




 Spark computes the content of an RDD each 
time an action is invoked on it 

 If the same RDD is used multiple times in an 
application, Spark recomputes its content 
every time an action is invoked on the RDD, 
or on one of its “descendants” 

 This is expensive, especially for iterative 
applications 

 We can ask Spark to persist/cache RDDs 
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 When you ask Spark to persist/cache an RDD, 
each node stores the content of its partitions in 
memory and reuses them in other actions on 
that RDD/dataset (or RDDs derived from it) 
 The first time the content of a persistent/cached RDD 

is computed in an action, it will be kept in the main 
memory of the nodes  

 The next actions on the same RDD will read its 
content from memory 
▪ i.e., Spark persists/caches the content of the RDD across 

operations  
▪ This allows future actions to be much faster (often by more 

than 10x 
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 Spark supports several storage levels 

 The storage level is used to specify if the content 
of the RDD is stored  

▪ In the main memory of the nodes 

▪ On the local disks of the nodes 

▪ Partially in the main memory and partially on disk  
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Storage Level Meaning 

MEMORY_ONLY  Store RDD as deserialized Java objects in the JVM. If the 
RDD does not fit in memory, some partitions will not be 
cached and will be recomputed on the fly each time 
they're needed. This is the default level.  

MEMORY_AND_DISK  Store RDD as deserialized Java objects in the JVM. If the 
RDD does not fit in memory, store the partitions that 
don't fit on (local) disk, and read them from there when 
they're needed. 

DISK_ONLY  Store the RDD partitions only on disk.  

MEMORY_ONLY_2, 
MEMORY_AND_DISK_2, 
etc.  

Same as the levels above, but replicate each partition on 
two cluster nodes.  

OFF_HEAP (experimental)  Similar to MEMORY_ONL, but store the data in off-heap 
memory. This requires off-heap memory to be enabled.  

http://spark.apache.org/docs/2.4.0/rdd-programming-guide.html#rdd-persistence 



 You can mark an RDD to be persisted by using 
the persist(storageLevel) method of the RDD 
class 

 The parameter of persist can assume the 
following values 
 pyspark.StorageLevel.MEMORY_ONLY 

 pyspark.StorageLevel.MEMORY_AND_DISK 

 pyspark.StorageLevel.DISK_ONLY 

 pyspark.StorageLevel.NONE 

 pyspark.StorageLevel.OFF_HEAP 
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 pyspark.StorageLevel.MEMORY_ONLY_2 

 pyspark.StorageLevel.MEMORY_AND_DISK_2 

 The storage level *_2 replicate each partition 
on two cluster nodes 

 If one node fails, the other one can be used to 
perform the actions on the RDD without 
recomputing the content of the RDD  
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 You can cache an RDD by using the cache() 
method of the RDD class  
 It corresponds to persist the RDD with the storage 

level  ‘MEMORY_ONLY’ 

 i.e., it is equivalent to 
inRDD.persist(pyspark.StorageLevel.MEMORY_O
NLY) 

 Note that both persist and cache return a 
new RDD 
 Because RDDs are immutable 
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 The use of the persist/cache mechanism on 
an RDD provides an advantage if the same 
RDD is used multiple times 

 i.e., multiples actions are applied on it or on its 
descendants 
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 The storage levels that store RDDs on disk 
are useful if and only if  

 The “size” of the RDD is significantly smaller than 
the size of the input dataset 

 Or the functions that are used to compute the 
content of the RDD are expensive 

 Otherwise, recomputing a partition may be as fast 
as reading it from disk  

 
 

11 



 Spark automatically monitors cache usage on 
each node and drops out old data partitions 
in a least-recently-used (LRU) fashion 

 You can manually remove an RDD from the 
cache by using the unpersist() method of the 
RDD class  
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 Create an RDD from a textual file containing 
a list of words 

 One word for each line 

 Print on the standard output 

 The number of lines of the input file 

 The number of distinct words 
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 # Read the content of a textual file 
 # and cache the associated RDD 
 inputRDD = sc.textFile("words.txt").cache() 
   
 print("Number of words: ",inputRDD.count()) 
 print("Number of distinct words: ", inputRDD.distinct().count()) 
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 # Read the content of a textual file 
 # and cache the associated RDD 
 inputRDD = sc.textFile("words.txt").cache() 
   
 print("Number of words: ",inputRDD.count()) 
 print("Number of distinct words: ", inputRDD.distinct().count()) 
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The cache method is invoked.  
Hence, inputRDD is a “cached” RDD 



 # Read the content of a textual file 
 # and cache the associated RDD 
 inputRDD = sc.textFile("words.txt").cache() 
   
 print("Number of words: ",inputRDD.count()) 
 print("Number of distinct words: ", inputRDD.distinct().count()) 
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This is the first time an action is invoked on the 
inputRDD RDD. 
The content of the RDD is computed by reading 
the lines of the words.txt file and the result of 
the count action is returned. The content of 
inputRDD is also stored in the main memory of 
the nodes of the cluster. 



 # Read the content of a textual file 
 # and cache the associated RDD 
 inputRDD = sc.textFile("words.txt").cache() 
   
 print("Number of words: ",inputRDD.count()) 
 print("Number of distinct words: ", inputRDD.distinct().count()) 
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The content of inputRDD is in the main 
memory if the nodes of the cluster. 
Hence the computation of distinct() + count() is 
performed by reading the data from the main 
memory and not from the input (HDFS) file 
words.txt 





 When a “function” passed to a Spark 
operation is executed on a remote cluster 
node, it works on separate copies of all the 
variables used in the function 

 These variables are copied to each node of the 
cluster, and no updates to the variables on the 
nodes are propagated back to the driver program 
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 Spark provides a type of shared variables 
called accumulators  

 Accumulators are shared variables that are 
only “added” to through an associative 
operation and can therefore be efficiently 
supported in parallel  

 They can be used to implement counters or 
sums 
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 Accumulators are usually used to compute 
simple statistics while performing some other 
actions on the input RDD  

 The avoid using actions like reduce() to compute 
simple statistics (e.g., count the number of lines 
with some characteristics) 
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 The driver defines and initializes the accumulator 
 The code executed in the worker nodes increases the 

value of the accumulator 
 i.e., the code in the “functions” associated with the 

transformations 
 The final value of the accumulator is returned to the 

driver node 
 Only the driver node can access the final value of the 

accumulator 

 The worker nodes cannot access the value of the 
accumulator 
▪ They can only add values to it 

22 



 Pay attention that the value of the 
accumulator is increased in the functions 
associated with transformations 

 Since transformations are lazily evaluated, 
the value of the accumulator is computed 
only when an action is executed on the RDD 
on which the transformations increasing the 
accumulator are applied 
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 Spark natively supports numerical 
accumulators 

 Integers and floats 

 But programmers can add support for new 
data types 

 Accumulators are 
pyspark.accumulators.Accumulator objects 
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 Accumulators are defined and initialized by 
using the accumulator(value) method of the 
SparkContext class 

 The value of an accumulator can be “increased” 
by using the add(value) method of the 
Accumulator class 
 Add “value” to the current value of the accumulator 

 The final value of an accumulator can be 
retrieved in the driver program by using value of 
the Accumulator class 
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 Create an RDD from a textual file containing 
a list of email addresses 

 One email for each line 

 Select the lines containing a valid email and 
store them in an HDFS file 

 In this example, an email is considered a valid 
email if it contains the @ symbol  

 Print also, on the standard output, the 
number of invalid emails 
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 # Define an accumulator. Initialize it to 0 
 invalidEmails = sc.accumulator(0) 
 
 # Read the content of the input textual file 
 emailsRDD = sc.textFile("emails.txt") 
   
 #Define the filtering function 
 def validEmailFunc(line): 
      if (line.find('@')<0): 
          invalidEmails.add(1) 
   return False 
      else: 
          return True 
 
 # Select only valid emails 
 # Count also the number of invalid emails 
 validEmailsRDD = emailsRDD.filter(validEmailFunc) 
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 # Define an accumulator. Initialize it to 0 
 invalidEmails = sc.accumulator(0) 
 
 # Read the content of the input textual file 
 emailsRDD = sc.textFile("emails.txt") 
   
 #Define the filtering function 
 def validEmailFunc(line): 
      if (line.find('@')<0): 
          invalidEmails.add(1) 
   return False 
      else: 
          return True 
 
 # Select only valid emails 
 # Count also the number of invalid emails 
 validEmailsRDD = emailsRDD.filter(validEmailFunc) 
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Definition of an accumulator of type integer 



  
 # Define an accumulator. Initialize it to 0 
 invalidEmails = sc.accumulator(0) 
 
 # Read the content of the input textual file 
 emailsRDD = sc.textFile("emails.txt") 
   
 #Define the filtering function 
 def validEmailFunc(line): 
      if (line.find('@')<0): 
          invalidEmails.add(1) 
   return False 
      else: 
          return True 
 
 # Select only valid emails 
 # Count also the number of invalid emails 
 validEmailsRDD = emailsRDD.filter(validEmailFunc) 
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This function increments  the value of the 
invalidEmails  accumulator if the email is invalid 



 # Store valid emails in the output file 
 validEmailsRDD.saveAsTextFile(outputPath) 
   
 # Print the number of invalid emails 
 print("Invalid email addresses: ", invalidEmails.value) 
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 # Store valid emails in the output file 
 validEmailsRDD.saveAsTextFile(outputPath) 
   
 # Print the number of invalid emails 
 print("Invalid email addresses: ", invalidEmails.value) 
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Read the final value of the accumulator 



 # Store valid emails in the output file 
 validEmailsRDD.saveAsTextFile(outputPath) 
   
 # Print the number of invalid emails 
 print("Invalid email addresses: ", invalidEmails.value) 
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Pay attention that the value of the accumulator is correct only because an 
action (saveAsTextFile) has been executed on the validEmailsRDD and its 
content has been computed (the function validEmailFunc has been 
executed on each element of emailsRDD) 



 Programmers can define accumulators based 
on new data types (different from integers 
and floats) 

 To define a new accumulator data type of 
type T, the programmer must define a class 
subclassing the AccumulatorParam interface  
 The AccumulatorParam interface has two 

methods 
▪ zero for providing a “zero value” for your data type 

▪ addInPlace for adding two values together 
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 Spark supports broadcast variables 
 A broadcast variable is a read-only 

(small/medium) shared variable 
 That is instantiated in the driver 

▪ The broadcast variable is stored in the main memory of the 
driver in a local variable 

 And it is sent to all worker nodes that use it in one or 
more Spark operations 
▪ The broadcast variable is also stored in the main memory of 

the executors (which are instantiated in the used worker 
nodes) 
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 A copy each broadcast variable is sent to all executors 
that are used to run a task executing a Spark 
operation based on that variable 
 i.e., the variable is sent “num. executors” times 

  A broadcast variable is sent only one time to each 
executor that uses that variable in at least one Spark 
operation (i.e., in at least one of its tasks) 
 Each executor can run multiples tasks associated with the 

same broadcast variable 
▪ The broadcast variable is sent only one time for each executor 

 Hence, the amount of data sent on the network is limited 
by using broadcast variables instead of “standard” 
variables 
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 Broadcast variables are usually used to share 
(small/medium) lookup-tables 

 They are stored in local variables 

 They must the small enough to be stored  in the 
main memory of the driver and also in the main 
memory of the executors 
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 Broadcast variables are objects of type 
Broadcast 

 A broadcast variable (of type T) is defined in 
the driver by using the broadcast(value) 
method of the SparkContext class 

 The value of a broadcast variable (of type T) is 
retrieved (usually in transformations) by 
using value of the Broadcast class  
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 Create an RDD from a textual file containing a 
dictionary of pairs (word, integer value) 
 One pair for each line 
 Suppose the content of this first file is large but can 

be stored in main-memory  
 Create an RDD from a textual file containing a 

set of words 
 A sentence (set of words) for each line 

 “Transform” the content of the second file 
mapping each word to an integer based on the 
dictionary contained in the first file 
 Store the result in an HDFS file 
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 First file (dictionary) 
java 1 

spark 2 

test 3 

 Second file (the text to transform) 
java spark 

spark test java 

 Output file 
1 2 

2 3 1 
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 # Read the content of the dictionary from the first file and 
 # map each line to a pair (word, integer value) 
 dictionaryRDD = sc.textFile("dictionary.txt").map(lambda line: 
      (line.split(" ")[0], line.split(" ")[1])) 
 
 # Create a broadcast variable based on the content of dictionaryRDD. 
 # Pay attention that a broadcast variable can be instantiated only 
 # by passing as parameter a local variable and not an RDD. 
 # Hence, the collectAsMap method is used to retrieve the content of the  
 # RDD and store it in the dictionary variable 
 dictionary = dictionaryRDD.collectAsMap() 
 
 # Broadcast dictionary  
 dictionaryBroadcast = sc.broadcast(dictionary) 
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 # Read the content of the dictionary from the first file and 
 # map each line to a pair (word, integer value) 
 dictionaryRDD = sc.textFile("dictionary.txt").map(lambda line: 
      (line.split(" ")[0], line.split(" ")[1])) 
 
 # Create a broadcast variable based on the content of dictionaryRDD. 
 # Pay attention that a broadcast variable can be instantiated only 
 # by passing as parameter a local variable and not an RDD. 
 # Hence, the collectAsMap method is used to retrieve the content of the  
 # RDD and store it in the dictionary variable 
 dictionary = dictionaryRDD.collectAsMap() 
 
 # Broadcast dictionary  
 dictionaryBroadcast = sc.broadcast(dictionary) 
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Define a broadcast variable 



 # Read the content of the second file 
 textRDD = sc.textFile("document.txt") 
 
 # Define the function that is used to map strings to integers 
 def myMapFunc(line): 
  transformedLine='' 
 
  for word in line.split(' '): 
   intValue = dictionaryBroadcast.value[word] 
          transformedLine = transformedLine+intValue+' ' 
         
  return transformedLine.strip()  
 
 # Map words in textRDD to the corresponding integers and concatenate  
 # them 
 mappedTextRDD= textRDD.map(myMapFunc) 
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 # Read the content of the second file 
 textRDD = sc.textFile("document.txt") 
 
 # Define the function that is used to map strings to integers 
 def myMapFunc(line): 
  transformedLine='' 
 
  for word in line.split(' '): 
   intValue = dictionaryBroadcast.value[word] 
          transformedLine = transformedLine+intValue+' ' 
         
  return transformedLine.strip()  
 
 # Map words in textRDD to the corresponding integers and concatenate  
 # them 
 mappedTextRDD= textRDD.map(myMapFunc) 
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Retrieve the content of the broadcast variable and use it 



 # Store the result in an HDFS file 
 mappedTextRDD.saveAsTextFile(outputPath) 
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 The content of each RDD is split in partitions 
 The number of partitions and the content of each 

partition depend on how RDDs are 
defined/created 

 The number of partitions impacts on the 
maximum parallelization degree of the Spark 
application  
 But pay attention that the amount of resources is 

limited (there is a maximum number of executors 
and parallel tasks) 
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 Disadvantages of too few partitions 
 Less concurrency/parallelism 

▪ There could be worker nodes that are idle and could be 
used to speed up the execution of your application 

 Data skewing and improper resource utilization 
▪ Data might be skewed on one partition 

▪ One partition with many data 

▪ Many partitions with few data 

▪ The worker node that processes that large partition 
needs more time than the other workers 
▪ It becomes the bottleneck of your application 
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 Disadvantages of too many partitions 

 Task scheduling may take more time than actual 
execution time if the amount of data in some 
partitions is too small 
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 Only some specific transformations set the 
number of partitions of the returned RDD 

 parallelize(), textFile(), repartition(), coalesce() 

 The majority of the Spark transformations do 
not change the number of partitions 

 Those transformations preserve the  number of 
partitions of the input RDD 

▪ i.e., the returned RDD has the same number of 
partitions of the input RDD 
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 parallelize(collection) 
 The number of partitions of the returned RDD is equal 

to sc.defaultParallelism 
 Sparks tries to balance the number of elements per 

partition in the returned RDD 
▪ Elements are not assigned to partitions based on their value 

 parallelize(collection, numSlices) 
 The number of partitions of the returned RDD is equal 

to numSlices 
 Sparks tries to balance the number of elements per 

partition in the returned RDD 
▪ Elements are not assigned to partitions based on their value 
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 textFile(pathInputData) 
 The number of partitions of the returned RDD is equal to 

the number of input chunks/blocks of the input HDFS 
data 

 Each partition contains the content of one of the input 
blocks 

 textFile(pathInputData, minPartitions) 
 The user specified number of partitions must be greater 

than the number of input blocks 

 The number of partitions of the returned RDD is greater 
than or equal to the specified value minPartitions 

 Each partition contains a part of one input blocks 
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 repartition(numPartitions) 

 numPartitions can be greater or smaller than the 
number of partitions of the input RDD 

 The number of partitions of the returned RDD is equal 
to numPartitions 

 Sparks tries to balance the number of elements per 
partition in the returned RDD 

▪ Elements are not assigned to partitions based on their value 

 A shuffle operation is executed to assign input 
elements to the partitions of the returned RDD 
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 coalesce(numPartitions) 
 numPartitions < number of partitions of the input 

RDD 
 The number of partitions of the returned RDD is equal 

to numPartitions 
 Sparks tries to balance the number of elements per 

partition in the returned RDD 
▪ Elements are not assigned to partitions based on their value 

 Usually no shuffle operation is executed to assign 
input elements to the partitions of the returned RDD 

 coalesce is more efficient than repartition to reduce 
the number of partitions 
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 Spark allows specifying how to partition the 
content of RDDs of key-value pairs 
 The input pairs are grouped in partitions based on the 

integer value returned by a function applied on the 
key of each input pair 

 This operation can be useful to improve the efficiency 
of the next transformations by reducing the amount 
of shuffle operations and the amount of data sent on 
the network in the next steps of the application 
▪ Spark can optimize the execution of the transformations if 

the input RDDs of pairs are properly partitioned 
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 Partitioning is based on the partitionBy() 
transformation 

 partitionBy(numPartitions) 

 The input pairs are grouped in partitions based on 
the integer value returned by a default hash 
function applied on the key of each input pair 

 A shuffle operation is executed to assign input 
elements to the partitions of the returned RDD 
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 Suppose that 

  The number of partition of the returned Pair RDD 
is numPart 

 The default partition function is portable_hash 

 Given an input pair (key, value) a copy of that pair 
will be stored in the partition number n of the 
returned RDD, where 

n = portable_hash(key) % numPart 
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 Suppose that 

  The number of partition of the returned Pair RDD 
is numPart 

 The default partition function is portable_hash 

 Given an input pair (key, value) a copy of that pair 
will be stored in the partition number n of the 
returned RDD, where 

n = portable_hash(key) % numPart 
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This function returns and integer 



 partitionBy(numPartitions, partitionFunc) 

 The input pairs are grouped in partitions based on 
the integer value returned by the user provided 
partitionFunc function 

 A shuffle operation is executed to assign input 
elements to the partitions of the returned RDD 
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 Suppose that 

  The number of partition of the returned Pair RDD 
is numPart 

 The partition function is partitionFunc 

 Given an input pair (key, value) a copy of that pair 
will be stored in the partition number n of the 
returned RDD, where 

n = partitionFunc(key) % numPart 
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 Suppose that 

  The number of partition of the returned Pair RDD 
is numPart 

 The partition function is partitionFunc 

 Given an input pair (key, value) a copy of that pair 
will be stored in the partition number n of the 
returned RDD, where 

n = partitionFunc(key) % numPart 
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Custom partition function 



 Partitioning Pair RDDs by using partitionBy() is useful 
only when the same partitioned RDD is cached and 
reused multiple times in the application in time and 
network consuming key-oriented transformations 
 E.g., the same partitioned RDD is used in many join(), 

cogroup, groupyByKey(), .. transformations in different 
paths/branches of the application (different 
paths/branches of the DAG)  

 Pay attention to the amount of data that is actually 
sent on the network 
 partitionBy() can slow down your application instead of 

speeding it up 
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 Create an RDD from a textual file containing 
a list of pairs (pageID, list of linked pages) 

 Implement the (simplified) PageRank 
algorithm and compute the pageRank of 
each input page 

 Print the result on the standard output 
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 # Read the input file with the structure of the web graph 
 inputData = sc.textFile("links.txt“) 
 
 # Format of each input line 
 # PageId,LinksToOtherPages - e.g., P3 [P1,P2,P4,P5] 
 def mapToPairPageIDLinks(line): 
     fields = line.split(' ') 
     pageID = fields[0] 
     links = fields[1].split(',') 
 
     return (pageID, links) 
 
 
 links = inputData.map(mapToPairPageIDLinks)\ 
  .partitionBy(inputData.getNumPartitions())\ 
  .cache() 
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 # Read the input file with the structure of the web graph 
 inputData = sc.textFile("links.txt“) 
 
 # Format of each input line 
 # PageId,LinksToOtherPages - e.g., P3 [P1,P2,P4,P5] 
 def mapToPairPageIDLinks(line): 
     fields = line.split(' ') 
     pageID = fields[0] 
     links = fields[1].split(',') 
 
     return (pageID, links) 
 
 
 links = inputData.map(mapToPairPageIDLinks)\ 
  .partitionBy(inputData.getNumPartitions())\ 
  .cache() 
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Note that the returned Pair RDD is partitioned and 
cached 



 # Initialize each page's rank to 1.0; since we use mapValues,  
 # the resulting RDD will have the same partitioner as links 
 ranks = links.mapValues(lambda v: 1.0) 
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 # Function that returns a set of pairs from each input pair 
 # input pair: (pageid, (linked pages, current page rank of pageid) ) 
 # one output pair for each linked page. Output pairs: 
 # (pageid linked page,  
 #   current page rank of the linking page pageid / number of linked pages) 
 def computeContributions(pageIDLinksPageRank): 
     pagesContributions = [] 
         currentPageRank = pageIDLinksPageRank[1][1] 
     linkedPages = pageIDLinksPageRank[1][0] 
     numLinkedPages = len(linkedPages) 
     contribution = currentPageRank/numLinkedPages 
     
     for pageidLinkedPage in linkedPages: 
         pagesContributions.append( (pageidLinkedPage, contribution)) 
     
     return pagesContributions 
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 # Run 30 iterations of PageRank 
 for x in range(30): 
     # Retrieve for each page its current pagerank and 
     # the list of linked pages by using the join transformation 
     pageRankLinks = links.join(ranks) 
 
     # Compute contributions from linking pages to linked pages  
     # for this iteration 
     contributions = pageRankLinks.flatMap(computeContributions) 
 
     # Update current pagerank of all pages for this iteration 
     ranks = contributions\ 
              .reduceByKey(lambda contrib1, contrib2: contrib1+contrib2) 
 
 # Print the result 
  ranks.collect() 68 



 # Run 30 iterations of PageRank 
 for x in range(30): 
     # Retrieve for each page its current pagerank and 
     # the list of linked pages by using the join transformation 
     pageRankLinks = links.join(ranks) 
 
     # Compute contributions from linking pages to linked pages  
     # for this iteration 
     contributions = pageRankLinks.flatMap(computeContributions) 
 
     # Update current pagerank of all pages for this iteration 
     ranks = contributions\ 
              .reduceByKey(lambda contrib1, contrib2: contrib1+contrib2) 
 
 # Print the result 
  ranks.collect() 69 

The join transformation is invoked many times on the links Pair RDD. 
The content of links is constant (it does not change during the loop 
interations. 
Hence, caching it and also partitioning its content by key is useful. 
- Its content is  computed one time and cached in the main memory of the 
executors 
- Its is shuffled and sent on the network only one time because we applied 
partitionBy on it. 



Transformation Number of partitions Partitioner 

sc.parallelize(…)  sc.defaultParallelism NONE 

sc.textFile(…)  sc.defaultParallelism or number of 
file blocks , whichever is greater 

NONE 

filter(),map(),flatMap(), 
distinct()  

same as parent RDD  
 

NONE except 
filter preserve 
parent RDD’s 

partitioner 

rdd.union(otherRDD) rdd.partitions.size + 
 otherRDD. partitions.size 

rdd.intersection(otherRDD)
  

max(rdd.partitions.size,  
otherRDD. partitions.size) 

rdd.subtract(otherRDD) rdd.partitions.size 

rdd.cartesian(otherRDD) rdd.partitions.size *  
otherRDD. partitions.size 
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Transformation Number of partitions Partitioner 

reduceByKey(),foldByKey(), 
combineByKey(), 
groupByKey() 

same as parent RDD HashPartitioner 

sortByKey() same as parent RDD RangePartitioner 

mapValues(), 
flatMapValues()  

same as parent RDD parent RDD’s 
partitioner 

cogroup(), join(), 
,leftOuterJoin(), 
rightOuterJoin() 

depends upon input properties of 
two involved RDDs 

HashPartitioner 
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 The join transformation is expensive in terms 
of execution time and amount of data sent on 
the network 

 If one of the two input RDDs of key-value 
pairs is small enough to be stored in the main 
memory when can use a more efficient 
solution based on a broadcast variable 
 Broadcast hash join (or map-side join) 

 The smaller the small RDD, the higher the speed 
up 
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 Create a large RDD from a textual file 
containing a list of pairs (userID, post) 

 Each user can be associated to several posts 

 Create a small RDD from a textual file 
containing a list of pairs (userID, (name, 
surname, age) ) 

 Each user can be associated to one single line in 
this second file 

 Compute the join between these two files 
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 # Read the first input file 
 largeRDD = sc.textFile("post.txt") 
 .map(lambda line: (int(line.split(',')[0]), line.split(',')[1]) ) 
 
 # Read the second input file 
 smallRDD = sc.textFile("profiles.txt") 
 .map(lambda line: (int(line.split(',')[0]), line.split(',')[1]) ) 
 
 # Broadcast join version 
 # Store the "small" RDD in a local python variable in the driver  
 # and broadcast it 
 localSmallTable = smallRDD.collectAsMap() 
 localSmallTableBroadcast = sc.broadcast(localSmallTable) 
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 # Function for joining a record of the large RDD with the matching 
 #  record of the small one 
 def joinRecords(largeTableRecord): 
     returnedRecords = [] 
         key = largeTableRecord[0] 
     valueLargeRecord = largeTableRecord[1] 
     
     if key in localSmallTableBroadcast.value: 
         returnedRecords.append( (key, (valueLargeRecord,\ 

 localSmallTableBroadcast.value[key]) ) )  
     
     return returnedRecords 
 
 # Execute the broadcast join operation by using a flatMap 
 # transformation on the "large" RDD 
 userPostProfileRDDBroadcatJoin = largeRDD.flatMap(joinRecords) 76 


