From Recurrent Models to the advent of Attention: a recap

Giuseppe Attanasio

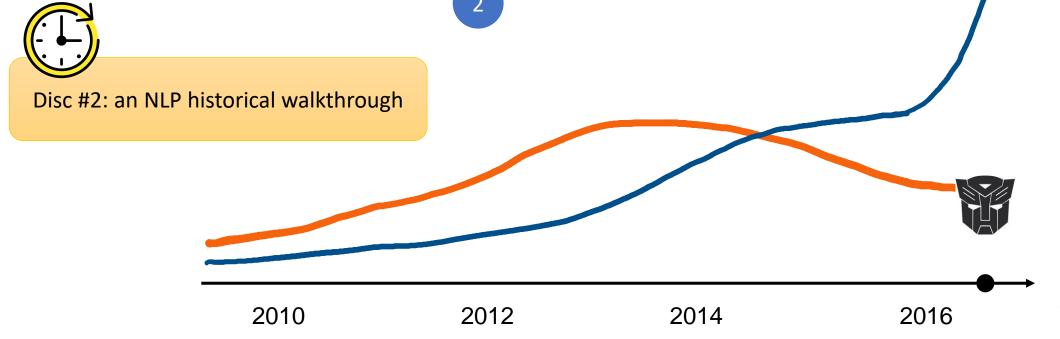
Data Science Lab: process and methods Research Bites | January 13, 2022

From Recurrent Models to the advent of Attention: a recap

Disc. #1: we'll focus on intuitions. Many further technicalities are left aside.

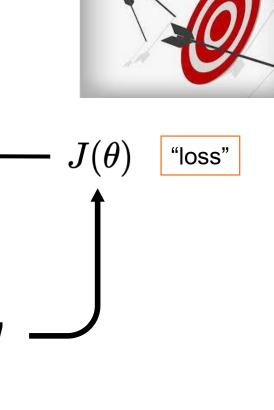
1

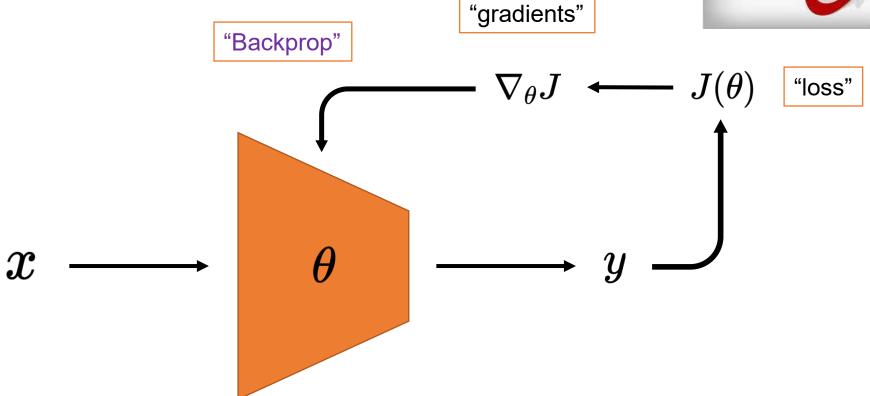
From Recurrent Models to the advent of Attention: a recap

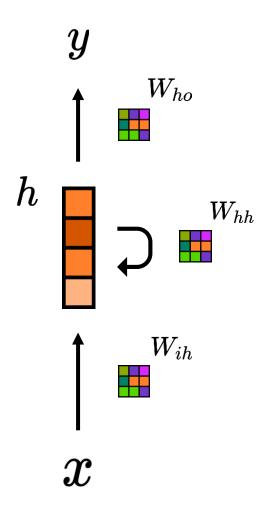


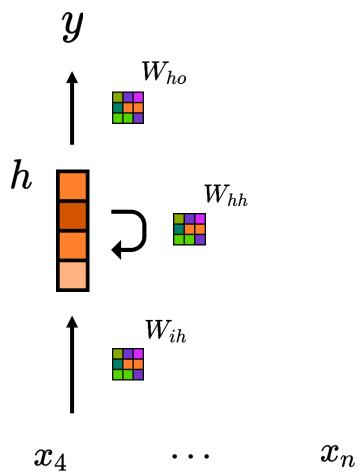
Attention Is All You Need. Waswani et al.

Neural networks: a primer





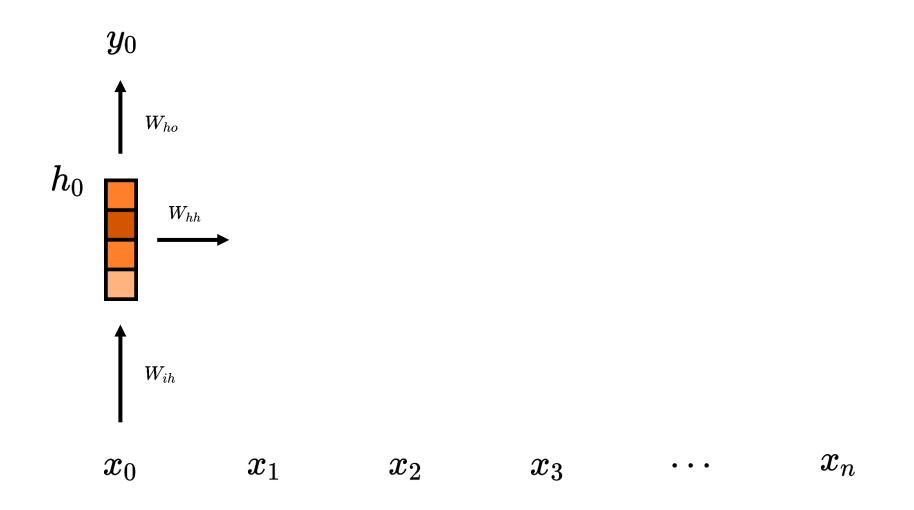




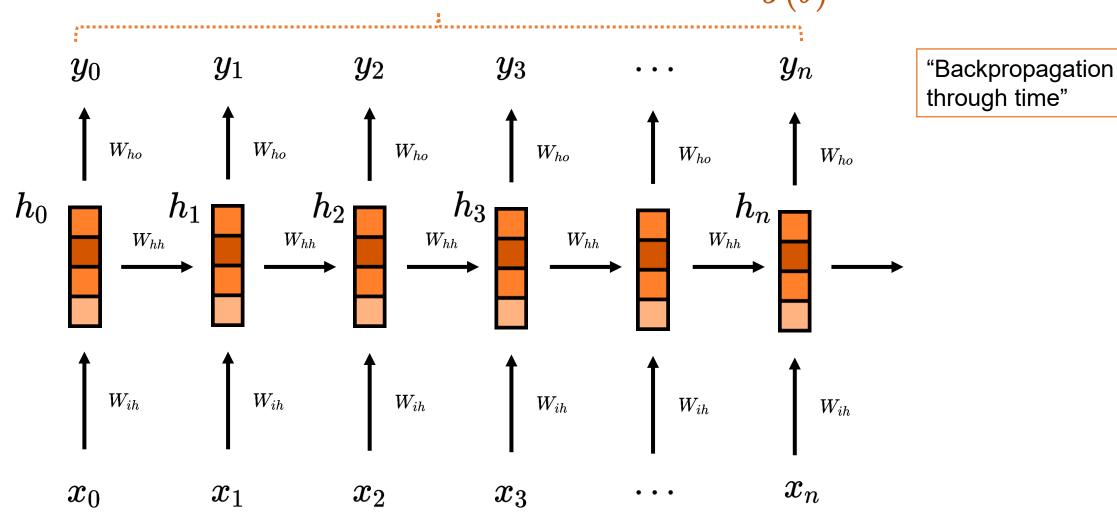
 x_0 x_1

 x_2

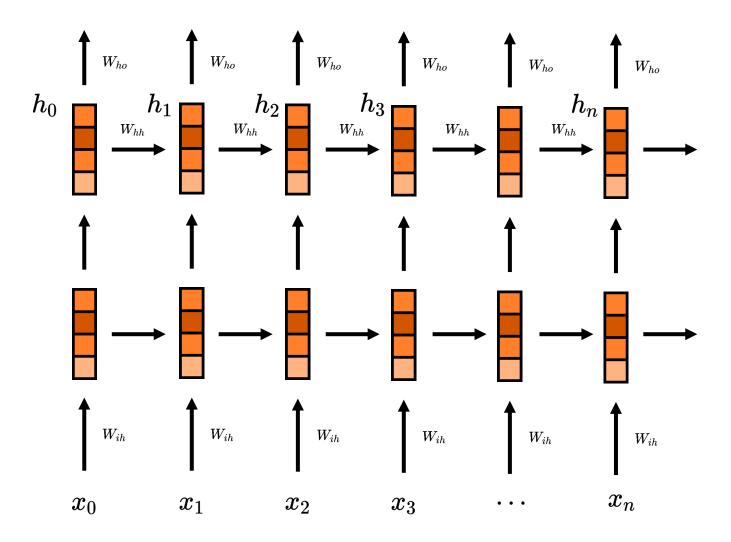
 $T\iota$



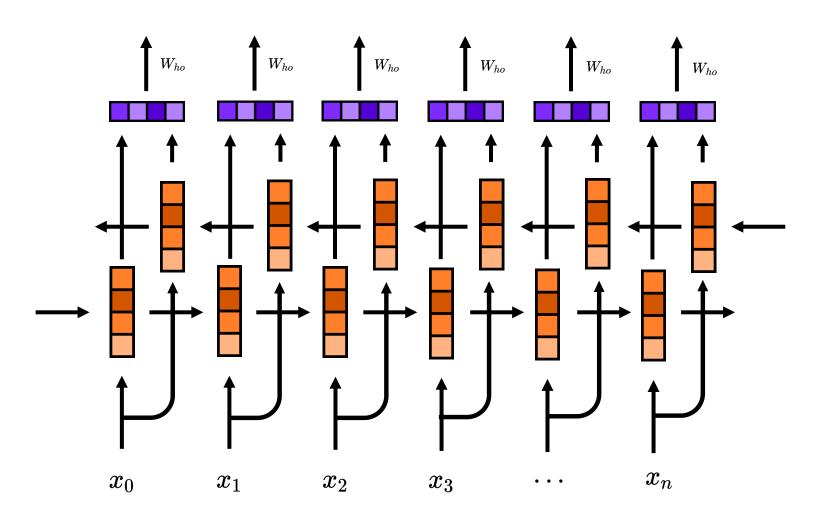
13/01/22



Stacked layers in RNNs



Right-to-left units in RNNs



```
import torch
input_size = 8
hidden_size = 16
num_layers = 2
rnn = torch.nn.RNN(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers)
in_seq = torch.randn((5, 1, input_size)) # sequence of 5 items
h0 = torch.randn((num_layers, 1, hidden_size)) # one initial hidden per layer
yn, hn = rnn(in_seq, h0)
```

Pros & Cons of RNNs

* Spoiler: we (almost) fix that with Gated RNNs

- Weights are shared across time
 - the number of parameters is low (3 matrices in Vanilla RNN)
 - all inputs get equal "treatment"
- They can handle sequences of arbitrary length
 - theoretically, each input "influences" all the future outputs no matter of the distance
- The architecture is flexible
 - We can stack layers or add a right-to-left flow
- Recurrence inhibits parallelization
- Although it's there, the information flow gets cut by vanishing gradients*

Language modeling

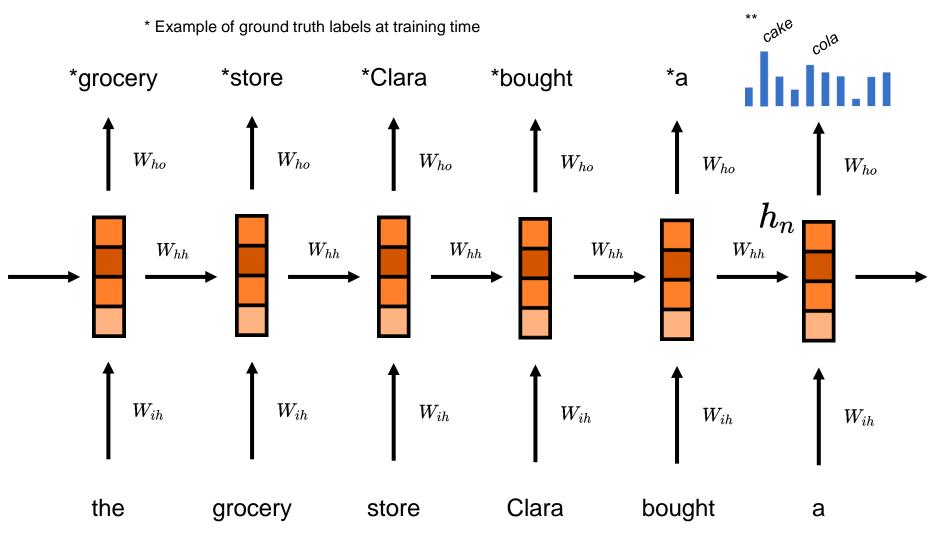
 Model language entails predicting the next item (word or character), given a context.

Back at the grocery store, Clara bought a _____

 "Grocery store"-related stuff should be more likely: we are modeling a probability!

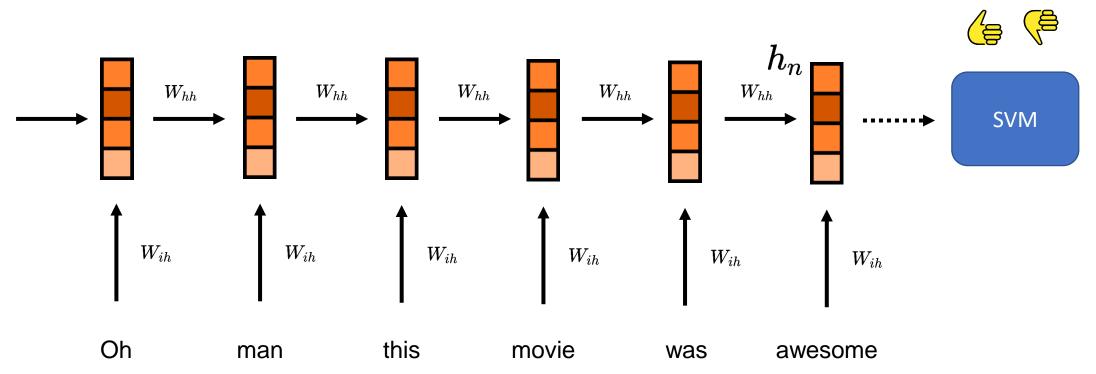
** Example of PDF at inference time

RNNs for Language Modeling

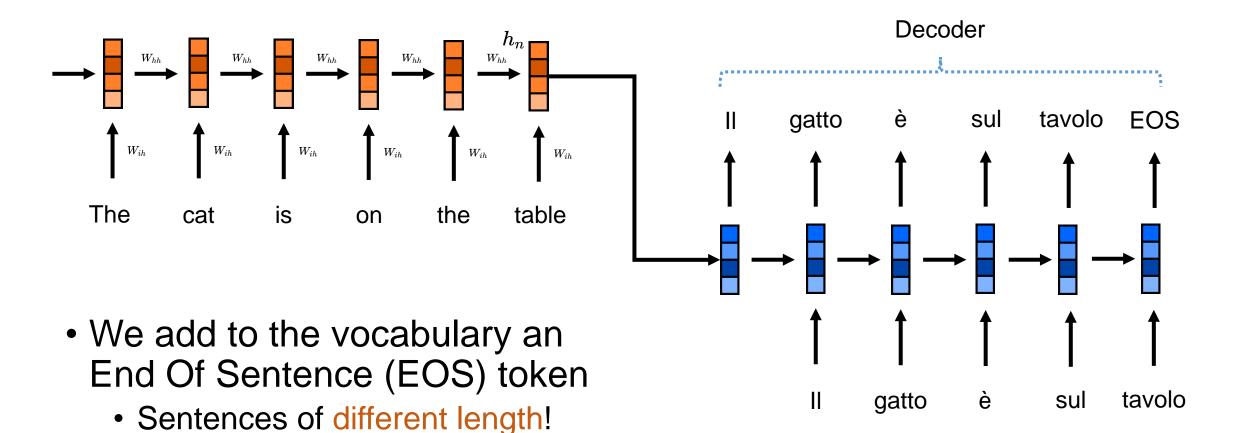


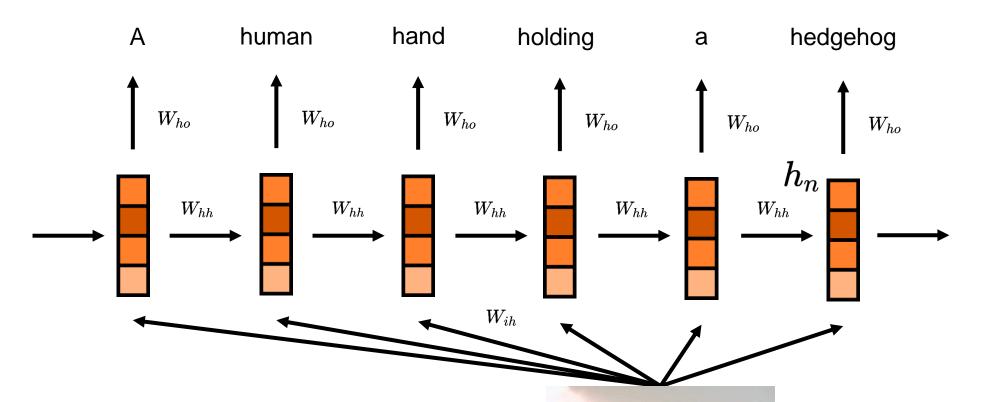
RNNs for Sentiment Analysis

 Generally, we can use the network as an "encoder" for further downstream tasks.



RNNs for Neural Machine Translation





RNNs for Image Captioning

Generating Stories about Images

Generated story about image Model: Romantic Novels

"He was a shirtless man in the back of his mind, and I let out a curse as he leaned over to kiss me on the shoulder.

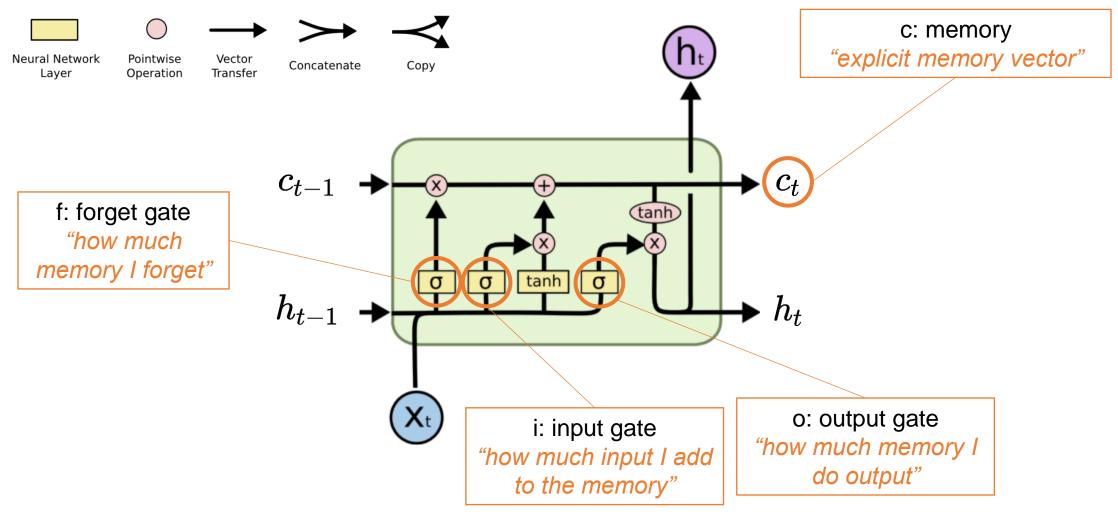
He wanted to strangle me, considering the beatiful boy I'd become wearing his boxers."

Gated RNNs

Yesterday I visited my grandma, and I brought there a bunch of stuff. Also, I installed that Alexa device as you asked. I have strong doubts that it will work, but when you're ready, we can try to video-call _____

- If the information flow gets cut by vanishing gradient
 - Add explicit memory
 - Let the network learn how to use it (i.e., read from / write to it)
- They idea of explicit memory and learned gates is dated 1997!
 Hochreiter, S. and Schmidhuber, J., 1997. Long short-term memory. Neural computation, 9(8), pp.1735-1780.

Gated RNNs: LSTM



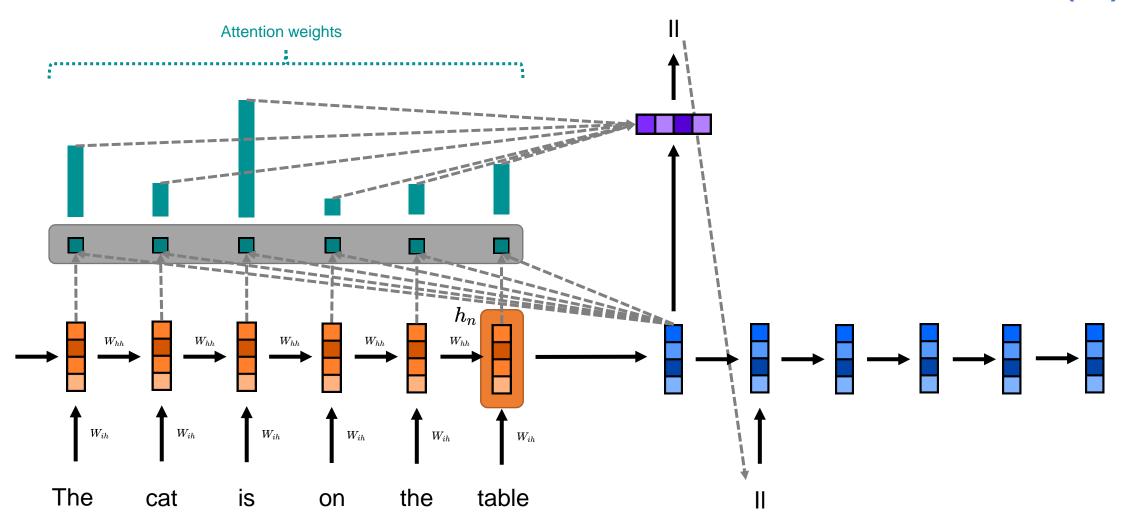
Attention [~2014-2016]

- Motivated by the human ability to focus on salient information and discard the rest
 - ... or the Cocktail party problem

- A groundbreaking innovation in sequence modeling
- Innovative to the extent that temporal constraints get loose, if not discarded at all
- Core idea:

we let the network learn how to discard information

RNNs for Neural Machine Translation (2)

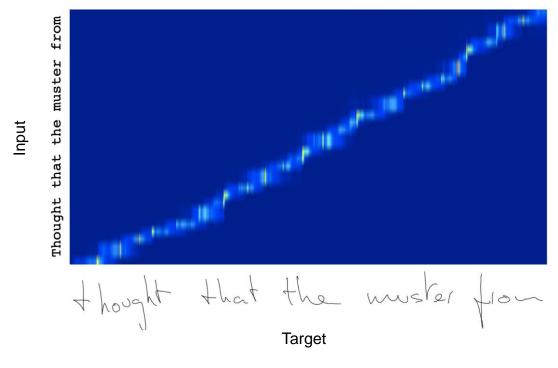


Generating sequences with RNNs

- Architecture: (custom) encoder-decoder Stacked LSTMs
- Task: generate handwriting corresponding to input text

more of national temperament

The top line is real, the rest are samples from the decoder network



Attention [2016-today)

- Attention Is All You need. Waswani et al.
- The paper introduces the Transformer

- No more recurrent units
- Learns sequence meaning using attention only
- Building block of modern language models
 - BERT, XLNet, GPT-*, T5, Megatron, ...

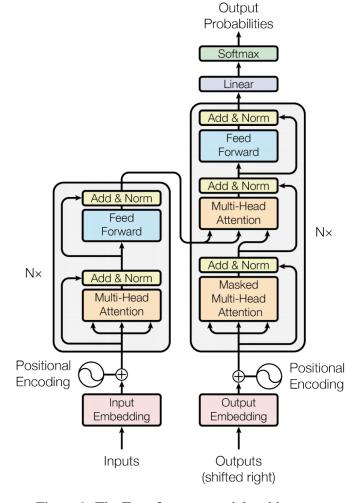


Figure 1: The Transformer - model architecture.

There's more

- Attention as explanation
- Transformers in new domains
 - Google's Vision Transformer (ViT) for Vision
 - Meta's XLS-R model for Speech
- Efficient Transformers (attention scales O(n^2))
 - Google's FNet
 - Deed Mind's Perceiver

Thank for your attention!

- giuseppe.attanasio@polito.it
- gattanasio.cc
- peppeatta @peppeatta