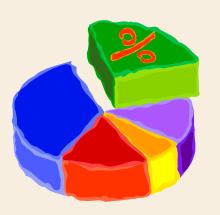


Introduction to databases

Introduction

Introduction to databases

Information management


Information management

☐ Information is recorded and exchanged in different forms

Computer systems

- □ In computer systems information is represented by means of data
 - the data are rough symbols which have to be interpreted and correlated to provide information
 - example
 - data: "Mario Rossi" and 424242
 - information: result of looking up a telephone number in your personal telephone directory (e.g., list of contacts)

Data characteristics

- Data are an important resource of the organization that manages them
- ICT technologies offer the possibility to store large collections of different data types and efficiently analyse these collections to extract useful knowledge
- Data are far more stable over time than the processes that manage them
 - Example
 - there have been no variations in the structure of bank applications data for decades
 - the procedures that manage the data vary from year to year

Introduction to the databases

Databases

Database

- □ (General definition)
 - a database is a collection of data that represents information interesting for a computer system
- - a database is a collection of data managed by a DBMS

Types of databases

Types of Databases

Relational (Oracle, SQL Server, DB2)

Data Warehouse NoSQL (Many subtypes of NoSQL databases)

Object

Many other kinds including older architectures such as Hierarchical

Data Base Management System - DBMS

- □ A DBMS (DataBase Management System) is a software system able to manage collections of data that are
 - large
 - shared
 - persistent

ensuring their reliability and privacy

DBMS characteristics

- □ Far greater dimensions than the central memory available
 - data management in secondary memory
- Data sharing between applications and users: a database is an *integrated* resource, shared by several company sectors
 - reduction of data redundancy
 - reduction of data inconsistency
 - competing access control mechanism

DBMS characteristics

- □ Data persistence
 - lifetime not limited to execution of programmes that use them
- Data reliability in the case of hardware and software malfunction/failure
 - backup and recovery functionality
- □ Data privacy
 - authorization mechanisms to enable users

DBMS characteristics

- □ Efficiency
 - capacity to carry out operations using a set of resources (time and space) acceptable for users
 - Adequately sized computer system
- - capacity to render user activities productive

DBMS or file system?

- "Simplified" approach to data: data stored in the persistent mode in the mass/secondary memory inside the file
 - it is possible to memorize and look for data
 - simple access mechanisms (sequential reading)
 - simple sharing mechanisms (read only sharing with writing options blocked)
- DBMS extends the functionalities of the file systems, providing more integrated services

Introduction to the databases

Data model

Data model

- A data model is a set of concepts utilized for organizing data of interest and describing its structure in a way that is understood by a computer
 - elementary data types (integer, character...)
 - structuring mechanism for defining more complex structures (record builder, array,...)

Types of data models

- Prelational data model
 - Most widespread data model
 - Data organized into sets of homogeneous (fixed structure) records and represented as tables
- Before the relational model, other models closer to the physical (not very abstract) structures of storing were used
 - hierarchical model, network model
- ∑ Since the relational model
 - Object model, XML, NOSQL databases, ...

Relational model

Courses

Code	Name	TeacherID
M2170	Information systems	D101
M4880	Computer Networks	D102
F0410	Databases	D321

Teacher

ID	Name	Department	Phone#
D101	Green	Computer Engeneering	123456
D102	White	Telecommunications	636363
D321	Black	Computer Engeneering	414243

Schema and instances

- Defined in the database are
 - the schema, which describes the structure of the data. The schema
 - is practically unvarying over time
 - is represented by the heading of each table (table name and column names)

schema of the database

Courses	Code	Name		Teache	erID	
Teacher	ID	Name	Denar	tment	Phone#	 L

Schema and instances

Defined in a database are

- the *instance*, composed of the content of each table, i.e. of the data effective values which are
 - variable over time, also very rapidly
 - represented by the rows in the tables

instance of the Teacher table

D101	Green	Computer Engeneering	123456
D102	White	Telecommunications	636363
D321	Black	Computer Engeneering	414243

Example of other data models: NOSQL database

- > A database is a set of collections
- Each collection contains a set of documents
- Each document is described by a list of key-value fields and each field can hold any data type
- Documents from the same collection can be heterogeneous
- Since the data representation is schema-less it not required to define the schema of the documents apriori and objects of the same collections can be characterized by different fields

Relational database	NOSQL database
Table	Collection
Row	Document
Column	Field

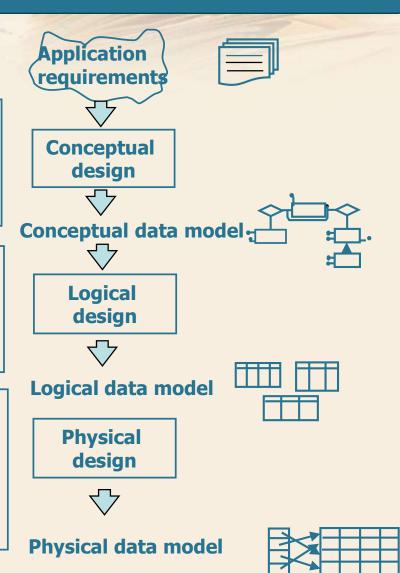
Example of Document Data

- □ Relations among documents are inefficient, and leads to de-normalization
 - Object(ID) reference, with no native join

Model types

- It is possible to represent data independently from the logical
 - describes real world concepts
 - used in the designing phase
- example: entity-relationship model

- Describes the data structure in the DBMS
 - used by the programmes accessing the data
 - independent from the physical structures
- Example: relational model



Database design flow

To represent the informal requirements of an application in terms of a conceptual schema that refers to a conceptual data model

Translation of the conceptual schema defined in the preceding phase, into the logical schema of the database that refers to a logical data model.

The logical schema is completed with the details of the physical implementation (file organization and indexes) on a given DBMS. The product is called the physical schema and refers to a physical data model.

Introduction to the databases

Data access

Data access languages

- User-friendly interfaces that enable specific queries without using a textual language
- Commands similar to interactive commands introduced into traditional programming languages (C, C++, COBOL, Java, ...), so-called host languages
- Commands similar to interactive commands introduced into ad hoc development languages, often with specific functionalities (generation of graphics, complex prints, screens)

Data access languages

- □ Languages are divided into two categories
 - Data Definition Languages (DDL) used to define the logical, external and physical schemas, and access authorizations
 - Data Manipulation Languages (DML) used for querying and updating database instances

Users

- Database administrator: in charge of (centralized) control and management of the database
 - guarantees sufficient performance
 - ensures system reliability
 - manages authorizations and access to data

Users

- Designers and programmers: they define and realize
 - the structure of the database
 - the programmes accessing the database
- □ Users: utilize the database for their activities
 - end users: they use transactions, i.e. programmes that carry out predefined activities
 - casual users: they formulate queries (or updates) which are not predefined by the interactive access languages of the database

Transactions

- Programmes that carry out frequent predefined activities
- > Examples
 - flight bookings
 - bank transfers
- □ Generally realized by introducing SQL into a host language

Introduction to the databases

Advantages and disadvantages of DBMS

DBMS advantages

- Data as a common resource of the whole organization
 - reduction of redundancies and inconsistencies
- Unified and precise data model of facts of interest to the organization
- Possible centralized control of data
 - standardization, economies of scale
- □ Data independence

DBMS disadvantages

- These are expensive, complex products that require
 - direct investment
 - purchase of the product
 - indirect investments
 - purchase of the necessary hardware and software resources
 - conversion of the applications
 - training of personnel
- They provide a set of services in an integrated form
 - it is not possible to separate out unused services
 that cause a reduction in performance

Introduction to databases

Business intelligence

Business Intelligence

- BI provides support to strategic decision support in companies
- Objective: transforming company data into actionable information
 - at different detail levels
 - for analysis applications
- Users may have heterogeneous needs
- BI requires an appropriate hardware and software infrastructure
- Mined information can be visualized using informative dashboards

