it is commonplace to add a further step to the pipeline
and try to characterize the clusters by inspecting their points’ characteristics. This is especially true while
working with news, where the description can lead to the identification of a topic shared among all the
documents assigned to it (e.g. one of your clusters may contain news related to sports).

In this exercise youwill exploit word clouds and frequent itemset algorithms to characterize the clusters
obtained in the previous exercise.

1. Split your initial data into separate chunks accordingly to the cluster labels obtained in the previous
exercise. For each of them, generate a Word Cloud image using the wordcloud library. Take a look
at the library documentation to learn how to do it. Can you figure out the topic shared among all
the news of each cluster?

2. Let’s adopt frequent itemset mining algorithms to further characterize your clusters. Choose one
algorithm and run it for each cluster of news. Try to identify the most distinctive set of words
playing around with different configurations of the chosen algorithm. Based on the results, can you
identify any topic in any of your clusters?

1Or worse, it might not exist at all.

8

https://amueller.github.io/word_cloud/

Appendix

Notions on linear transformations and dimensionality reduction
In many real cases, your data comes with a large number of features. However, there is often a good
chance that some of them are uninformative or redundant and have the only consequence of making your
analysis harder. The simplest example could be features that are linearly dependent with each other (e.g.
a feature that describes the same information with different, yet correlated units, like degrees Celsius and
Fahrenheit).

One additional detail can be addressed in your preprocessing step, other than the dimensionality reduc-
tion. There might be cases where the distribution of your data has hidden underlying dynamics that could
be enhanced by choosing different features (i.e. dimensions). Figure 3 shows several points distributed
in a Gaussian cluster (see Laboratory 4). Let’s make now an assumption: quantitatively we assess that
directions with largest variances in our space contain the dynamics of interest. In Figure 3 the direction
with the largest variance is not (1,0) nor (0,1), but the direction along the long axis of the cluster.

As you will soon learn, in the known literature there is a proven method that addresses the aforemen-
tioned problems: the Principal Component Analysis (PCA). This technique frames the problem as a linear
change of basis. The final basis vector are commonly termed principal components. Let’s qualitatively
understand why and how it is made by means of a few algebraic notions.

Figure 3: Points distributed in a Gaussian cluster with mean (1,3) and standard deviation 3. Source:
Wikipedia

In PCA we assume that there exist a more meaningful basis to re-express our data. The hope is that
this new basis will filter out the noise and reveal hidden dynamics. Following the assumption presented
beforehand, the new basis must align the directions with the highest variance. Also, the change of basis
follows another strict, yet powerful assumption: it is assumed that the new basis is a linear combination of
the original one (studies expanded on this to non linear domains). In Figure 3 PCA would likely identify
a new basis in the directions of the two black arrows.
In other words, if we call X the original set of data, in PCA we are interested in finding a matrix P that
stretches and rotates our initial space to obtain a more convenient representation Y:

PPPXXX = YYY (1)

Now that foundations are laid, we know that we are looking for a new basis that highlights the inner
dynamics and we assume that the change of basis can be achieved with a simple linear transformation. This
linearity assumption let us solve analytically the problem with matrix decomposition techniques. Even if
the simpler eigendecomposition can be used, the state-of-the-art solution is obtained through the Singular
Value Decomposition (SVD).

9

https://en.wikipedia.org/wiki/Principal_component_analysis

Many, many theoretical and technical details have been left behind in this short summary. If you are
willing to learn more, you can find a thorough tutorial about PCA, SVD and their relationship in Shlens
2014.

The use of the PCA algorithm via SVD decomposition in Python is straightforward. The following lines
show how you can apply the change of basis transforming your data.

from sklearn.decomposition import TruncatedSVD

X: np.array, shape (1000, 20)
svd = TruncatedSVD(n_components=5, random_state=42)
red_X = svd.fit_transform(X) # red_X will be: np.array, shape (1000, 5)

Note that the TruncatedSVD class lets you choose how many top-principal components to retain (they are
ranked by explained variance). Doing so, you will be applying the dimensionality reduction at the same
time.

References
[1] Pasi Fränti and Sami Sieranoja. K-means properties on six clustering benchmark datasets. 2018. url:

http://cs.uef.fi/sipu/datasets/.
[2] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.Deep Learning. http://www.deeplearningbook.

org. MIT Press, 2016.
[3] George Karypis, Eui-Hong Sam Han, and Vipin Kumar. “Chameleon: Hierarchical clustering using

dynamic modeling”. In: Computer 8 (1999), pp. 68–75.
[4] Ken Lang. “Newsweeder: Learning to filter netnews”. In: Proceedings of the Twelfth International

Conference on Machine Learning. 1995, pp. 331–339.
[5] Jonathon Shlens. “A Tutorial on Principal Component Analysis”. In: CoRR abs/1404.1100 (2014).

arXiv: 1404.1100. url: http://arxiv.org/abs/1404.1100.

10

http://cs.uef.fi/sipu/datasets/
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1404.1100
http://arxiv.org/abs/1404.1100

	Preliminary steps
	NumPy
	Datasets
	Synthetic 2-D Gaussian clusters
	Chameleon
	20 Newsgroups

	Exercises
	K-means design and implementation
	Evaluate clustering performance
	Newsgroups clustering
	A basic TFIDF implementation

	Cluster characterization by means of word clouds and itemset mining

