
Version #1

Big Data: Architectures and Data Analytics

February 2, 2022

Student ID __

First Name __

Last Name __

Part I

Answer the following questions. There is only one right answer for each question.

Report your answers in the following boxes.

 Question 1 Question 2

Answer

 1. (2 points) Consider the input HDFS folder myFolder that contains the following two

files:

 NamesItaly.txt

o the text file NamesItaly.txt contains the following three lines

Luis,Turin

Luca,Rome

Luca,Turin

 NamesFrance.txt

o the text file NamesFrance.txt contains the following two lines

Paolo,Nice

Luis,Paris

Suppose that you are using a Hadoop cluster that can potentially run up to 20

instances of the mapper class in parallel. Suppose the HDFS block size is 128MB.

Suppose to execute a MapReduce application for Hadoop that analyzes the content

of myFolder. Suppose the map phase emits overall the following 4 key-value pairs,

associated with the input lines starting with “L” (output map phase/input reduce

phase):

(“Turin”, 1)

(“Rome”, 1)

(“Turin”, 1)

(“Paris”, 1)

Version #1

Suppose the number of instances of the reducer class is set to 10 and suppose the

reduce method of the reducer class sums the values associated with each key and

emits one pair (city, NullWritable) for the keys associated with a sum less than 2.

Specifically, suppose the following 2 pairs are overall emitted by the reduce phase:

(“Rome”, NullWritable)

(“Paris”, NullWritable)

Considering all the instances of the reducer class, overall, how many times is the

reduce method invoked?

 a) 2

 b) 3

 c) 4

 d) 10

 2. (2 points) Consider the following Spark Streaming application.

import ..;

public class SparkDriver {

 public static void main(String[] args) throws InterruptedException {

 SparkConf conf = new SparkConf().setAppName("Spark Streaming - Question");

 // Create a Spark Streaming Context object

 JavaStreamingContext jssc = new JavaStreamingContext(conf,

 Durations.seconds(10));

 // Define a DStream associated with the TPC socket localhost:9999

 JavaDStream<String> inputDStream = jssc.socketTextStream("localhost", 9999);

 /* Part A */

 // Map the input strings to integers

 JavaDStream<Integer> inputAIntDStream = inputDStream

 .map(value -> Integer.valueOf(value));

 // Compute max

 JavaDStream<Integer> maxADStream = inputAIntDStream

 .reduce((v1, v2) -> Math.max(v1, v2));

 // Define windows - windowDuration=20s - slideDuration=10s

 JavaDStream<Integer> resADStream = maxADStream

 .window(Durations.seconds(20), Durations.seconds(10));

 // Store the result of Part A

 resADStream.dstream().saveAsTextFiles(“outputPartA”, "");

 /* Part B */

 // Map the input strings to integers

Version #1

 JavaDStream<Integer> inputBIntDStream = inputDStream

 .map(value -> Integer.valueOf(value));

 // Compute max

 JavaDStream<Integer> maxBDStream = inputBIntDStream

 .reduce((v1, v2) -> Math.max(v1, v2));

 // Define windows - windowDuration=20s - slideDuration=10s

 JavaDStream<Integer> maxBWinDStream = maxBDStream

 .window(Durations.seconds(20), Durations.seconds(10));

 // Compute max again

 JavaDStream<Integer> resBDStream = maxBWinDStream

 .reduce((v1, v2) -> Math.max(v1, v2));

 // Store the result of Part B

 resBDStream.dstream().saveAsTextFiles(“outputPartB”, "");

/* Part C */

 // Define windows - windowDuration=20s - slideDuration=10s

 JavaDStream<String> inputCWinIntDStream = inputDStream

 .window(Durations.seconds(20), Durations.seconds(10));

 // Map the input strings to integers

 JavaDStream<Integer> inputCIntDStream = inputCWinIntDStream

 .map(value -> Integer.valueOf(value));

 // Compute max

 JavaDStream<Integer> resCDStream = inputCIntDStream

 .reduce((v1, v2) -> Math.max(v1, v2));

 // Store the result of Part C

 resCDStream.dstream().saveAsTextFiles(“outputPartC”, "");

 // Start the computation

 jssc.start(); jssc.awaitTerminationOrTimeout(120000); jssc.close(); } }

Which one of the following statements is true?

 a) Independently of the content of inputDStream, resADStream, resBDStream,

and resCDStream contain the same integer values.

 b) Independently of the content of inputDStream, resADStream and resBDStream

contain the same integer values, while resCDStream contains different integer

values with respect to resADStream and resBDStream.

 c) Independently of the content of inputDStream, resADStream and resCDStream

contain the same integer values, while resBDStream contains different integer

values with respect to resADStream and resCDStream.

 d) Independently of the content of inputDStream, resBDStream and resCDStream

contain the same integer values, while resADStream contains different integer

values with respect to resBDStream and resCDStream.

Version #1

Part II

PoliApps is a marketplace that is used to sell mobile apps. PoliApps manages millions of

apps and is used by millions of users. PoliApps computes statistics about the usage of its

apps and the characteristics of its users. The analyses are based on the following input

data sets/files.

 Apps.txt

o Apps.txt is a text file containing the list of mobile apps available on PoliApps.

Each line of Apps.txt is associated with one app. PoliApps manages millions

of apps.

o Each line of Apps.txt has the following format

 AppId,AppName,Price,Category,Company

where AppId is the unique identifier of the app while AppName is its

name, Price is its price, Category is its category (game, office,

finance, etc.), and Company is the company that developed the app.

 For example, the following line

App10,PolitoApp,0,Education,Polito

means that the app identified by the AppId App10 is called PolitoApp,

it costs 0 euros, it belongs to the Education category, and it is

developed by Polito.

 Users.txt

o Users.txt is a text file containing the profiles of the users of PoliApps. Each

line is associated with one user. PoliApps has millions of users.

o Each line of Users.txt has the following format

 UserId,Name,Surname

where UserId is the unique identifier of the user while Name and

Surname are his/her name and surname, respectively.

 For example, the following line

User15,Paolo,Garza

means that the name and surname of the user identified by the id

User15 are Paolo and Garza, respectively.

Version #1

 Actions.txt

o Actions.txt is a text file that is used to track downloads, installations, and

removals of apps. A new line is appended at the end of Actions.txt every time

a user downloads, installs, or removes an app. Actions.txt stores more than

20 years of data.

o Each line of Actions.txt has the following format

 UserId,AppId,Timestamp,Action

where UserID is the identifier of the user who performed the action

specified in the field Action on the app with id AppId at time

Timestamp. Action can assume one of the following three values:

“Download”, “Install”, or “Remove”. Pay attention that the same user

can perform the same action on the same app multiple times, in

different timestamps. For instance, a user can install the same app

multiple times. The field Timestamp is a string and its format is

“YYYY/MM/DD-HH:MM:SS”.

 For example, the following line

User15,App10,2019/01/01-23:01:15,Install

means that User15 installed (Action is equal to Install) the app

App10 on January 1, 2019, at 23:01:15.

Exercise 1 – MapReduce and Hadoop (8 points)

Exercise 1.1

The managers of PoliApps are interested in performing some analyses about their apps.

Design a single application, based on MapReduce and Hadoop, and write the
corresponding Java code, to address the following point:

1. Companies with mainly free apps in the category Game. The application considers

only the apps of the category Game (Category=’Game’) and selects the companies

that developed a number of free apps greater than the number of non-free apps,
considering only the category Game. An app is free if its price is equal to 0. If the
price of an app is greater than 0 then the app is non-free. Store the selected

companies and the number of apps of the category Game developed by each of the
selected companies in the output HDFS folder (one pair (company, number of
developed apps of the category Game) per output line).

Suppose that the input is Apps.txt and has been already set. Suppose that also the name
of the output folder has been already set.

 Write only the content of the Mapper and Reducer classes (map and reduce

methods. setup and cleanup if needed). The content of the Driver must not be
reported.

Version #1

 Use the following two specific multiple-choice questions (Exercises 1.2 and 1.3) to
specify the number of instances of the reducer class for each job.

 If your application is based on two jobs, specify which methods are associated with

the first job and which are associated with the second job.

 If you need personalized classes, report for each of them:

o the name of the class

o attributes/fields of the class (data type and name)

o personalized methods (if any), e.g., the content of the toString() method if
you override it

o do not report the get and set methods. Suppose they are "automatically
defined"

 Write your code on your papers.

Answer the following two questions to specify the number of jobs (one or two) and

the number of instances of the reducer classes.

Exercise 1.2 - Number of instances of the reducer - Job 1

Select the number of instances of the reducer class of the first Job

 (a) 0

 (b) exactly 1

 (c) any number >=1 (i.e., the reduce phase can be parallelized)

Exercise 1.3 - Number of instances of the reducer - Job 2

Select the number of instances of the reducer class of the second Job

 (a) One single job is needed

 (b) 0

 (c) exactly 1

 (d) any number >=1 (i.e., the reduce phase can be parallelized)

Version #1

Exercise 2 – Spark and RDDs (19 points)
The managers of PoliApps are interested in performing some analyses about their apps.

The managers of PoliApps asked you to develop one single application to address all the
analyses they are interested in. The application has five arguments: the input files
Apps.txt, Users.txt, and Actions.txt, and two output folders “outPart1/” and “outPart2/”,

which are associated with the outputs of the following points 1 and 2, respectively.

Specifically, design a single application, based on Spark, and write the corresponding

code, to address the following two points:

1. Apps with more monthly installations than monthly removals in all the twelve months of

the year 2021. This first part of the application considers only the data related to the

year 2021 and selects the apps with a number of monthly installations greater than the
number of monthly removals in each of the twelve months of the year 2021. The

number of monthly installations of an app in a specific month is the number of lines of
Actions.txt associated with that app and that month for which Action is equal to ‘Install’.
Similarly, the number of monthly removals of an app in a specific month is the number

of lines of Actions.txt associated with that app and that month for which Action is equal
to ‘Remove’. The pairs (AppId, AppName) associated with the selected apps are stored
in the first HDFS output folder (one pair per line).

2. Apps with the maximum number of new users after December 31, 2021. This second

part of the application selects the apps characterized by the maximum number of

distinct new users after December 31, 2021 (a user is considered a new user of an app
after December 31, 2021, if that user installed that app after December 31, 2021, and
never installed the same app before January 1, 2022). The AppIds of the selected apps

are stored in the second HDFS output folder (one AppId per output line).
Pay attention. All the apps associated with the maximum number of new users after
December 31, 2021, are stored in the output folder (one AppId per output line).

Examples Point 2

 First example. For the sake of clarity, suppose that there are only three apps:

App1, App2, and App3. Suppose that (i) App1 was installed by 100 new users
after December 31, 2021, (ii) App2 was installed by 130 new users after

December 31, 2021, and (iii) App3 was installed by 68 new users after
December 31, 2021. In this first example, the id App2 will be stored in the
second output folder.

 Second example. For the sake of clarity, suppose that there are only three apps:

App1, App2, and App3. Suppose that (i) App1 was installed by 130 new users

after December 31, 2021, (ii) App2 was installed by 130 new users after
December 31, 2021, and (iii) App3 was installed by 68 new users after
December 31, 2021. In this second example, the ids App1 and App2 will be

stored in the second output folder (one AppId per line).

 Pay attention that the actual input file contains millions of apps.

 Write your code on your papers.

 You do not need to report imports. Focus on the content of the main method.

Version #1

 Suppose both JavaSparkContext sc and SparkSession ss have been already
set.

 If you need personalized classes, report for each of them:

o the name of the class

o attributes/fields of the class (data type and name)

o personalized methods (if any), e.g., the content of the toString() method if
you override it

o do not report the get and set methods. Suppose they are "automatically
defined"

