

Introduction to Databases

Unit 1 Introduction

Introduction to the databases

- □ Information management
- □ Databases
- □ Data model
- □ Data independence
- □ Data access
- □ Advantages and disadvantages of DBMS

Introduction to the databases

Information management

Information management

□ Information is recorded and exchanged in different forms

Information management

□ Information is recorded and exchanged in different forms

□ Forms of information organization and codification have been introduced over time

Computer systems

- ∑ In computer systems information is represented by means of data
 - the data are rough symbols which have to be interpreted and correlated to provide information
 - example
 - data: "Mario Rossi" and 424242
 - information: result of looking up a telephone number in your personal telephone directory (e.g., list of contacts)

Data characteristics

- Data are far more stable over time than the processes that manage them
 - Example
 - there have been no variations in the structure of bank applications data for decades
 - the procedures that manage the data vary from year to year
- Data are an important resource of the organization that manages them

Introduction to the databases

Databases

Database

- □ (General definition)
 - a database is a collection of data that represents information interesting for a computer system
- □ ("Technical" definition)
 - a database is a collection of data managed by a DBMS

Data Base Management System - DBMS

- □ A DBMS (DataBase Management System) is a software system able to manage collections of data that are
 - large
 - shared
 - persistent

ensuring their reliability and privacy

DBMS characteristics

- □ Far greater dimensions than the central memory available
 - data management in secondary memory
- Data sharing between applications and users: a database is an *integrated* resource, shared by several company sectors
 - reduction of data redundancy
 - reduction of data inconsistency
 - competing access control mechanism

DBMS characteristics

- □ Data persistence
 - lifetime not limited to execution of programmes that use them
- Data reliability in the case of hardware and software malfunction/failure
 - backup and recovery functionality
- □ Data privacy
 - authorization mechanisms to enable users

DBMS characteristics

□ Efficiency

- capacity to carry out operations using a set of resources (time and space) acceptable for users
 - Adequately sized computer system

capacity to render user activities productive

DBMS or file system?

- "Simplified" approach to data: data stored in the persistent mode in the mass/secondary memory inside the file
 - it is possible to memorize and look for data
 - simple access mechanisms (sequential reading)
 - simple sharing mechanisms (read only sharing with writing options blocked)
- DBMS extends the functionalities of the file systems, providing more integrated services

Introduction to the databases

Data model

Data model

- A data model is a set of concepts utilized for organizing data of interest and describing its structure in a way that is understood by a computer
 - elementary data types (integer, character...)
 - structuring mechanism for defining more complex structures (record builder, array,...)

Relational model

- Defines the relationships builder, which organizes the data into sets of homogeneous (fixed structure) records
 - The relationships are represented as tables

Relational model

Courses

Code	Name	TeacherID
M2170	Information systems	D101
M4880	Computer Networks	D102
F0410	Databases	D321

Teacher

ID	Name	Department	Phone#
D101	Green	Computer Engeneering	123456
D102	White	Telecommunications	636363
D321	Black	Computer Engeneering	414243

Other data models

- □ Before the relational model, other models closer to the physical (not very abstract) structures of storing were used
 - hierarchical model
 - network model
- ∑ Since the relational model
 - Object model
 - XML
 - ...

Schema and instances

- Defined in the database are
 - the schema, which describes the structure of the data. The schema
 - is practically unvarying over time
 - is represented by the heading of each table (table name and column names)

schema of the database

Courses Code Name TeacherID

Teacher ID Name Department Phone#

Schema and instances

Defined in a database are

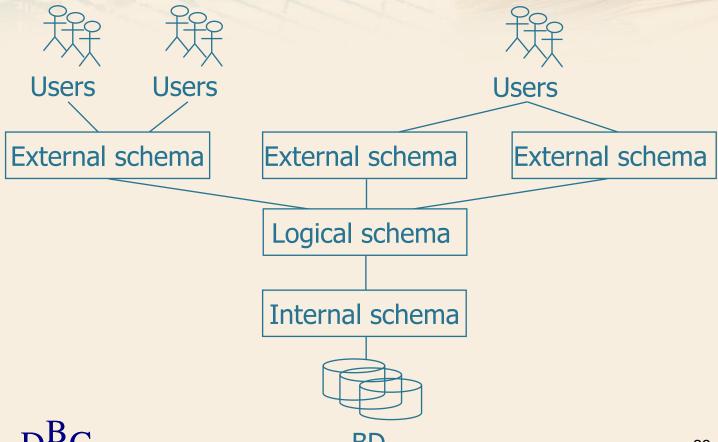
- the *instance*, composed of the content of each table, i.e. of the data effective values which are
 - variable over time, also very rapidly
 - represented by the rows in the tables

instance of the Teacher table

D101	Green	Computer Engeneering	123456
D102	White	Telecommunications	636363
D321	Black	Computer Engeneering	414243

Model types

□ Conceptual model


- It is possible to represent data independently from the logical
 - describes real world concepts
 - used in the designing phase
- example: entity-relationship model

□ Logical model

- Describes the data structure in the DBMS
 - used by the programmes accessing the data
 - independent from the physical structures
- Example: relational model

Abstraction levels in a DBMS

Standard three-level ANSI/SPARC architecture for DBMS

- □ Logical schema
 - description of the database using the logical model of the DBMS
- □ Internal schema
 - representation of the logical schema using physical storing structures
- - description of parts of the database, called "views", which reflect the point of view of particular users
 - defined on the logical model

Introduction to the databases

Data independence

Data independence

- Data independence guarantees that users and application programmes which utilize a database can ignore the designing details used in the construction of the database
- □ It is a consequence of the subdivision into levels of abstraction

Data independence

□ Physical independence

- enables interaction with the DBMS independently from the physical structure of the data
- access to a (logical or external level) relationship always takes place in the same way, independently from the means of memorization
- it is possible to change the way the data is physically memorized without affecting the programmes utilizing the data

Data independence

□ Logical independence

- enables interaction with the external level independently from the logical level
- it is possible to change the logical level maintaining the external structures unaltered (as long as the correspondences are unaltered)
- it is possible to add new views or alter existing views without changing the logical schema

Introduction to the databases

Data access

Data access languages

- □ User-friendly interfaces that enable specific queries without using a textual language
- □ Interactive languages (SQL)
- □ Commands similar to interactive commands introduced into traditional programming languages (C, C++, COBOL, Java, ...), so-called host languages
- Commands similar to interactive commands introduced into ad hoc development languages, often with specific functionalities (generation of graphics, complex prints, screens)

Data access languages

- □ Languages are divided into two categories
 - Data Definition Languages (DDL) used to define the logical, external and physical schemas, and access authorizations
 - Data Manipulation Languages (DML) used for querying and updating database instances

Users

- Database administrator: in charge of (centralized) control and management of the database
 - guarantees sufficient performance
 - ensures system reliability
 - manages authorizations and access to data

Users

- Designers and programmers: they define and realize
 - the structure of the database
 - the programmes accessing the database
- □ Users: utilize the database for their activities
 - end users: they use transactions, i.e. programmes that carry out predefined activities
 - casual users: they formulate queries (or updates)
 which are not predefined by the interactive access languages of the database

Transactions

- Programmes that carry out frequent predefined activities
- - flight bookings
 - bank transfers
- □ Generally realized by introducing SQL into a host language

Introduction to the databases

Advantages and disadvantages of DBMS

DBMS advantages

- □ Data as a common resource of the whole organization
 - reduction of redundancies and inconsistencies
- Unified and precise data model of facts of interest to the organization
- > Possible centralized control of data
 - standardization, economies of scale
- □ Data independence

DBMS disadvantages

- These are expensive, complex products that require
 - direct investment
 - purchase of the product
 - indirect investments
 - purchase of the necessary hardware and software resources
 - conversion of the applications
 - training of personnel
- They provide a set of services in an integrated form
 - it is not possible to separate out unused services
 that cause a reduction in performance