
RDDs, Datasets and DataFrames

1

 Log filtering

 Input: a simplified log of a web server (i.e., a
textual file)

▪ Each line of the file is associated with a URL request

 Output: the lines containing the word “google”

▪ Store the output in an HDFS folder

2

 Input file

 Output

3

66.249.69.97 - - [24/Sep/2014:22:25:44 +0000] "GET http://www.google.com/bot.html”
66.249.69.97 - - [24/Sep/2014:22:26:44 +0000] "GET http://www.google.com/how.html”
66.249.69.97 - - [24/Sep/2014:22:28:44 +0000] "GET http://dbdmg.polito.it/course.html”
71.19.157.179 - - [24/Sep/2014:22:30:12 +0000] "GET http://www.google.com/faq.html”
66.249.69.97 - - [24/Sep/2014:31:28:44 +0000] "GET http://dbdmg.polito.it/thesis.html”

66.249.69.97 - - [24/Sep/2014:22:25:44 +0000] "GET http://www.google.com/bot.html”
66.249.69.97 - - [24/Sep/2014:22:26:44 +0000] "GET http://www.google.com/how.html”
71.19.157.179 - - [24/Sep/2014:22:30:12 +0000] "GET http://www.google.com/faq.html”

 Log analysis

 Input: log of a web server (i.e., a textual file)

▪ Each line of the file is associated with a URL request

 Output: the list of distinct IP addresses associated
with the connections to a google page (i.e.,
connections to URLs containing the term
“www.google.com”)

▪ Store the output in an HDFS folder

4

 Input file

 Output

5

66.249.69.97 - - [24/Sep/2014:22:25:44 +0000] "GET http://www.google.com/bot.html”
66.249.69.97 - - [24/Sep/2014:22:26:44 +0000] "GET http://www.google.com/how.html”
66.249.69.97 - - [24/Sep/2014:22:28:44 +0000] "GET http://dbdmg.polito.it/course.html”
71.19.157.179 - - [24/Sep/2014:22:30:12 +0000] "GET http://www.google.com/faq.html”
66.249.69.95 - - [24/Sep/2014:31:28:44 +0000] "GET http://dbdmg.polito.it/thesis.html”
66.249.69.97 - - [24/Sep/2014:56:26:44 +0000] "GET http://www.google.com/how.html”
56.249.69.97 - - [24/Sep/2014:56:26:44 +0000] "GET http://www.google.com/how.html”

66.249.69.97
71.19.157.179
56.249.69.97

 Maximum value

 Input: a collection of (structured) textual csv files
containing the daily value of PM10 for a set of
sensors

▪ Each line of the files has the following format

sensorId,date,PM10 value (μg/m3)\n

 Output: report the maximum value of PM10

▪ Print the result on the standard output

6

 Input file

 Output

7

s1,2016-01-01,20.5
s2,2016-01-01,30.1
s1,2016-01-02,60.2
s2,2016-01-02,20.4
s1,2016-01-03,55.5
s2,2016-01-03,52.5

60.2

 Top-k maximum values

 Input: a collection of (structured) textual csv files
containing the daily value of PM10 for a set of
sensors

▪ Each line of the files has the following format

sensorId,date,PM10 value (μg/m3)\n

 Output: report the top-3 maximum values of
PM10

▪ Print the result on the standard output

8

 Input file

 Output

9

s1,2016-01-01,20.5
s2,2016-01-01,30.1
s1,2016-01-02,60.2
s2,2016-01-02,20.4
s1,2016-01-03,55.5
s2,2016-01-03,52.5

60.2
55.5
52.5

 Readings associated with the maximum value

 Input: a collection of (structured) textual csv files
containing the daily value of PM10 for a set of
sensors

▪ Each line of the files has the following format

sensorId,date,PM10 value (μg/m3)\n

 Output: the line(s) associated with the maximum
value of PM10

▪ Store the result in an HDFS folder

10

 Input file

 Output

11

s1,2016-01-01,20.5
s2,2016-01-01,30.1
s1,2016-01-02,60.2
s2,2016-01-02,20.4
s1,2016-01-03,60.2
s2,2016-01-03,52.5

s1,2016-01-02,60.2
s1,2016-01-03,60.2

 Dates associated with the maximum value

 Input: a collection of (structured) textual csv files
containing the daily value of PM10 for a set of
sensors

▪ Each line of the files has the following format

sensorId,date,PM10 value (μg/m3)\n

 Output: the date(s) associated with the maximum
value of PM10

▪ Store the result in an HDFS folder

12

 Input file

 Output

13

s1,2016-01-01,20.5
s2,2016-01-01,30.1
s1,2016-01-02,60.2
s2,2016-01-02,20.4
s1,2016-01-03,60.2
s2,2016-01-03,52.5

2016-01-02
2016-01-03

 Average value

 Input: a collection of (structured) textual csv files
containing the daily value of PM10 for a set of
sensors

▪ Each line of the files has the following format

sensorId,date,PM10 value (μg/m3)\n

 Output: compute the average PM10 value

▪ Print the result on the standard output

14

 Input file

 Output

15

s1,2016-01-01,20.5
s2,2016-01-01,30.1
s1,2016-01-02,60.2
s2,2016-01-02,20.4
s1,2016-01-03,55.5
s2,2016-01-03,52.5

39.86

 Maximum values

 Input: a textual csv file containing the daily value
of PM10 for a set of sensors

▪ Each line of the files has the following format

sensorId,date,PM10 value (μg/m3)\n

 Output: the maximum value of PM10 for each
sensor

▪ Store the result in an HDFS file

16

 Input file

 Output

17

s1,2016-01-01,20.5
s2,2016-01-01,30.1
s1,2016-01-02,60.2
s2,2016-01-02,20.4
s1,2016-01-03,55.5
s2,2016-01-03,52.5

(s1,60.2)
(s2,52.5)

 Pollution analysis

 Input: a textual csv file containing the daily value
of PM10 for a set of sensors

▪ Each line of the files has the following format

sensorId,date,PM10 value (μg/m3)\n

 Output: the sensors with at least 2 readings with a
PM10 value greater than the critical threshold 50

▪ Store in an HDFS file the sensorIds of the selected
sensors and also the number of times each of those
sensors is associated with a PM10 value greater than 50

 18

 Input file

 Output

19

s1,2016-01-01,20.5
s2,2016-01-01,30.1
s1,2016-01-02,60.2
s2,2016-01-02,20.4
s1,2016-01-03,55.5
s2,2016-01-03,52.5

(s1,2)

 Critical dates analysis
 Input: a textual csv file containing the daily value of

PM10 for a set of sensors
▪ Each line of the files has the following format

sensorId,date,PM10 value (μg/m3)\n

 Output: an HDFS file containing one line for each
sensor
▪ Each line contains a sensorId and the list of dates with a PM10

values greater than 50 for that sensor

 Consider only the sensors associated at least one
time with a PM10 value greater than 50

20

 Input file

 Output

21

s1,2016-01-01,20.5
s2,2016-01-01,30.1
s1,2016-01-02,60.2
s2,2016-01-02,20.4
s1,2016-01-03,55.5
s2,2016-01-03,52.5

(s1, [2016-01-02, 2016-01-03])
(s2, [2016-01-03])

 Critical dates analysis
 Input: a textual csv file containing the daily value of

PM10 for a set of sensors
▪ Each line of the files has the following format

sensorId,date,PM10 value (μg/m3)\n

 Output: an HDFS file containing one line for each
sensor
▪ Each line contains a sensorId and the list of dates with a PM10

values greater than 50 for that sensor

▪ Also the sensors which have never been associated with a
PM10 values greater than 50 must be included in the result
(with an empty set)

22

 Input file

 Output

23

s1,2016-01-01,20.5
s2,2016-01-01,30.1
s1,2016-01-02,60.2
s2,2016-01-02,20.4
s1,2016-01-03,55.5
s2,2016-01-03,52.5
s3,2016-01-03,12.5

(s1, [2016-01-02, 2016-01-03])
(s2, [2016-01-03])
(s3, [])

 Order sensors by number of critical days
 Input: a textual csv file containing the daily value of

PM10 for a set of sensors
▪ Each line of the files has the following format

sensorId,date,PM10 value (μg/m3)\n

 Output: an HDFS file containing the sensors ordered
by the number of critical days
▪ Each line of the output file contains the number of days with

a PM10 values greater than 50 for a sensor s and the sensorId
of sensor s

 Consider only the sensors associated at least one
time with a PM10 value greater than 50

24

 Input file

 Output

25

s1,2016-01-01,20.5
s2,2016-01-01,30.1
s1,2016-01-02,60.2
s2,2016-01-02,20.4
s1,2016-01-03,55.5
s2,2016-01-03,52.5

s1,2
s2,1

 Top-k most critical sensors

 Input:

▪ A textual csv file containing the daily value of PM10 for a
set of sensors
▪ Each line of the files has the following format

sensorId,date,PM10 value (μg/m3)\n

▪ The value of k
▪ It is an argument of the application

26

 Top-k most critical sensors

 Output:

▪ An HDFS file containing the top-k critical sensors
▪ The “criticality” of a sensor is given by the number of days with a

PM10 values greater than 50

▪ Each line contains the number of critical days and the sensorId

27

 Input file

 k = 1

 Output

28

s1,2016-01-01,20.5
s2,2016-01-01,30.1
s1,2016-01-02,60.2
s2,2016-01-02,20.4
s1,2016-01-03,55.5
s2,2016-01-03,52.5

s1,2

 Mapping Question-Answer(s)

 Input:

▪ A large textual file containing a set of questions
▪ Each line contains one question

▪ Each line has the format

 QuestionId,Timestamp,TextOfTheQuestion

▪ A large textual file containing a set of answers
▪ Each line contains one answer

▪ Each line has the format

 AnswerId,QuestionId,Timestamp,TextOfTheAnswer

29

 Output:

▪ A file containing one line for each question

▪ Each line contains a question and the list of answers to
that question
▪ QuestionId, TextOfTheQuestion, list of Answers

30

 Questions

 Answers

Q1,2015-01-01,What is ..?
Q2,2015-01-03,Who invented ..

A1,Q1,2015-01-02,It is ..
A2,Q2,2015-01-03,John Smith
A3,Q1,2015-01-05,I think it is ..

 Output

(Q1,([What is ..?],[It is .., I think it is ..]))
(Q2,([Who invented ..],[John Smith]))

 Critical bike sharing station analysis
 Input:
 A textual csv file containing the occupancy of the

stations of a bike sharing system
▪ The sampling rate is 5 minutes
▪ Each line of the file contains one sensor reading/sample has

the following format
stationId,date,hour,minute,num_of_bikes,num_of_free_slots

▪ Some readings are missing due to temporarily malfunctions
of the stations
▪ Hence, the number of samplings is not exactly the same for all

stations

 The number of distinct stations is 100

33

 Input:

 A second textual csv file containing the list of
neighbors of each station

▪ Each line of the file has the following format

 stationIdx, list of neighbors of stationIdx

▪ E.g.,

 s1,s2 s3

 means that s2 and s3 are neighbors of s1

34

 Outputs:

 Compute the percentage of critical situations for
each station

▪ A station is in a critical situation if the number of free
slots is below a user provided threshold (e.g., 3 slots)

▪ The percentage of critical situations for a station Si is
defined as (number of critical readings associated with
Si)/(total number of readings associated with Si)

35

 Store in an HDFS file the stations with a
percentage of critical situations higher than 80%
(i.e., stations that are almost always in a critical
situation and need to be extended)

▪ Each line of the output file is associated with one of the
selected stations and contains the percentage of critical
situations and the stationId

▪ Sort the stored stations by percentage of critical
situations

36

 Compute the percentage of critical situations for
each pair (timeslot, station)

▪ Timeslot can assume the following 6 values
▪ [0-3]

▪ [4-7]

▪ [8-11]

▪ [12-15]

▪ [16-19]

▪ [20-23]

37

 Store in an HDFS file the pairs (timeslot, station)
with a percentage of critical situations higher than
80% (i.e., stations that need rebalancing
operations in specific timeslots)

▪ Each line of the output file is associated with one of the
selected pairs (timeslot, station) and contains the
percentage of critical situations and the pair (timeslot,
stationId)

▪ Sort the result by percentage of critical situations

38

 Select a reading (i.e., a line) of the first input file if
and only if the following constraints are true
▪ The line is associated with a full station situation

▪ i.e., the station Si associated with the current line has a number of
free slots equal to 0

▪ All the neighbor stations of the station Si are full in the
time stamp associated with the current line
▪ i.e., bikers cannot leave the bike at Station Si and also all the

neighbor stations are full in the same time stamp

 Store the selected readings/lines in an HDFS file
and print on the standard output the total number
of such lines

39

 Misleading profile selection
 Input:

 A textual file containing the list of movies
watched by the users of a video on demand
service

▪ Each line of the file contains the information about one
visualization
userid,movieid,start-timestamp,end-timestamp

▪ The user with id userid watched the movie with id
movieid from start-timestamp to end-timestamp

40

 Input:

 A second textual file containing the list of
preferences for each user

▪ Each line of the file contains the information about one
preference
userid,movie-genre

▪ The user with id userid liked the movie of type movie-
genre

41

 Input:

 A third textual file containing the list of movies
with the associated information

▪ Each line of the file contains the information about one
movie
movieid,title,movie-genre

▪ There is only one line for each movie
▪ i.e., each movie has one single genre

42

 Output:

 Select the userids of the list of users with a
misleading profile

▪ A user has a misleading profile if more than threshold%
of the movies he/she watched are not associated with a
movie genre he/she likes

▪ threshold is an argument/parameter of the application
and it is specified by the user

 Store the result in an HDFS file

43

 Profile update
 Input:

 A textual file containing the list of movies
watched by the users of a video on demand
service

▪ Each line of the file contains the information about one
visualization
userid,movieid,start-timestamp,end-timestamp

▪ The user with id userid watched the movie with id
movieid from start-timestamp to end-timestamp

44

 Input:

 A second textual file containing the list of
preferences for each user

▪ Each line of the file contains the information about one
preference
userid,movie-genre

▪ The user with id userid liked the movie of type movie-
genre

45

 Input:

 A third textual file containing the list of movies
with the associated information

▪ Each line of the file contains the information about one
movie
movieid,title,movie-genre

▪ There is only one line for each movie
▪ i.e., each movie has one single genre

46

 Output:
 Select for each user with a misleading profile

(according to the same definition of Exercise #44) the
list of movie genres that are not in his/her preferred
genres and are associated with at least 5 movies
watched by the user

 Store the result in an HDFS file
▪ Each line of the output file is associated with one pair (user,

selected misleading genre) associated with him/her
▪ The format is

 userid, selected (misleading) genre

▪ Users associated with a list of selected genres are associated
with multiple lines of the output file

47

 Time series analysis
 Input:
 A textual file containing a set of temperature readings
 Each line of the file contains one timestamp and the

associated temperature reading
timestamp, temperature
▪ The format of the timestamp is the Unix timestamp that is

defined as the number of seconds that have elapsed since
00:00:00 Coordinated Universal Time (UTC), Thursday, 1
January 1970

 The sample rate is 1 minute
▪ i.e., the difference between the timestamps of two

consecutive readings is 60 seconds

48

 Output:

 Consider all the windows containing 3 consecutive
temperature readings and

▪ Select the windows characterized by an increasing trend
▪ A window is characterized by an increasing trend if for all the

temperature readings in it
temperature(t)>temperature(t-60 seconds)

▪ Store the result into an HDFS file

49

 Input file

 Output file

50

1451606400,12.1
1451606460,12.2
1451606520,13.5
1451606580,14.0
1451606640,14.0
1451606700,15.5
1451606760,15.0

1451606400,12.1,1451606460,12.2,1451606520,13.5
1451606460,12.2,1451606520,13.5,1451606580,14.0

