

 Spark computes the content of an RDD each
time an action is invoked on it

 If the same RDD is used multiple times in an
application, Spark recomputes its content
every time an action is invoked on the RDD,
or on one of its “descendants”

 This is expensive, especially for iterative
applications

 We can ask Spark to persist/cache RDDs
 3

 When you ask Spark to persist/cache an RDD,
each node stores the content of its partitions in
memory and reuses them in other actions on
that RDD/dataset (or RDDs derived from it)
 The first time the content of a persistent/cached RDD

is computed in an action, it will be kept in the main
memory of the nodes

 The next actions on the same RDD will read its
content from memory
▪ i.e., Spark persists/caches the content of the RDD across

operations
▪ This allows future actions to be much faster (often by more

than 10x

4

 Spark supports several storage levels

 The storage level is used to specify if the content
of the RDD is stored

▪ In the main memory of the nodes

▪ On the local disks of the nodes

▪ Partially in the main memory and partially on disk

5

6

Storage Level Meaning

MEMORY_ONLY Store RDD as deserialized Java objects in the JVM. If the
RDD does not fit in memory, some partitions will not be
cached and will be recomputed on the fly each time
they're needed. This is the default level.

MEMORY_AND_DISK Store RDD as deserialized Java objects in the JVM. If the
RDD does not fit in memory, store the partitions that
don't fit on (local) disk, and read them from there when
they're needed.

DISK_ONLY Store the RDD partitions only on disk.

MEMORY_ONLY_2,
MEMORY_AND_DISK_2,
etc.

Same as the levels above, but replicate each partition on
two cluster nodes.

OFF_HEAP (experimental) Similar to MEMORY_ONL, but store the data in off-heap
memory. This requires off-heap memory to be enabled.

http://spark.apache.org/docs/2.4.0/rdd-programming-guide.html#rdd-persistence

 You can mark an RDD to be persisted by using
the persist(storageLevel) method of the RDD
class

 The parameter of persist can assume the
following values
 pyspark.StorageLevel.MEMORY_ONLY

 pyspark.StorageLevel.MEMORY_AND_DISK

 pyspark.StorageLevel.DISK_ONLY

 pyspark.StorageLevel.NONE

 pyspark.StorageLevel.OFF_HEAP

7

 pyspark.StorageLevel.MEMORY_ONLY_2

 pyspark.StorageLevel.MEMORY_AND_DISK_2

 The storage level *_2 replicate each partition
on two cluster nodes

 If one node fails, the other one can be used to
perform the actions on the RDD without
recomputing the content of the RDD

8

 You can cache an RDD by using the cache()
method of the RDD class
 It corresponds to persist the RDD with the storage

level ‘MEMORY_ONLY’

 i.e., it is equivalent to
inRDD.persist(pyspark.StorageLevel.MEMORY_O
NLY)

 Note that both persist and cache return a
new RDD
 Because RDDs are immutable

9

 The use of the persist/cache mechanism on
an RDD provides an advantage if the same
RDD is used multiple times

 i.e., multiples actions are applied on it or on its
descendants

10

 The storage levels that store RDDs on disk
are useful if and only if

 The “size” of the RDD is significantly smaller than
the size of the input dataset

 Or the functions that are used to compute the
content of the RDD are expensive

 Otherwise, recomputing a partition may be as fast
as reading it from disk

11

 Spark automatically monitors cache usage on
each node and drops out old data partitions
in a least-recently-used (LRU) fashion

 You can manually remove an RDD from the
cache by using the unpersist() method of the
RDD class

12

 Create an RDD from a textual file containing
a list of words

 One word for each line

 Print on the standard output

 The number of lines of the input file

 The number of distinct words

13

 # Read the content of a textual file
 # and cache the associated RDD
 inputRDD = sc.textFile("words.txt").cache()

 print("Number of words: ",inputRDD.count())
 print("Number of distinct words: ", inputRDD.distinct().count())

14

 # Read the content of a textual file
 # and cache the associated RDD
 inputRDD = sc.textFile("words.txt").cache()

 print("Number of words: ",inputRDD.count())
 print("Number of distinct words: ", inputRDD.distinct().count())

15

The cache method is invoked.
Hence, inputRDD is a “cached” RDD

 # Read the content of a textual file
 # and cache the associated RDD
 inputRDD = sc.textFile("words.txt").cache()

 print("Number of words: ",inputRDD.count())
 print("Number of distinct words: ", inputRDD.distinct().count())

16

This is the first time an action is invoked on the
inputRDD RDD.
The content of the RDD is computed by reading
the lines of the words.txt file and the result of
the count action is returned. The content of
inputRDD is also stored in the main memory of
the nodes of the cluster.

 # Read the content of a textual file
 # and cache the associated RDD
 inputRDD = sc.textFile("words.txt").cache()

 print("Number of words: ",inputRDD.count())
 print("Number of distinct words: ", inputRDD.distinct().count())

17

The content of inputRDD is in the main
memory if the nodes of the cluster.
Hence the computation of distinct() + count() is
performed by reading the data from the main
memory and not from the input (HDFS) file
words.txt

 When a “function” passed to a Spark
operation is executed on a remote cluster
node, it works on separate copies of all the
variables used in the function

 These variables are copied to each node of the
cluster, and no updates to the variables on the
nodes are propagated back to the driver program

19

 Spark provides a type of shared variables
called accumulators

 Accumulators are shared variables that are
only “added” to through an associative
operation and can therefore be efficiently
supported in parallel

 They can be used to implement counters or
sums

20

 Accumulators are usually used to compute
simple statistics while performing some other
actions on the input RDD

 The avoid using actions like reduce() to compute
simple statistics (e.g., count the number of lines
with some characteristics)

21

 The driver defines and initializes the accumulator
 The code executed in the worker nodes increases the

value of the accumulator
 i.e., the code in the “functions” associated with the

transformations
 The final value of the accumulator is returned to the

driver node
 Only the driver node can access the final value of the

accumulator

 The worker nodes cannot access the value of the
accumulator
▪ They can only add values to it

22

 Pay attention that the value of the
accumulator is increased in the functions
associated with transformations

 Since transformations are lazily evaluated,
the value of the accumulator is computed
only when an action is executed on the RDD
on which the transformations increasing the
accumulator are applied

23

 Spark natively supports numerical
accumulators

 Integers and floats

 But programmers can add support for new
data types

 Accumulators are
pyspark.accumulators.Accumulator objects

24

 Accumulators are defined and initialized by
using the accumulator(value) method of the
SparkContext class

 The value of an accumulator can be “increased”
by using the add(value) method of the
Accumulator class
 Add “value” to the current value of the accumulator

 The final value of an accumulator can be
retrieved in the driver program by using value of
the Accumulator class

25

 Create an RDD from a textual file containing
a list of email addresses

 One email for each line

 Select the lines containing a valid email and
store them in an HDFS file

 In this example, an email is considered a valid
email if it contains the @ symbol

 Print also, on the standard output, the
number of invalid emails

26

 # Define an accumulator. Initialize it to 0
 invalidEmails = sc.accumulator(0)

 # Read the content of the input textual file
 emailsRDD = sc.textFile("emails.txt")

 #Define the filtering function
 def validEmailFunc(line):
 if (line.find('@')<0):
 invalidEmails.add(1)
 return False
 else:
 return True

 # Select only valid emails
 # Count also the number of invalid emails
 validEmailsRDD = emailsRDD.filter(validEmailFunc)

27

 # Define an accumulator. Initialize it to 0
 invalidEmails = sc.accumulator(0)

 # Read the content of the input textual file
 emailsRDD = sc.textFile("emails.txt")

 #Define the filtering function
 def validEmailFunc(line):
 if (line.find('@')<0):
 invalidEmails.add(1)
 return False
 else:
 return True

 # Select only valid emails
 # Count also the number of invalid emails
 validEmailsRDD = emailsRDD.filter(validEmailFunc)

28

Definition of an accumulator of type integer

 # Define an accumulator. Initialize it to 0
 invalidEmails = sc.accumulator(0)

 # Read the content of the input textual file
 emailsRDD = sc.textFile("emails.txt")

 #Define the filtering function
 def validEmailFunc(line):
 if (line.find('@')<0):
 invalidEmails.add(1)
 return False
 else:
 return True

 # Select only valid emails
 # Count also the number of invalid emails
 validEmailsRDD = emailsRDD.filter(validEmailFunc)

29

This function increments the value of the
invalidEmails accumulator if the email is invalid

 # Store valid emails in the output file
 validEmailsRDD.saveAsTextFile(outputPath)

 # Print the number of invalid emails
 print("Invalid email addresses: ", invalidEmails.value)

30

 # Store valid emails in the output file
 validEmailsRDD.saveAsTextFile(outputPath)

 # Print the number of invalid emails
 print("Invalid email addresses: ", invalidEmails.value)

31

Read the final value of the accumulator

 # Store valid emails in the output file
 validEmailsRDD.saveAsTextFile(outputPath)

 # Print the number of invalid emails
 print("Invalid email addresses: ", invalidEmails.value)

32

Pay attention that the value of the accumulator is correct only because an
action (saveAsTextFile) has been executed on the validEmailsRDD and its
content has been computed (the function validEmailFunc has been
executed on each element of emailsRDD)

 Programmers can define accumulators based
on new data types (different from integers
and floats)

 To define a new accumulator data type of
type T, the programmer must define a class
subclassing the AccumulatorParam interface
 The AccumulatorParam interface has two

methods
▪ zero for providing a “zero value” for your data type

▪ addInPlace for adding two values together

33

 Spark supports broadcast variables
 A broadcast variable is a read-only

(small/medium) shared variable
 That is instantiated in the driver

▪ The broadcast variable is stored in the main memory of the
driver in a local variable

 And it is sent to all worker nodes that use it in one or
more Spark operations
▪ The broadcast variable is also stored in the main memory of

the executors (which are instantiated in the used worker
nodes)

35

 A copy each broadcast variable is sent to all executors
that are used to run a task executing a Spark
operation based on that variable
 i.e., the variable is sent “num. executors” times

 A broadcast variable is sent only one time to each
executor that uses that variable in at least one Spark
operation (i.e., in at least one of its tasks)
 Each executor can run multiples tasks associated with the

same broadcast variable
▪ The broadcast variable is sent only one time for each executor

 Hence, the amount of data sent on the network is limited
by using broadcast variables instead of “standard”
variables

36

 Broadcast variables are usually used to share
(small/medium) lookup-tables

 They are stored in local variables

 They must the small enough to be stored in the
main memory of the driver and also in the main
memory of the executors

37

 Broadcast variables are objects of type
Broadcast

 A broadcast variable (of type T) is defined in
the driver by using the broadcast(value)
method of the SparkContext class

 The value of a broadcast variable (of type T) is
retrieved (usually in transformations) by
using value of the Broadcast class

38

 Create an RDD from a textual file containing a
dictionary of pairs (word, integer value)
 One pair for each line
 Suppose the content of this first file is large but can

be stored in main-memory
 Create an RDD from a textual file containing a

set of words
 A sentence (set of words) for each line

 “Transform” the content of the second file
mapping each word to an integer based on the
dictionary contained in the first file
 Store the result in an HDFS file

39

 First file (dictionary)
java 1

spark 2

test 3

 Second file (the text to transform)
java spark

spark test java

 Output file
1 2

2 3 1

40

 # Read the content of the dictionary from the first file and
 # map each line to a pair (word, integer value)
 dictionaryRDD = sc.textFile("dictionary.txt").map(lambda line:
 (line.split(" ")[0], line.split(" ")[1]))

 # Create a broadcast variable based on the content of dictionaryRDD.
 # Pay attention that a broadcast variable can be instantiated only
 # by passing as parameter a local variable and not an RDD.
 # Hence, the collectAsMap method is used to retrieve the content of the
 # RDD and store it in the dictionary variable
 dictionary = dictionaryRDD.collectAsMap()

 # Broadcast dictionary
 dictionaryBroadcast = sc.broadcast(dictionary)

41

 # Read the content of the dictionary from the first file and
 # map each line to a pair (word, integer value)
 dictionaryRDD = sc.textFile("dictionary.txt").map(lambda line:
 (line.split(" ")[0], line.split(" ")[1]))

 # Create a broadcast variable based on the content of dictionaryRDD.
 # Pay attention that a broadcast variable can be instantiated only
 # by passing as parameter a local variable and not an RDD.
 # Hence, the collectAsMap method is used to retrieve the content of the
 # RDD and store it in the dictionary variable
 dictionary = dictionaryRDD.collectAsMap()

 # Broadcast dictionary
 dictionaryBroadcast = sc.broadcast(dictionary)

42

Define a broadcast variable

 # Read the content of the second file
 textRDD = sc.textFile("document.txt")

 # Define the function that is used to map strings to integers
 def myMapFunc(line):
 transformedLine=''

 for word in line.split(' '):
 intValue = dictionaryBroadcast.value[word]
 transformedLine = transformedLine+intValue+' '

 return transformedLine.strip()

 # Map words in textRDD to the corresponding integers and concatenate
 # them
 mappedTextRDD= textRDD.map(myMapFunc)

43

 # Read the content of the second file
 textRDD = sc.textFile("document.txt")

 # Define the function that is used to map strings to integers
 def myMapFunc(line):
 transformedLine=''

 for word in line.split(' '):
 intValue = dictionaryBroadcast.value[word]
 transformedLine = transformedLine+intValue+' '

 return transformedLine.strip()

 # Map words in textRDD to the corresponding integers and concatenate
 # them
 mappedTextRDD= textRDD.map(myMapFunc)

44

Retrieve the content of the broadcast variable and use it

 # Store the result in an HDFS file
 mappedTextRDD.saveAsTextFile(outputPath)

45

 The content of each RDD is split in partitions
 The number of partitions and the content of each

partition depend on how RDDs are
defined/created

 The number of partitions impacts on the
maximum parallelization degree of the Spark
application
 But pay attention that the amount of resources is

limited (there is a maximum number of executors
and parallel tasks)

47

 Disadvantages of too few partitions
 Less concurrency/parallelism

▪ There could be worker nodes that are idle and could be
used to speed up the execution of your application

 Data skewing and improper resource utilization
▪ Data might be skewed on one partition

▪ One partition with many data

▪ Many partitions with few data

▪ The worker node that processes that large partition
needs more time than the other workers
▪ It becomes the bottleneck of your application

48

 Disadvantages of too many partitions

 Task scheduling may take more time than actual
execution time if the amount of data in some
partitions is too small

49

 Only some specific transformations set the
number of partitions of the returned RDD

 parallelize(), textFile(), repartition(), coalesce()

 The majority of the Spark transformations do
not change the number of partitions

 Those transformations preserve the number of
partitions of the input RDD

▪ i.e., the returned RDD has the same number of
partitions of the input RDD

50

 parallelize(collection)
 The number of partitions of the returned RDD is equal

to sc.defaultParallelism
 Sparks tries to balance the number of elements per

partition in the returned RDD
▪ Elements are not assigned to partitions based on their value

 parallelize(collection, numSlices)
 The number of partitions of the returned RDD is equal

to numSlices
 Sparks tries to balance the number of elements per

partition in the returned RDD
▪ Elements are not assigned to partitions based on their value

51

 textFile(pathInputData)
 The number of partitions of the returned RDD is equal to

the number of input chunks/blocks of the input HDFS
data

 Each partition contains the content of one of the input
blocks

 textFile(pathInputData, minPartitions)
 The user specified number of partitions must be greater

than the number of input blocks

 The number of partitions of the returned RDD is greater
than or equal to the specified value minPartitions

 Each partition contains a part of one input blocks

52

 repartition(numPartitions)

 numPartitions can be greater or smaller than the
number of partitions of the input RDD

 The number of partitions of the returned RDD is equal
to numPartitions

 Sparks tries to balance the number of elements per
partition in the returned RDD

▪ Elements are not assigned to partitions based on their value

 A shuffle operation is executed to assign input
elements to the partitions of the returned RDD

53

 coalesce(numPartitions)
 numPartitions < number of partitions of the input

RDD
 The number of partitions of the returned RDD is equal

to numPartitions
 Sparks tries to balance the number of elements per

partition in the returned RDD
▪ Elements are not assigned to partitions based on their value

 Usually no shuffle operation is executed to assign
input elements to the partitions of the returned RDD

 coalesce is more efficient than repartition to reduce
the number of partitions

54

 Spark allows specifying how to partition the
content of RDDs of key-value pairs
 The input pairs are grouped in partitions based on the

integer value returned by a function applied on the
key of each input pair

 This operation can be useful to improve the efficiency
of the next transformations by reducing the amount
of shuffle operations and the amount of data sent on
the network in the next steps of the application
▪ Spark can optimize the execution of the transformations if

the input RDDs of pairs are properly partitioned

55

 Partitioning is based on the partitionBy()
transformation

 partitionBy(numPartitions)

 The input pairs are grouped in partitions based on
the integer value returned by a default hash
function applied on the key of each input pair

 A shuffle operation is executed to assign input
elements to the partitions of the returned RDD

56

 Suppose that

 The number of partition of the returned Pair RDD
is numPart

 The default partition function is portable_hash

 Given an input pair (key, value) a copy of that pair
will be stored in the partition number n of the
returned RDD, where

n = portable_hash(key) % numPart

57

 Suppose that

 The number of partition of the returned Pair RDD
is numPart

 The default partition function is portable_hash

 Given an input pair (key, value) a copy of that pair
will be stored in the partition number n of the
returned RDD, where

n = portable_hash(key) % numPart

58

This function returns and integer

 partitionBy(numPartitions, partitionFunc)

 The input pairs are grouped in partitions based on
the integer value returned by the user provided
partitionFunc function

 A shuffle operation is executed to assign input
elements to the partitions of the returned RDD

59

 Suppose that

 The number of partition of the returned Pair RDD
is numPart

 The partition function is partitionFunc

 Given an input pair (key, value) a copy of that pair
will be stored in the partition number n of the
returned RDD, where

n = partitionFunc(key) % numPart

60

 Suppose that

 The number of partition of the returned Pair RDD
is numPart

 The partition function is partitionFunc

 Given an input pair (key, value) a copy of that pair
will be stored in the partition number n of the
returned RDD, where

n = partitionFunc(key) % numPart

61

Custom partition function

 Partitioning Pair RDDs by using partitionBy() is useful
only when the same partitioned RDD is cached and
reused multiple times in the application in time and
network consuming key-oriented transformations
 E.g., the same partitioned RDD is used in many join(),

cogroup, groupyByKey(), .. transformations in different
paths/branches of the application (different
paths/branches of the DAG)

 Pay attention to the amount of data that is actually
sent on the network
 partitionBy() can slow down your application instead of

speeding it up

62

 Create an RDD from a textual file containing
a list of pairs (pageID, list of linked pages)

 Implement the (simplified) PageRank
algorithm and compute the pageRank of
each input page

 Print the result on the standard output

63

 # Read the input file with the structure of the web graph
 inputData = sc.textFile("links.txt“)

 # Format of each input line
 # PageId,LinksToOtherPages - e.g., P3 [P1,P2,P4,P5]
 def mapToPairPageIDLinks(line):
 fields = line.split(' ')
 pageID = fields[0]
 links = fields[1].split(',')

 return (pageID, links)

 links = inputData.map(mapToPairPageIDLinks)\
 .partitionBy(inputData.getNumPartitions())\
 .cache()

64

 # Read the input file with the structure of the web graph
 inputData = sc.textFile("links.txt“)

 # Format of each input line
 # PageId,LinksToOtherPages - e.g., P3 [P1,P2,P4,P5]
 def mapToPairPageIDLinks(line):
 fields = line.split(' ')
 pageID = fields[0]
 links = fields[1].split(',')

 return (pageID, links)

 links = inputData.map(mapToPairPageIDLinks)\
 .partitionBy(inputData.getNumPartitions())\
 .cache()

65

Note that the returned Pair RDD is partitioned and
cached

 # Initialize each page's rank to 1.0; since we use mapValues,
 # the resulting RDD will have the same partitioner as links
 ranks = links.mapValues(lambda v: 1.0)

66

 # Function that returns a set of pairs from each input pair
 # input pair: (pageid, (linked pages, current page rank of pageid))
 # one output pair for each linked page. Output pairs:
 # (pageid linked page,
 # current page rank of the linking page pageid / number of linked pages)
 def computeContributions(pageIDLinksPageRank):
 pagesContributions = []
 currentPageRank = pageIDLinksPageRank[1][1]
 linkedPages = pageIDLinksPageRank[1][0]
 numLinkedPages = len(linkedPages)
 contribution = currentPageRank/numLinkedPages

 for pageidLinkedPage in linkedPages:
 pagesContributions.append((pageidLinkedPage, contribution))

 return pagesContributions

67

 # Run 30 iterations of PageRank
 for x in range(30):
 # Retrieve for each page its current pagerank and
 # the list of linked pages by using the join transformation
 pageRankLinks = links.join(ranks)

 # Compute contributions from linking pages to linked pages
 # for this iteration
 contributions = pageRankLinks.flatMap(computeContributions)

 # Update current pagerank of all pages for this iteration
 ranks = contributions\
 .reduceByKey(lambda contrib1, contrib2: contrib1+contrib2)

 # Print the result
 ranks.collect() 68

 # Run 30 iterations of PageRank
 for x in range(30):
 # Retrieve for each page its current pagerank and
 # the list of linked pages by using the join transformation
 pageRankLinks = links.join(ranks)

 # Compute contributions from linking pages to linked pages
 # for this iteration
 contributions = pageRankLinks.flatMap(computeContributions)

 # Update current pagerank of all pages for this iteration
 ranks = contributions\
 .reduceByKey(lambda contrib1, contrib2: contrib1+contrib2)

 # Print the result
 ranks.collect() 69

The join transformation is invoked many times on the links Pair RDD.
The content of links is constant (it does not change during the loop
interations.
Hence, caching it and also partitioning its content by key is useful.
- Its content is computed one time and cached in the main memory of the
executors
- Its is shuffled and sent on the network only one time because we applied
partitionBy on it.

Transformation Number of partitions Partitioner

sc.parallelize(…) sc.defaultParallelism NONE

sc.textFile(…) sc.defaultParallelism or number of
file blocks , whichever is greater

NONE

filter(),map(),flatMap(),
distinct()

same as parent RDD

NONE except
filter preserve
parent RDD’s

partitioner

rdd.union(otherRDD) rdd.partitions.size +
 otherRDD. partitions.size

rdd.intersection(otherRDD)

max(rdd.partitions.size,
otherRDD. partitions.size)

rdd.subtract(otherRDD) rdd.partitions.size

rdd.cartesian(otherRDD) rdd.partitions.size *
otherRDD. partitions.size

70

Transformation Number of partitions Partitioner

reduceByKey(),foldByKey(),
combineByKey(),
groupByKey()

same as parent RDD HashPartitioner

sortByKey() same as parent RDD RangePartitioner

mapValues(),
flatMapValues()

same as parent RDD parent RDD’s
partitioner

cogroup(), join(),
,leftOuterJoin(),
rightOuterJoin()

depends upon input properties of
two involved RDDs

HashPartitioner

71

 The join transformation is expensive in terms
of execution time and amount of data sent on
the network

 If one of the two input RDDs of key-value
pairs is small enough to be stored in the main
memory when can use a more efficient
solution based on a broadcast variable
 Broadcast hash join (or map-side join)

 The smaller the small RDD, the higher the speed
up

73

 Create a large RDD from a textual file
containing a list of pairs (userID, post)

 Each user can be associated to several posts

 Create a small RDD from a textual file
containing a list of pairs (userID, (name,
surname, age))

 Each user can be associated to one single line in
this second file

 Compute the join between these two files

 74

 # Read the first input file
 largeRDD = sc.textFile("post.txt")
 .map(lambda line: (int(line.split(',')[0]), line.split(',')[1]))

 # Read the second input file
 smallRDD = sc.textFile("profiles.txt")
 .map(lambda line: (int(line.split(',')[0]), line.split(',')[1]))

 # Broadcast join version
 # Store the "small" RDD in a local python variable in the driver
 # and broadcast it
 localSmallTable = smallRDD.collectAsMap()
 localSmallTableBroadcast = sc.broadcast(localSmallTable)

75

 # Function for joining a record of the large RDD with the matching
 # record of the small one
 def joinRecords(largeTableRecord):
 returnedRecords = []
 key = largeTableRecord[0]
 valueLargeRecord = largeTableRecord[1]

 if key in localSmallTableBroadcast.value:
 returnedRecords.append((key, (valueLargeRecord,\

 localSmallTableBroadcast.value[key])))

 return returnedRecords

 # Execute the broadcast join operation by using a flatMap
 # transformation on the "large" RDD
 userPostProfileRDDBroadcatJoin = largeRDD.flatMap(joinRecords) 76

