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Joanne Hastie original 2019 – CycleGAN

https://joannehastie.com/product/sicilian-alleyway/

https://joannehastie.com/product/sicilian-alleyway/
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Generative 
vs 
Discriminative

1.



Generative 
models
A generative model describes how a 
dataset is generated, in terms of a 
probabilistic model. 

By sampling from this model, we are 
able to generate new data.
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https://thispersondoesnotexist.com

Generative deep learning (David Foster - O’Reilly)

https://thispersondoesnotexist.com/
https://www.google.com/search?client=firefox-b-d&sxsrf=ALeKk01IvSCfdQJoeMaavzKfZEHMwi5Zrg:1607416223739&q=David+Foster&stick=H4sIAAAAAAAAAOPgE-LVT9c3NEyPr8ooMjVMUoJzc3IMyoq1ZLKTrfST8vOz9cuLMktKUvPiy_OLsq0SS0sy8osWsfK4JJZlpii45ReXpBbtYGUEALrCzbJQAAAA&sa=X&ved=2ahUKEwiejJaI_L3tAhXHCOwKHbhKDSoQmxMoATAYegQIIBAD


Francis Picabia Paintings
Discriminative
We could train a 

discriminative model to 
predict if a given painting was

painted by Francis Picabia.

Generative
We could train a generative
model to produce paintings
that seems to be drawn by 
Francis Picabia himself.
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What can we do?

Discriminative Generative
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Generative Adversarial
Network is the most
interesting idea in the 
last ten years in 
machine learning. 
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- Yann LeCun, Director, Facebook AI (Turing Prize)



Mr. Gen
&
Prof. Dis

2.

Studying for DSL Exam
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DSL Exam
This is Gen, a PoliTO student Gen studies for his DSL exam.
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DSL Exam
Time for exam arrived. Gen

answers to questions creating
his output for the exam.

Prof. Dis examines the output 
produced by Gen and assign it a score.
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DSL Exam
Is it good enough?

Unfortunately not. Gen needs to train
harder to get a higher score.
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DSL Exam
Again, Prof. Dis analyzes the exam

and assign it a score.
Second chance, now Gen knows

what’s wrong with his exam!
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Studying = Training
Prof. Dis is a discriminative model. 

It evaluates samples.
Gen is a generative model. 

It is trained to produce more 
and more accurate results.

[Training Phase]
Depending on the results of the exam, Gen adjusts the 

competencies to have better grades.
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Studying = Training
Prof. Dis is a discriminative model. 

It evaluates samples.
Gen is a generative model. 

It is trained to produce more 
and more accurate results.

[Evaluation Phase]
Analyzing the exam solution and using his previous

experience. Prof. Dis can evaluate the exam.



GAN model 
Architecture

3.



GAN Architecture
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Generator: learns to create data by 
incorporating feedback from the 
discriminator.

Discriminator: tries to distinguish real data 
from the data created by the generator.

Similarly to the characters of our story, GANs have two main components.



Discriminator (Prof. Dis)
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• It is trained to predict False on fake examples and True for real ones.
• It uses both real and fake examples and classify them using knowledge.
• Better the discriminator, harder the task for the generator.



Generator (Mr. Gen)
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• Aims at fooling the discriminator (let it classify generated images as real).
• Uses random noise as input.
• The discriminator give it feedbacks by using the loss function.



Training Process
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Generator Output Discriminator Decision Real Examples

Iteration 1

Iteration 100

Iteration 10,000



GAN Tasks in
Computer Vision

4.
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Computer vision tasks
Image-to-image

translation
Super resolution

Semantic Image 
Syntesis



Image-to-image
translation

GANs take an image as input and 
map it to a generated output image 
with different properties.
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https://affinelayer.com/pixsrv/

https://affinelayer.com/pixsrv/


Super-resolution

GANs increase the resolution of 
images, adding detail where
necessary to fill in blurry areas.
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https://deepai.org/machine-learning-model/torch-srgan



Semantic Image 
Syntesis

GANs take an image as input and 
map it to a generated output image 
with different properties.
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http://nvidia-research-mingyuliu.com/gaugan/



Demo Time
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How to generate people faces sampling from the human distribution.

https://colab.research.google.com/drive/1bOgTrP8_jBkay8u6oE610IAneCa15_2f?usp=sharing

https://colab.research.google.com/drive/1bOgTrP8_jBkay8u6oE610IAneCa15_2f?usp=sharing
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Final Remarks
GANs can be used in other fields (NLP, Financial data, ...)

GANs are very un-optimized on data usage.

In the next future, it will be harder for humans to distinguish fake or real data.

GANs can be used for good but also for illegal/evil purposes.

It is relatively simple to find blind spots in the generator.
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Thanks!
Any question? I’ll try to generate an answer for them!

Moreno La Quatra

PhD Student @ DAUIN

moreno.laquatra@polito.it

28This presentation includes infographics from Stories by Freepik


