

Moreno La Quatra PhD Student @ DAUIN

Generative Adversarial Networks

Beyond discriminative models

Afternoon walk through the alleys of Ortygia in Siracusa Sicily. Joanne Hastie original 2019 – **CycleGAN** <u>https://joannehastie.com/product/sicilian-alleyway/</u>

Outline

- Discriminate or generate
- Short story: Mr. Gen & Prof. Dis
- Introduction to GANs
- Tasks in Computer Vision
- Demo
- Conclusions

1.

Generative vs Discriminative

Generative models

A generative model describes how a dataset is generated, in terms of a probabilistic model.

By sampling from this model, we are able to generate new data.

Generative deep learning (<u>David Foster</u> - O'Reilly)

https://thispersondoesnotexist.com

Francis Picabia Paintings

Discriminative

We could train a discriminative model to predict if a given painting was painted by **Francis Picabia**.

Generative

We could train a *generative* model to produce paintings that seems to be drawn by **Francis Picabia** himself.

What can we do?

What would you like to know?

Discriminative

p(y|X=x)

Generative p(x|Y = y)

Generative Adversarial Network is the most interesting idea in the last ten years in machine learning.

- Yann LeCun, Director, Facebook AI (Turing Prize)

Mr. Gen & Prof. Dis

Studying for DSL Exam

This is **Gen**, a PoliTO student

Gen studies for his DSL exam.

Time for exam arrived. Gen his output for the exam.

Prof. **Dis** examines the output answers to questions creating produced by Gen and assign it a score.

Unfortunately not. **Gen** needs to train harder to get a higher score.

Is it good enough?

Second chance, now **Gen** knows what's wrong with his exam!

Again, Prof. **Dis** analyzes the exam and assign it a score.

Studying = Training

It is trained to produce more and more accurate results.

Gen is a generative model. Prof. Dis is a discriminative model. It evaluates samples.

[Training Phase] Depending on the results of the exam, Gen adjusts the competencies to have better grades.

Studying = Training

It is trained to produce more and more accurate results.

Gen is a generative model. Prof. Dis is a discriminative model. It evaluates samples.

[Evaluation Phase]

Analyzing the exam solution and using his previous experience. Prof. Dis can evaluate the exam.

GAN model Architecture

GAN Architecture

Similarly to the characters of our story, GANs have two main components.

Generator: learns to **create** data by incorporating feedback from the discriminator.

Discriminator: tries to **distinguish** real data from the data created by the generator.

Discriminator (Prof. Dis)

- It is trained to predict False on fake examples and True for real ones.
- It uses both real and fake examples and classify them using knowledge.
- Better the discriminator, harder the task for the generator.

Generator (Mr. Gen)

- Aims at fooling the discriminator (let it classify generated images as real).
- Uses random noise as input.
- The discriminator give it **feedbacks** by using the loss function.

Training Process

4.

GAN Tasks in Computer Vision

Computer vision tasks

Image-to-image translation

Super resolution

Semantic Image Syntesis

Image-to-image translation

GANs take an image as input and map it to a generated output image with different properties.

https://affinelayer.com/pixsrv/

Super-resolution

GANs increase the resolution of images, adding detail where necessary to fill in blurry areas.

https://deepai.org/machine-learning-model/torch-srgan

Semantic Image Syntesis

GANs take an image as input and map it to a generated output image with different properties.

http://nvidia-research-mingyuliu.com/gaugan/

Demo Time

How to generate people faces sampling from the **human** distribution.

https://colab.research.google.com/drive/1bOgTrP8_jBkay8u6oE610IAneCa15_2f?usp=sharing

Final Remarks

GANs can be used in **other fields** (NLP, Financial data, ...)

GANs are very un-optimized on data usage.

In the next future, it will be harder for humans to **distinguish** fake or real data.

GANs can be used for good but also for illegal/evil purposes.

It is relatively simple to find **blind spots** in the generator.

References

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information processing systems (pp. 2672-2680).

Isola, P., Zhu, J. Y., Zhou, T., & Efros, A. A. (2017). Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1125-1134).

Park, T., Liu, M. Y., Wang, T. C., & Zhu, J. Y. (2019). Semantic image synthesis with spatially-adaptive normalization. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (pp. 2337-2346).

Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Shi, W. (2017). Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4681-4690).

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Agarwal, S. (2020). Language models are few-shot learners. arXiv preprint arXiv:2005.14165.

Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., & Aila, T. (2020). Analyzing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 8110-8119).

Thanks!

Any question? I'll try to generate an answer for them!

Moreno La Quatra PhD Student @ DAUIN moreno.laquatra@polito.it

This presentation includes infographics from Stories by Freepik