
DB
MG

SQL language: other definitions  

Management of views



DB
MG 2

Management of views  

Introduction

Creation and management of views in SQL

Updating views

Check option

Privacy Management  



DB
MG

Management of views 

Introduction



DB
MG 4

The concept of view

A view is a “virtual"  table 

the content (tuples) is defined by means of an SQL 
query on the database  

the content of the view depends on the content of 
the other tables present in the database  

the content is not memorized physically in the 
database   

it is recalculated every time the view is used by 
executing the query that defines it  

A view is an object of the database 

it can be used in queries as if it were a table 



DB
MG

DB product suppliers

S

SP
SId PId Qty

S1 P1 300

S1 P2 200

S1 P3 400

S1 P4 200

S1 P5 100

S1 P6 100

S2 P1 300

S2 P2 400

S3 P2 200

S4 P3 200

S4 P4 300

S4 P5 400

P

PId PName Color Size Store

P1 Jumper Red 40 London

P2 Jeans Green 48 Paris

P3 Blouse Blue 48 Rome

P4 Blouse Red 44 London

P5 Skirt Blue 40 Paris

P6 Shorts Red 42 London

SId SName #Employees City

S1 Smith 20 London

S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London

S5 Adams 30 Athens
5



DB
MG 6

Example n.1

Definition of the view small suppliers

the suppliers that have fewer than 3 employees 
are considered  “small suppliers”

The view “small suppliers”

contains the code, name, number of employees 
and city of the suppliers that have fewer than 3 
employees.  



DB
MG 7

Example n.1: definition of the view

Definition of the view “small suppliers”

contains the code, name, number of employees 
and city of suppliers with fewer than 3 employees

SELECT SId, SName, #Employees, City
FROM S
WHERE #Employees <3

Query associated with the view



DB
MG 8

Example n.1: definition of the view

Definition of the view “small suppliers”  

it contains the code, name, number of employees 
and city of suppliers with fewer than 3 employees 

CREATE VIEW SMALL_SUPPLIERS AS
SELECT SId, SName, #Employees, City
FROM S
WHERE #Employees<3;

Name of the views



DB
MG 9

Example  n.1: query

View the code, name, employee number and city 
of “small suppliers” in London

The query can be answered without using views  

SELECT * 
FROM S
WHERE #Employees<3 AND 

City=‘London’;



DB
MG 10

Example  n.1: query

View the code, name, employee number and city 
city of “small suppliers” in London

The query can be answered using the view 
defined previously 

The view SMALL_SUPPLIERS is used like a table

SELECT * 
FROM SMALL_SUPPLIERS
WHERE City=‘London’;



DB
MG 11

Rewriting the queries

If the query refers to a view, it has to be 
reformulated by the DBMS before execution  

The reformulation is carried out automatically  

the references to the view are substituted by its 
definition  



DB
MG 12

Example n.1: reformulating the query

View the code, name, employee number and city 
city of “small suppliers” in London

SELECT * 
FROM SMALL_SUPPLIERS
WHERE City=‘London’;



DB
MG 13

Example  n.1: reformulating the query 

View the code, name, employee number and city 
city of “small suppliers” in London

Reformulate the SELECT clause

the attributes present in the definition of the view 
are made explicit  

SELECT SId, SName, City, #Employees
FROM SMALL_SUPPLIERS
WHERE City=‘London’;



DB
MG 14

Example n.1: reformulating the query

View the code, name, employee number and city 
city of “small suppliers” in London

Introduction of the definition of the view

In the clause FROM

In the clause WHERE

SELECT SId, SName, City, #Employees 
FROM S
WHERE #Employees<3  AND 

City=‘Torino’;



DB
MG 15

Example n.2

Definition of the view number of suppliers per 
product

The view contains the product code and the 
number of different suppliers providing it  



DB
MG 16

Example n.2: definition of the view

Definition of the view “number of suppliers per 
product”

The view contains the product code and the 
number of different suppliers providing it  

SELECT PId, COUNT(*)
FROM SP
GROUP BY PId

Query associated with the view



DB
MG 17

Example n.2: definition of the view

Definition of the view “number of suppliers per 
product”

the view contains the product code and the 
number of different suppliers providing it  

CREATE VIEW NUMSUPPLIERS_PER_PRODUCT

(PId, #Suppliers) AS
SELECT PId, COUNT(*)
FROM SP
GROUP BY PId;

Name of the views



DB
MG 18

Example n.2: definition of the view

Definition of the view “number of suppliers per 
product”

the view contains the product code and the 
number of different suppliers providing it  

CREATE VIEW NUMSUPPLIERS_PER_PRODUCT

(PId, #Suppliers) AS
SELECT PId, COUNT(*)
FROM SP
GROUP BY PId;

Attributes of the view



DB
MG 19

Example n.2: query

View the code of products supplied by the 
greatest number of suppliers  

Without using views



DB
MG 20

Example n.2: query

View the code of products supplied by the 
greatest number of suppliers  

Without using views

SELECT PId
FROM SP
GROUP BY PId
HAVING COUNT(*)=(SELECT MAX(#Suppliers)

FROM (SELECT COUNT(*) AS #Suppliers
FROM SP
GROUP BY PId));



DB
MG 21

Example n.2: query

View the code of products supplied by the 
greatest number of suppliers  

Using the view NUMSUPPLIERS_PER_PRODUCT

SELECT PId
FROM NUMSUPPLIERS_PER_PRODUCT 
WHERE #Suppliers=(SELECT MAX(#Suppliers)

FROM 
NUMSUPPLIERS_PER_PRODUCT);



DB
MG 22

Considerations on the examples  

The use of views simplifies the formulation of the 
queries  

The view SMALL_SUPPLIERS conceals the 
definition of the concept of “small suppliers”

it is possible to redefine the concept of  “small 
suppliers” just by changing the definition of the 
view

it is not necessary to modify the queries that use it  

The view NUMSUPPLIERS_PER_PRODUCT
enables us to avoid using the table function



DB
MG 23

Advantages of views  

Simplification of the queries

very complex expressions can be defined in a 
simpler way by using views 

by breaking down a complex query into subqueries 
associated with the views  

useful in the presence of repeated (complex) 
subqueries  



DB
MG 24

Advantages of views 

Extension of the SQL language’s power of 
expression  

in the absence of a table function, some typologies 
of queries can only be defined by using views  

as an alternative to using the procedural code  



DB
MG 25

Advantages of views

Security management

it is possible to introduce different privacy 
protection mechanisms for each user or group  

access authorization is associated with the view  

each user, or group, accesses the database only via 
views that are appropriate for the operation they are 
authorized to carry out



DB
MG 26

Advantages of views 

Evolution of databases 

If a database is restored, it is possible to define 
views that correspond to the eliminated tables  

the view substitutes the eliminated table which was  
present in the database prior to restoration  

it is not necessary to re-formulate the queries written 
before the restoration and present in the applications 
that have already been developed  



DB
MG

Management of views

Creation and management of views in SQL



DB
MG 28

Creating a view

CREATE VIEW ViewName [(AttributieList)]
AS SQLquery; 



DB
MG 29

Creating a view

If the names of the attributes of a view are not 
specified  

use those present in the SQL query selection

The names of the attributes have to be specified 
if   

they represent the result of an internal function  

they represent the result of an expression  

they are constant

two columns (from different tables) have the same 
name  



DB
MG 30

Cancelling a view

DROP VIEW ViewName;



DB
MG 31

Effect of cancelling tables  

Cancelling a table that a view refers to can have 
various effects  

automatic elimination of the associated views

automatic invalidation of the associated views  

prohibition to execute the operation of cancelling 
the table  

the effect depends on the DBMS utilized



DB
MG 32

Modifying the definition of a view  

ALTER VIEW ViewName [(AttributieList) ]
AS SQLquery; 



DB
MG

Management of views

Updating views 



DB
MG 34

Updating views

It is possible to update the data in a view only for 
some typologies of views   

Standard SQL-92

views in which a single row of each table 
corresponds to a single row of the view can be 
updated  

univocal correspondence between the tuple of the 
view and the tuple of the table on which it is defined   

it is possibile to propagate without ambiguity the 
changes made to the view to each table on which it 
is defined  



DB
MG 35

Updating views 

It is not possible to update  a view which in the 
farthest block of its defining query  

lacks the primary key of the table on which it is 
defined   

contains joins that represent correspondences to 
one-to-many or many-to-many  

contains aggregate functions 

contains DISTINCT



DB
MG 36

Example n.1

View SUPPLIER_CITY

CREATE VIEW SUPPLIER_CITY AS

SELECT SId, City
FROM S;



DB
MG 37

Example n.1: insertion

Insertion in SUPPLIER_CITY of

(‘S10’, ‘Rome’)

corresponds to the insertion in S of

(‘S10’,NULL,NULL,‘Rome’)

the attributes SName, #Employees have to admit 
the value NULL



DB
MG 38

Example n.1: cancellation

Cancellation of SUPPLIER_CITY of

(‘S1’, ‘London’)

cancellation from S of

(‘S1’, ‘Smith’,20,‘London’) 

identification of the tuple to cancel is permitted by 
the primary key  



DB
MG 39

Example n.1: change

change to SUPPLIER_CITY of 

(‘S1’, ‘London’) in (‘S1’, ‘Milan’)

change in S of

(‘S1’, ‘Smith’,20,‘London’) in (‘S1’, ‘Smith’,20,‘Milan’)

identification of the tuple to change is permitted 
by the primary key  



DB
MG 40

Example n.1: updating

The view SUPPLIER_CITY can be updated

each tuple of the view corresponds to a single 
tuple of table S  

the changes carried out on the view can be 
propagated to the table on which it is defined   



DB
MG 41

Example n.2

View NUMEMPLOYEE_CITY

CREATE VIEW NUMEMPLOYEE_CITY AS

SELECT DISTINCT #Employees, City
FROM S;



DB
MG 42

Example  n.2: insertion

Insertion in NUMEMPLOYEE_CITY of

(40, ‘Rome’) 

it is impossible to insert in S

(NULL,NULL,40,‘Rome’) 

the value of the primary key is missing  



DB
MG 43

Example n.2: cancellation

Cancellation from NUMEMPLOYEE_CITY of

(20, ‘London’)

several  tuples are associated with the pair (20, 
‘London’)

Which tuple has to be cancelled from S?   



DB
MG 44

Example n.2: change

Change in NUMEMPLOYEE_CITY of

(20, ‘London’) in (30, ‘Rome’) 

Several tuples are associated with the pair (20, 
‘London’)

Which tuple has to be changed in S?



DB
MG 45

Example n.2: updating

The view NUMEMPLOYEE_CITY cannot be 
updated

the primary key of table S is not present in the 
view  

the insertion of new tuples in the view cannot be 
propagated to S 

some tuples of the view correspond to several 
tuples in the table S  

the association between the tuples in the view and 
the tuples in the table is ambiguous  

it is not possible to propagate the changes carried 
out on the tuples of the view to the tuples of the 
table on which it is defined   



DB
MG 46

Updating the views 

Some non-updatable views become updatable by 
changing the SQL expression associated with the 
view  

it may be necessary to change the information 
content of the view  



DB
MG 47

Example n.3: non-updatable view  

The view is non-updatable 

it does not explicitly select the primary key of table 
S  

It is sufficient to replace the symbol “*” with the 
name of the attributes 

CREATE VIEW SUPPLIER_LONDON AS
SELECT *
FROM S
WHERE City=‘London’;



DB
MG 48

Example n.3: changed view 

The view is updatable 

CREATE VIEW SUPPLIER_LONDON AS
SELECT SId, SName, #Employees, City
FROM S
WHERE City=‘London’;



DB
MG 49

Example n.4: non-updatable view  

The view is non-updatable  

a join is present 

the keyword DISTINCT is present

CREATE VIEW BEST_SUPPLIER (SId, SName) AS
SELECT DISTINCT SId, SName
FROM S, SP
WHERE S.SId=SP.SId AND

Qty>100;



DB
MG 50

Example n.4: changed view 

The view is updatable

the join was realised using IN  

the keyword DISTINCT is no longer necessary  

CREATE VIEW BEST_SUPPLIER (SId, SName) AS
SELECT SId, SName
FROM S
WHERE SId IN (SELECT SId

FROM SP
WHERE Qty>100);



DB
MG 51

Example n.5: non-updatable view  

The view is non-updatable 

an aggregate function is present   

a join is present 

CREATE VIEW TOP_SUPPLIER (SId, SName, TotQty) AS
SELECT SId, SName, SUM(Qty)
FROM S, SP
WHERE S.SId=SP.SId
GROUP BY SId, SName 
HAVING SUM(Qty)>500;



DB
MG 52

Example n.5: changed view

The view is updatable 

The “group by” has been moved into the nested 
query   

The  information content has changed 

CREATE VIEW TOP_SUPPLIER (SId, SName) AS
SELECT SId, SName
FROM S
WHERE SId IN (SELECT SId FROM SP

GROUP BY SId
HAVING SUM(Qty)>500);



DB
MG

Management of views 

Check option



DB
MG 54

CHECK OPTION clause

For the updatable views use the clause WITH 
CHECK OPTION

this limits the possible updates  

CREATE VIEW ViewName [(AttributeList) ]
AS SQLQuery
[WITH [LOCAL|CASCADED] CHECK OPTION]; 



DB
MG 55

CHECK OPTION clause

After an update the tuples have to still belong to 
the view  

otherwise the operation is prohibited  

A new tuple can be inserted in the view if and 
only if the tuple satisfies the constraints present 
in the definition of the view  

otherwise the operation is prohibited  



DB
MG 56

Example n.1

The view is updatable 

it is not possible to update the tuples present in 
the view if their size is less than 42  

CREATE VIEW PRODUCT_SIZE_SMALL_OR_LARGE (PId, 
PName, Size) AS
SELECT PId, PName, Size
FROM P
WHERE Size>=42
WITH CHECK OPTION;



DB
MG 57

Example n.1

Content of the view 

PRODUCT_SIZE_SMALL_OR_LARGE

Updating operation 

PId PName Size

P2 Jeans 48

P3 Blouse 48

P4 Blouse 44

P6 Shorts 42

46

46

42

40

UPDATE PRODUCT_SIZE_SMALL_OR_LARGE
SET Size=Size-2;



DB
MG 58

Example n.1

Content of the view 

PRODUCT_SIZE_SMALL_OR_LARGE

Updating operation 

PId PName Size

P2 Jeans 48

P3 Blouse 48

P4 Blouse 44

P6 Shorts 42

46

46

42

40

UPDATE PRODUCT_SIZE_SMALL_OR_LARGE
SET Size=Size-2;

Update prohibited 

Outside the definition of the view



DB
MG 59

CHECK OPTION clause

When a view is defined in terms of other views  

if LOCAL is specified 

the update is correct only on the most external view   

if CASCADED is specified

the update is correct on all the views involved  

default options

CREATE VIEW ViewName [(AttributeList) ]
AS SQLQuery
[WITH [LOCAL|CASCADED] CHECK OPTION]; 



DB
MG 60

Example n.2

I can update the content of the view  
PRODUCT_SIZE_MEDIUM using only sizes 
between 42 and 46

Default behaviour

CREATE VIEW PRODUCT_SIZE_MEDIUM(PId, PName, Size) AS
SELECT PId, PName, Size
FROM PRODUCT_SIZE_SMALL_OR_LARGE
WHERE Size<=46
WITH CASCADED CHECK OPTION;



DB
MG 61

Example n.2

Content of the view PRODUCT_SIZE_MEDIUM

Updating operation 

PId PName Size

P4 Blouse 44

P6 Shorts 42

42

40

UPDATE PRODUCT_SIZE_MEDIUM
SET SIZE=Size-2;



DB
MG 62

Example n.2

Content of the view PRODUCT_SIZE_MEDIUM

Updating operation 

PId PName Size

P4 Blouse 44

P6 Shorts 42

42

40

UPDATE PRODUCT_SIZE_MEDIUM
SET SIZE=Size-2;

Outside definition of the view PRODUCT_SIZE_SMALL_OR_LARGE

CREATE VIEW PRODUCT_SIZE_SMALL_OR_LARGE (PId, 
PName, Size) AS
SELECT PId, PName, Size
FROM P
WHERE Size>=42
WITH CHECK OPTION;



DB
MG 63

Example n.2

Content of the view PRODUCT_SIZE_MEDIUM

Updating operation 

PId PName Size

P4 Blouse 44

P6 Shorts 42

42

40

UPDATE PRODUCT_SIZE_MEDIUM
SET SIZE=Size-2;

Outside definition of the view PRODUCT_SIZE_SMALL_OR_LARGE

With CASCADED CHECK OPTION

Update prohibited because of 
PRODUCT_SIZE_SMALL_OR_LARGE



DB
MG 64

Example n.3

Control is carried out only on the view 
PRODUCT_SIZE_MEDIUM

this is updatable with sizes below or equal to 46   

CREATE VIEW PRODUCT_SIZE_MEDIUM(PId, Pname, Size) AS
SELECT PId, PName, Size
FROM PRODUCT_SIZE_SMALL_OR_LARGE
WHERE Size<=46
WITH LOCAL CHECK OPTION;



DB
MG 65

Example n.2

Content of the view PRODUCT_SIZE_MEDIUM

Updating operation 

PId PName Size

P4 Blouse 44

P6 Shorts 42

42

40

UPDATE PRODUCT_SIZE_MEDIUM
SET SIZE=Size-2;

CREATE VIEW PRODUCT_SIZE_MEDIUM(PId, Pname, Size) AS
SELECT PId, PName, Size
FROM PRODUCT_SIZE_SMALL_OR_LARGE
WHERE Size<=46
WITH LOCAL CHECK OPTION;



DB
MG 66

Example n.2

Content of the view PRODUCT_SIZE_MEDIUM

Updating operation 

PId PName Size

P4 Blouse 44

P6 Shorts 42

42

40

UPDATE PRODUCT_SIZE_MEDIUM
SET SIZE=Size-2;

With LOCAL CHECK OPTION

Updating allowed 



DB
MG

Management of views

Privacy management   



DB
MG 68

Views and privacy management  

Views enable the identification of data subsets  

Identified by a SELECT expression

Assigning a user access to specific views means 
limiting  

its visibility on existing tables  

the operations it can execute  



DB
MG 69

Example n.1

CREATE VIEW SUPPLIER_LONDON (SId, SName, #Employees) 
AS
SELECT SId, SName, #Employees
FROM S
WHERE City=‘London’
WITH CHECK OPTION;



DB
MG 70

Example n.1

The view SUPPLIER_LONDON selects only data 
on suppliers in London  

A user has access only to this view

it cannot access table S

it cannot operate on suppliers whose offices are not 
in London  

CREATE VIEW SUPPLIER_LONDON (SId, SName, #Employees) 
AS
SELECT SId, SName, #Employees
FROM S
WHERE City=‘London’
WITH CHECK OPTION;



DB
MG 71

Example  n.2

The view SUPPLIER_CODE_NAME selects only 

the code and the name of the suppliers  

A user that has access only to this view

Cannot access table S 

Cannot operate on the attributes #Employees and 
City

CREATE VIEW SUPPLIER_CODE_NAME (SId, SName) AS
SELECT SId, SName
FROM S;



DB
MG 72

Data dictionary

The  data dictionary contains the metadata of a 
relational database  

metadata is information (data) on the data  

it describes the objects of the database (tables, 
views,…)  

In the data dictionary views are defined which 
limit the visibility of the individual users on the 
metadata of the dictionary  

each user can only see the information regarding 
objects in the database defined by itself



DB
MG 73

Example: Oracle

The Oracle DBMS makes numerous views 
available which describe the data created by a 
user  

USER_TABLES contains metadata regarding the 
user’s tables  

USER_TAB_STATISTICS contains the statistics 
calculated on the user’s tables  

USER_TAB_COL_STATISTICS contains the 
statistics calculated on the columns of the user’s 
tables  


