
A Lexicon-based approach to Twitter sentimental
analysis

Marco Sorbi
Politecnico di Torino
Student id: s301190

marco.sorbi@studenti.polito.it

Gabriele Spina
Politecnico di Torino
Student id: s303340

gabriele.spina@studenti.polito.it

Abstract—In this report we propose a possible solution for
a short text sentiment analysis problem by means of classifi-
cation techniques. The proposed approach implements lexicon
construction and ensemble features combined with bag of words
to enhance the performance of text classification. Different models
were compared, with some of them obtaining good results.

I. PROBLEM OVERVIEW

A. Aim

The objective of the performed Natural Language analysis
is to retrieve sentiments from short texts (tweets) collected
from Twitter, i.e. to measure whether the tweet is positive
or negative. Two datasets were provided: development and
evaluation.

B. development dataset

is composed by 224994 records, each one described by 6
parameters:
• id: nominal, integer code identifying each tweet.
• date: interval, date and time at which the tweet written.
• flag: nominal, query used to retrieve the tweet from

Twitter.
• user: nominal, twitter user who wrote the tweet.
• text: nominal, text of the tweet.
• sentiment: nominal, target variable, with value 0 or 1

representing negative and positive sentiment.

C. Evaluation dataset

The evaluation dataset contains 74999 records, described by
the same attributes used in the development one except for the
sentiment, which is the unknown.

II. PROPOSED APPROACH

A. Preprocessing

Fig. 2 shows the applied workflow.
1) Data cleaning:
• Duplicates removal: in the development dataset, 1888

entries with repeated attribute text were found and re-
moved, because otherwise they would have gotten a
higher influence with respect to other texts.

• Attributes removal: some fields were dropped:.
– ids: the id of the tweet should be uncorrelated with

its sentiment.

– flag: this attribute has only one unique value
”NO QUERY”, thus it is useless for the analysis.

• Transformations:
– Dates were converted from strings to timestamps and

then normalized with a min-max scaler to fit in range
[0, 1].

– Texts were preprocessed in various ways:
∗ HTML entities were unescaped.
∗ URLs, targets (“@user”) and leading ‘#’ in hash-

tags were removed (after twitter-specific features
extraction).

∗ Non-ASCII characters were replaced with similar
ASCII ones (using unidecode python library
[1]).

∗ Capitalized letters were replaced with lowercase
ones.

∗ Tokenization was done by means of NLTK’s
TweetTokenizer [2].

∗ Emoticons were replaced with english words ex-
plaining them (e.g. “:)” → “smiley”) using an
emoticon dictionary [3].

∗ Stemming was performed using Porter algorithm
to reduce a word into its stem [2].

∗ Sequences of three or more times the same letter
were truncated to length one or two [4].

∗ Negations have been handled during lexicon-
based features extraction [4].

2) Feature extraction: The features used during classi-
fication are the normalized timestamps and other features
extracted from text.
• Twitter-specific: twitter gives the opportunity to add hash-

tags, user tags and external urls to each tweet. These
characteristics have been summarized in the following
features:

– #urls: number of urls.
– #hashtags: number of hashtags (identified by ‘#’).
– #targets: number of user tags (identified by ‘@’).

• Textual: features representing simple statistics extracted
from texts:

– #words: number of words.
– #esclamation marks: number of esclamation marks.
– #question marks: number of question marks.

– #quotes: number of double quotes.
– #capitalized words: number of words composed

only by capital letters.
– average word length: average length of words.

• Lexicon-based:
– n-grams: from every tweet, weighted monograms

and bigrams were extracted.
Monograms’ weights are affected by:
∗ Repeated letters: if a word contains a sequence

of at least three times the same letter, the related
monogram’s weight is multiplied by 1.5.

∗ Negations: if a monogram is inside a negation
scope1, its weight is multiplied by −1.

∗ Number of repetitions inside the tweet: the final
result is the sum of the weights of each occurrence
of the term in the tweet.

Bigrams’ weights are the average of the weights of
the monograms that compose them.

– Sentiment orientation: for each n-gram, the sentiment
orientation is computed using [4]

SO(w) =

= sign

(
log

(
P [+, w]

P [+] · P [w]

)
− log

(
P [−, w]

P [−] · P [w]

))
(1)

where (referring to the training dataset)
∗ P [+] is the number of positive tweets divided by

the number of tweets.
∗ P [−] is the number of negative tweets divided by

the number of tweets.
∗ P [+,w]

P [w] = P [+|w] is the sum of the absolute
values of weights of w related to a positive
sentiment (considering both positive weights in
positive tweets and negative weights in negative
tweets) divided by the sum of the absolute values
of all w’s weights.

∗ P [−,w]
P [w] = P [−|w] is as P [+|w], but considering

discordant signs for weights and sentiments.
SO(w) equals +1 for positive oriented n-grams, −1
for negative oriented n-grams and 0 for neutral n-
grams (in case they have the same precence in both
negative and positive tweets).

– Natural entropy: is a measure of how much oriented
is an n-gram [4], it has a value in range [0, 1] and it
is 1 for strongly oriented n-grams.

NE(w) =

=1 + P [+|w] · log (P [+|w]) + P [−|w] · log (P [−|w])
(2)

Previous lexicon features are not used directly as features
by the classifier, but they are used as basis for the fol-

1A negation scope starts with a negation word (e.g. ”not”) and ends with
some kind of punctuation or conjuction (e.g. ”;” or ”but”).

lowing ones, that are summaries of sentiment orientations
and natural entropy scores for words in a tweet [4]:

– #positive ngrams: sum of absolute values of weights
of n-grams with concordand weight and sentiment
orientation (positive weights with positive orientation
and negative weights with negative orientation, they
both contribute to the positiveness of the tweet).

– #negative ngrams: sum of absolute values of weights
of n-grams with discordant weight and sentiment
orientation.

– sum positive entropies: as #positive ngrams, but
with terms weighted by natural entropies.

– sum negative entropies: as #negative ngrams, but
with terms weighted by natural entropies.

Fig. 1 shows some examples of word stems with high
natural entropy, highlighting their sentiment orientation.

• PoS-oriented: features extracted considering Parts of
Speech tag of each word, combined with polarities (sen-
timent orientations) computed during sentiment lexicon
analysis. As proposed in [5], only the following PoS
were considered: nouns, verbs, adverbs, adjectives, inter-
jections. For each of those, the following features were
extracted:

– ∀PoS ∈ {NOUN, ADV, VERB, ADJ, INTJ},∑
w∈PoS

SO(w) (3)

that is the sum of all the sentiment orientations of
the words belonging to each PoS. It is equivalent
to difference between the number of words with
positive SO (sentiment orientation) and the number
of words with negative SO.

– ∀PoS ∈ {NOUN, ADV, VERB, ADJ, INTJ},∑
w∈PoS

SO(w) ·NE(w) (4)

that is the sum of all the sentiment orientations of the
words belonging to each PoS, weighted by natural
entropy score.

−0.4 −0.2 0.0 0.2 0.4
SO(w) ⋅NE(w)

thank
sad
cool

enjoy
suck
great
follow
hate
nice
love
hey

good
fun
bad
best
miss
song
later
morn
use

w

Fig. 1: Examples of strongly-oriented word stems.

• Bag of Words: BoW representation is used to encode
words into fixed-length vectors by means of a spe-
cific weighting scheme. It has been shown that com-
bination of ensemble features and BoW ones can en-
hance the results of classification [6]. Vectorization was
performed by means of tf-idf weighting scheme, con-
sidering its good classification performances. Through
TfidfVectorizer from sklearn library [7], uni-
grams and bigrams from positive and negative tweets
were extracted and used as features. The number of
features to extract in this step was decided during the
hyperparameter tuning phase.

• Non-textual date and user attributes of the dataset
were used to extract the following features:

– timestamp: integer value representing the time the
tweet was posted. Even if this attribute should be
uncorrelated with the text and the sentiment of the
tweet, it improves the results. This could be ex-
plained considering that there are intervals of time in
which is more likely to have positive/negative tweets,
as shown in [8].

– #user tweets: number of tweets posted by each user.
– user avg sentiment: average sentiment of the user.

It ranges in interval [0, 1].
#user tweets and #user avg sentiment were computed
on the training dataset. Then, using user attribute, each
record in evaluation dataset was mapped to the corre-
sponding values. For those users not present in the train-
ing dataset, 0 and the average training set sentiment
were used as default values.

These features were tested using a Random Forest Classifier
with default parameters, splitting the development dataset in
80% for training and 20% for testing. Each group of features,
one by one, was removed from the classifier input and tested
against the whole group of features. Results are shown in
Fig. 3.

B. Model selection
Various classification models were trained to predict senti-

ments [7]:
• Random Forest: an estimator that fits an ensemble of

decision tree classifiers and uses averaging to improve
the predictive accuracy and control over-fitting.

• K-Nearest Neighbors2: classification is computed from a
simple majority vote of the nearest neighbors of each
point.

• Gaussian Naive Bayes: Naive Bayes classifiers are al-
gorithms based on applying Bayes’ theorem with the
“naive” assumption3 of conditional independence be-
tween every pair of features given the value of the class
variable. In this case the likelihood of the features is
assumed to be Gaussian.

• Static Vector Machines ensemble4: a set of SVM classi-
2features were normalized in this case
3our features aren’t pairwise independent, but we decided to try it anyway
4using Bagging Classifier with Random Patches

Development
dataset

Drop useless
attributes

Drop duplicates

Unescape HTML
entities

Remove urls,
targets and '#'

Remove uppercase
characters, strip

whitespaces

Unidecode
for non-ASCII

characters

Tokenization

Emoticons
replacement

Stemming,
repeated characters

and negations
handling

Emoticons
Dictionary

Non-Textual
features

Twitter specific
and Textual

features

Bag-of-Words
features

Sentiment
Lexicon-based

features

PoS Oriented
features

Custom
Lexicon

- Scheme-it https://www.digikey.com/schemeit/project/

1 of 1 1/20/22, 12:38

Fig. 2: Preprocessing workflow.

0.0 0.2 0.4 0.6 0.8 1.0
F1-Macro Score

Non-Textual

Lexicon-based

BoW

PoS-oriented

Twitter-specific

TextualFe
at

ur
es

 g
ro

up
 re

m
ov

ed

0.769495

0.826194

0.834422

0.836752

0.837494

0.837866

0.838406

Fig. 3: Features testing results.

fiers, that use the hyperplane with greatest gap between
two classes to separate them.

To select the model used for predicting evaluation sentiments,
we trained them with default parameters on 60% of the
development dataset and tested them on other 20%, obtaining
the results showed in Table I. According to these results,
Random Forest Classifier was chosen, as it outperformed all
other classifiers by at least 0.05.

C. Hyperparameters tuning

To fit the chosen classifier in the best possible way, we split-
ted the development dataset in 3 (pairwise disjoint) subsets5:
• Training set: 60% of the dataset, used to train the model

with various hyperparameters.
• Validation set: 20% of the dataset, used to validate the

goodness of hyperparameters and select them.
• Testing set: 20% of the dataset, used to test the selected

hyperparameters.
Table II shows the sets of values used to perform the tuning.
Table III shows best 10 validation results.
According to these results,
• criterion = “gini”
• max features = 5
• min samples = 5

were chosen.

III. RESULTS

Chosen hypermarameters were tested with the testing set
described above, obtaining an F1-Macro of 0.8409. The clas-
sificator was then trained with the whole development dataset,
using the same settings, to predict setiments of records in the
evaluation dataset. The obtained public score was 0.842, 0.089
more with respect to the baseline 0.753 score.

IV. DISCUSSION

During the implementation of the task, we thought about
some other things that we could do, but that were not done,
mainly due to time availability. Some of them are:
• Considering different weight factors for multiple letter

repetitions in a word, instead of only 1.5.
• Expanding slang by means of a slang dictionary: an

exhaustive and open source dictionary was not found.
• Implementing so called z-score features, introduced to us

by [4].
• Using pre-trained model for text vectorization Word2Vec

(GloVe, fastText).

5holdout validation was done instead of cross-validation due to the high
computational cost of preprocessing and the big size of the dataset

TABLE I: Models testing results

Classifier F1-Macro Score
Random Forest 0.8336

KNN 0.7687
GaussianNB 0.7183

SVM ensemble 0.7758

TABLE II: Hyperparameters’ values

Hyperparameter Values set
n estimators 100

criterion “gini” “entropy”
max features 1 2 3 4 5 6 “auto” “log2”

min samples split 2 3 4 5

• Trying other different hyperparameters for Random For-
est during tuning phase.

• Hyperparameter tuning of other classifiers besides Ran-
dom Forest, even if it seems to be a lot better than the
others.

Anyway, the work that we did seems to be quite good:
the computed features allowed every tried classifier, except
for GaussianNB, to beat the baseline without hyperparameter
tuning (considering local testing), and also comparing the
obtained public score with scores higher than ours, they are for
the majority less than 0.02 above us (at time of writing). We
also note that the public score obtained is higher than the local
testing score, which should be an indicator of non-overfitting
of the classifier: this achievement is obtained also thanks to
random forest intrinsic characteristics.

REFERENCES

[1] T. Solc, avian, and B. Bangert, “Unidecode.” https://pypi.org/project/
Unidecode/, 2021.

[2] S. Bird, E. Loper, and E. Klein, Natural Language Processing with
Python. O’Reilly Media Inc., 2009.

[3] N. Shah, tarikaltuncu, and A. Singh, “emot.” https://github.com/
NeelShah18/emot/blob/master/emot/emo unicode.py, 2021.

[4] H. Hamdan, P. Bellot, and F. Bechet, “Sentiment lexicon-based features
for sentiment analysis in short text,” in 16th International Conference on
Intelligent Text Processing and Computational Linguistics, 2015.

[5] A. Agarwal, B. Xie, I. Vovsha, O. Rambow, and R. Passonneau, “Senti-
ment analysis of twitter data,” Proceedings of the workshop on language
in social media (LSM 2011), pp. 30–38, 2011.

[6] M. R. Irfan, M. A. Fauzi, T. Tibyani, and N. D. Mentari, “Twitter
sentiment analysis on 2013 curriculum using ensemble features and
k-nearest neighbor,” International Journal of Electrical and Computer
Engineering (IJECE), vol. 8, no. 6, pp. 5409–5414, 2018.

[7] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” Journal of Machine Learning
Research, vol. 12, pp. 2825–2830, 2011.

[8] P. S. Dodds, K. D. Harris, I. M. Kloumann, C. A. Bliss, and C. M.
Danforth, “Temporal patterns of happiness and information in a global so-
cial network: Hedonometrics and twitter,” PLoS ONE 6(12), vol. e26752,
2011.

TABLE III: Hyperparameters tuning results

criterion max features min samples split F1-Macro Score
“gini” 5 5 0.8379
“gini” 5 3 0.8378
“gini” 5 2 0.8377
“gini” “log2” 5 0.8376
“gini” 5 4 0.8376
“gini” 4 6 0.8376
“gini” 3 3 0.8375
“gini” 3 4 0.8374
“gini” 3 5 0.8374
“gini” 5 7 0.8373

