

Relational model and relational algebra

Relational algebra

Relational Algebra

\supset Introduction

- \sum Selection and projection
- $\mathop{\textstyle\sum}$ Cartesian product and join
- \sum Natural join, theta-join and semi-join
- \supset Outer join
- $\mathop{\textstyle \sum}$ Union and intersection
- ${} \boxdot$ Difference and anti join
- $\mathop{\textstyle \sum}$ Division and other operators

Relational algebra

Introduction

Relational algebra

- ${\ensuremath{\unrhd}}$ Extends algebra of sets for the relational model
- ${}^{\textstyle \sum}$ Defines a set of operators that operate on relations and whose result is a relation
- ${} \boxdot$ It satisfies the closure property
 - The result of any algebraic operation on relations is also a relation

Relational algebra operators

\supset Unary operator

- selection (σ)
- projection (π)
- \supset Binary operator
 - cartesian product (×)
 - join (🖂)
 - union (\cup)
 - intersection (\cap)
 - difference (-)
 - division (/)

Relational algebra operators

\sum Set operators

- union (\cup)
- intersection (\cap)
- difference (-)
- cartesian product (×)
- Σ Relational operators
 - selection (σ)
 - projection (π)
 - join (▷<)
 - division (/)

Example of relations

Courses

<u>CCode</u>	CName	Semester	ProfID
M2170	Computer science	1	D102
M4880	Digital systems	2	D104
F1401	Electronics	1	D104
F0410	Databases	2	D102

Professors

ProfID	PName	Department
D102	Green	Computer engineering
D105	Black	Computer engineering
D104	White	Department of electronics

Relational algebra

Selection and projection

Selection

 \sum The selection extracts a "horizontal" subset from the relation

• It operates a horizontal factorisation of the relation

Selection: example

ig> Find the courses held in the second semester

Example of relations

Courses

<u>CCode</u>	CName	Semester	ProfID
M2170	Computer science	1	D102
M4880	Digital systems	2	D104
F1401	Electronics	1	D104
F0410	Databases	2	D102

Professors

ProfID	PName	Department
D102	Green	Computer engineering
D105	Black	Computer engineering
D104	White	Department of electronics

Selection: example

Courses	and a second sec			
<u>Courses</u> <u>CCode</u>		CName	Semester	ProfID
	M2170	Computer science	1	D102
	M4880	Digital systems	2	D104
	F1401	Electronics	1	D104
	F0410	Databases	2	D102

R

G

CCode	CName	Semester	ProfID
M4880	Digital systems	2	D104
F0410	Databases	2	D102

Selection: definition

$$R = \sigma_p A$$

\sum The selection generates a relation R

- With the same schema as A
- Containing all the tuples of relation A because of which predicate p is true
- Predicate *p* is a boolean expression (operators ^,v,-,) of expressions of comparison between attributes or between attributes and constants
 - p: City= 'Turin' \land Age>18
 - p: ReturnDate>DeliveryDate+10

Selection: example

 ${}>$ Find the courses held in the second semester

R II Semester=2 $R = \sigma_{Semester=2}$ Courses

Courses

	<u>CCode</u>	CName	Semester	ProfID	
	M2170	Computer science	1	D102	
	M4880	Digital systems	2	D104	
	F1401	Electronics	1	D104	
	F0410	Databases	2	D102	
Ì					1

Projection

 \sum The projection extracts a "vertical" subset from the relation

It operates a vertical factorisation of the relation

 \supset Find the names of professors

Professors

ProfID	PName	Department
D102	Green	Computer engineering
D105	Black	Computer engineering
D104	White	Department of electronics

Professors

Proiection: definition

$$\mathsf{R} = \pi_{\mathsf{L}}\mathsf{A}$$

 \sum The projection generates a relation R

- Whose schema is the list of attributes L (subset of A's schema)
- Containing all of the tuples present in A

imes Find the names of professors

R II π_{PName} Professors

$$R = \pi_{PName}$$
 Professors

Professors

ProfID	PName	Department
D102	Green	Computer engineering
D105	Black	Computer engineering
D104	White	Department of electronics

Find the names of the departments in which at least one professor is present

 $R = \pi_{Department}$ Professors

Professors

ProfID	PName	Department
D102	Green	Computer engineering
D105	Black	Computer engineering
D104	White	Department of electronics

Department

Computer engineering

Department of electronics

Proiection: definition

$$R = \pi_L A$$

 \sum The projection generates a relation R

- Whose schema is the list of attributes L (subset of A's schema)
- Containing all of the tuples present in A
- \sum The duplicates caused by the exclusion of the attributes not contained in L are deleted
 - If L includes a candidate key, there are no duplicates

Select the names of courses in the second semester

Courses

<u>CCode</u>	CName	Semester	ProfID
M2170	Computer science	1	D102
M4880	Digital systems	2	D104
F1401	Electronics	1	D104
F0410	Databases	2	D102

Selection

CCode	CName	Semester	ProfID
M4880	Digital systems	2	D104
F0410	Databases	2	D102

CCode	CName	Semester	ProfID		
M4880	Digital systems	2	D104		
F0410	Databases	2	D102		
Projection					
R	CName				
	Digital systems				

Databses

 $\sum Select the names of$ courses in the secondsemester $R = \pi_{CName}(\sigma_{Semester=2}Courses)$

Courses

	<u>CCode</u>	CName	Semester	ProfID
	M2170	Computer science	1	D102
	M4880	Digital systems	2	D104
	F1401	Electronics	1	D104
J	F0410	Databases	2	D102

Selection+projection: example (is it correct?)

Select the names of courses in the second semester

 $R = \sigma_{\text{Semester}=2} \left(\pi_{\text{CName}} \text{Courses} \right)$

Courses

<u>CCode</u>	CName	Semester	ProfID
M2170	Computer science	1	D102
M4880	Digital systems	2	D104
F1401	Electronics	1	D104
F0410	Databases	2	D102

Selection+projection: wrong solution

Courses

<u>CCode</u>	CName	Semester	ProfID
M2170	Computer science	1	D102
M4880	Digital systems	2	D104
F1401	Electronics	1	D104
F0410	Databases	2	D102

Projection

CName

Computer science

Digital systems

Electronics

Databses

Selection+projection: wrong solution

CName

Computer science

Digital systems

Electronics

Databses

 \sum The Semester attribute does not exist any more

- The information relative to the semester is no longer available
- The selection operation cannot be carried out

Selection+projection: wrong solution

Courcos				
Courses	<u>CCode</u>	CName	Semester	ProfID
	M2170	Computer science	1	D102
	M4880	Digital systems	2	D104
	F1401	Electronics	1	D104
	F0410	Databases	2	D102

Relational algebra

Cartesian product and join

Cartesian product

 \sum The Cartesian product of two relations A and B generates all the pairs formed by a tuple of A and a tuple of B

Cartesian product: example

Find the Cartesian product of courses and professors

Cartesian product: example

Courcos					
COUISES	<u>CCode</u>	CName	Semester	ProfID	
	M2170	Computer science	1	D102	
	M4880	Digital systems	2	D104	
	F1401	Electronics	1	D104	
	F0410	Databases	2	D102	

Professors

ProfID	PName	Department
D102	Green	Computer engineering
D105	Black	Computer engineering
D104	White	Department of electronics

Cartesian product: example

R

Courses CCode	Courses. CName	Courses. Semester	Courses. ProfID	Professors. ProfID	Professors .PName	Professors. Departmen
M2170	Computer science	1	D102	D102	Green	Computer engineering
M2170	<i>Computer</i> <i>science</i>	1	D102	D105	Black	Icomputer engineering
M2170	<i>Computer</i> <i>science</i>	1	D102	D104	White	Department of electronics

Cartesian product: example

Courses CCode	Courses. CName	Courses. Semester	Courses. ProfID	Professors. ProfID	Professors .PName	Professors. Departmen
M2170	<i>Computer</i> <i>science</i>	1	D102	D102	Green	Computer engineering
M2170	<i>Computer</i> <i>science</i>	1	D102	D105	Black	Icomputer engineering
M2170	<i>Computer</i> <i>science</i>	1	D102	D104	White	Department of electronics
M4880	Digital systems	2	D104	D102	Green	Computer engineering
M4880	Digital systems	2	D104	D105	Black	Icomputer engineering
M4880	Digital systems	2	D104	D104	White	Department of electronics

Cartesian product: definition

$R = A \times B$

${}^{\textstyle \sum}$ The Cartesian product of two relations A and B generates a relation R

- whose schema is the union of the schemas of A and B
- containing all the pairs formed by a tuple of A and a tuple of B
- ${}^{ imes}$ The Cartesian product is
 - commutative
 - $A \times B = B \times A$
 - associative

•
$$(A \times B) \times C = A \times (B \times C)$$

Cartesian product: example

Find the Cartesian product of courses and professors

$R = Courses \times Professors$

Link between relations

Courses CCode	Courses. CName	Courses. Semester	Courses. ProfID	Professors. ProfID	Professors .PName	Professors. Departmen
<i>M2170</i>	Computer science	1	D102	D102	Green	Computer engineering
<i>M2170</i>	<i>Computer</i> <i>science</i>	1	D102	D105	Black	Icomputer engineering
<i>M2170</i>	Computer science	1	D102	D104	White	Department of electronics
M4880	Digital systems	2	D104	D102	Green	Computer engineering
M4880	Digital systems	2	D104	D105	Black	Icomputer engineering
M4880	Digital systems	2	D104	D104	White	Department of electronics

Join

 Σ The join of two relations A and B generates all the pairs formed by a tuple of A and a tuple of B that are *"semantically linked"*

Join: example

Find information about courses and the professors that hold them

Join: example

Courses

<u>CCode</u>	CName	Semester	ProfID
M2170	Computer science	1	D102
M4880	Digital systems	2	D104
F1401	Electronics	1	D104
F0410	Databases	2	D102

Professors

ProfID	PName	Department
D102	Green	Computer engineering
D105	Black	Computer engineering
D104	White	Department of electronics

Join example

Courses CCode	Courses. CName	Courses. Semester	Courses. ProfID	Professors. ProfID	Professors .PName	Professors. Departmen
M2170	Computer science	1	D102	D102	Green	Computer engineering
M2170	Computer science	1	D102	D105	Black	Icomputer engineering
M2170	<i>Computer</i> <i>science</i>	1	D102	D104	White	Department of electronics
M4880	Digital systems	2	D104	D102	Green	Computer engineering
M4880	Digital systems	2	D104	D105	Black	Icomputer engineering
M4880	Digital systems	2	D104	D104	White	Department of electronics

Join: example

Courses CCode	Courses. CName	Courses. Semester	Courses. ProfID	Professors. ProfID	Professors. PName	Professors. Departmen
M2170	Computer science	1	D102	D102	Green	Computer engineering
M4880	Digital systems	2	D104	D104	White	Department of electronics
F1401	Electronics	1	D104	D104	White	Department of electronics
F0410	Databases	2	D102	D102	Green	Computer engineering

Join: example

R

Courses CCode	Courses. CName	Courses. Semester	Courses. ProfID	Professors. ProfID	Professors. PName	Professors. Departmen
M2170	Computer science	1	D102	D102	Green	Computer engineering
M4880	Digital systems	2	D104	D104	White	Department of electronics
F1401	Electronics	1	D104	D104	White	Department of electronics
F0410	Databases	2	D102	D102	Green	Computer engineering

NB: Professor (D105,Black,Computer engineering), who does not hold any courses does not appear in the result of the join

Join: definition

${}^{\textstyle \mbox{$>$}}$ The join is a derived operator

- It can be expressed using operators x, σ_p , π_L
- \supset The join is defined separately as it expresses synthetically many recurrent operations in the interrogations

$\mathop{\textstyle \sum}$ There are different kinds of joins

- natural join
- theta-join (and its subcase equi-join)
- semi-join

Relational algebra

Natural join, theta-join and semi-join

Natural join: definition

 $R = A \bowtie B$

\sum The natural join of two relations A and B generates a relation R

- whose schema is
 - the attributes which are present in A's schema and not in B's
 - the attributes present in B's schema and not in A's
 - a single copy of common attributes (with the same name in the schema of A and B)
- containing all of the pairs made up of a tuple of A and a tuple of B for which the value of common attributes is the same

Natural join: properties

 $R = A \bowtie B$

\sum Natural join is commutative and associative

 \sum Find information about the courses and the professors that hold them \mathbb{R}

 \square Find information about the courses and the professors that hold them \mathbb{R}

 $R = Courses \bowtie Professors$

Professors

R	Courses. CCode	Courses. CName	Courses. Semester	ProfID	Professors. PName	Professors. Department
	M2170	Computer science	1	D102	Green	Computer engineering
	M4880	Digital systems	2	D104	White	Department of electronics
	F1401	Electronics	1	D104	White	Department of electronics
G	F0410	Databases	2	D102	Green	Computer engineerin ₂₅₂

Find information about the courses and the professors that hold them

 $R = Courses \bowtie Professors$

Courses Pr

Professors

Courses. CCode	Courses. CName	Courses. Semester	ProfID	Professors. PName	Professors. Department
M2170	Computer science	1	D102	Green	Computer engineering
M4880	Digital systems	2	D104	White	Department of electronics
F1401	Electronics	1	D104	White	Department of electronics
F0410	Databases	2	D102	Green	Computer engineering53

 \sum Find information about the courses and the professors that hold them \mathbb{R}

 $R = Courses \bowtie Professors$

Courses. CCode	Courses. CName	Courses. Semester	ProfID	Professors. PName	Professors. Department
M2170	Computer science	1	D102	Green	Computer engineering
M4880	Digital systems	2	D104	White	Department of electronics
F1401	Electronics	1	D104	White	Department of electronics
F0410	Databases	2	D102	Green	Computer engineering54

Natural join: esempio

Courses. CCode	Courses. CName	Courses. Semester	ProfID	Professors. PName	Professors. Department
M2170	Computer science	1	D102	Green	Computer engineering
M4880	Digital systems	2	D104	White	Department of electronics
F1401	Electronics	1	D104	White	Department of electronics
F0410	Databases	2	D102	Green	Computer engineering

 \sum *NB:* The common attribute ProfID (Professor Identifier) is present only once in the schema of the resulting relation R

Theta-join

 \sum The theta-join of two relations A and B generates all the pairs formed by a tuple of A and B that satisfy a generic *"join/link condition"*

Find the identifiers of the professors that hold at least two courses

(OURCOC					
Courses C1	<u>CCode</u>	CName	Semester	ProfID	
C1	M2170	Computer science	1	D102	
	M4880	Digital systems	2	D104	
	F1401	Electronics	1	D104	
	F0410	Databases	2	D102	
Courcos					
Courses C2	<u>CCode</u>	CName	Semester	ProfID	
0L	M2170	Computer science	1	D102	
	M4880	Digital systems	2	D104	
	F1401	Electronics	1	D104	
D	F0410	Databases	2	D102	
DBG					58

	Courses C1. CCode	Courses C1. CName	Courses C1. Semester	Courses C1. ProfID	Courses C2. CCode	Courses C2. CName	Courses C2. Semester	Courses C2. ProfID
	M2170	Computer science	1	D102	M2170	Computer science	1	D102
	M2170	Computer science	1	D102	M4880	Digital systems	2	D104
	M2170	Computer science	1	D102	F1401	Electronins	1	D104
	M2170	<i>Computer</i> <i>science</i>	1	D102	F0410	Databases	2	D102
	M4880	Digital systems	2	D104	M2170	Computer science	1	D102
	M4880	Digital systems	2	D104	M4880	Digital systems	2	D104
	M4880	Digital systems	2	D104	F1401	Electronics	1	D104
	M4880	Digital systems	2	D104	F0410	Databases	2	D102
P								

				and the second se			
Courses C1. CCode	Courses C1. CName	Courses C1. Semester	Cources C1. ProfID	Courses C2. CCode	Courses C2. CName	Courses C2. Semester	Courses C2. ProfID
M2170	Computer science	1	D102	F0410	Databases	2	D102
M4880	Digital systems	2	D104	F1401	Electronics	1	D104
F1401	Electronics	1	D104	M4880	Digital systems	2	D104
F0410	Databases	2	D102	M2170	Computer science	1	D102

R

Courses C1.ProfID

D102 D104

Find the identifiers of the professors that hold at least two courses

p: C1.ProfID=C2.ProfID \land C1.CCode<>C2.CCode

 $R = \pi_{C1.ProfID}((Courses C1) \bowtie_p(Courses C2))$

Theta-join: definition

$$R = A \bowtie_p B$$

 \sum The theta-join of two relations A and B generates a relation R

- whose schema is the union of the schemes of A and B
- containing all the pairs made up of a tuple of A and a tuple of B for which the predicate p is true
- Σ The predicate *p* is in the form X θ Y
 - X is an attribute of A, Y is an attribute of B
 - θ is a comparison operator compatible with the domains of X and of Y

 \sum The theta-join is commutative and associative

Equi-join: definition

$$R = A \bowtie_p B$$

\sum Equi-join

Particular case of theta-join in which θ is the operator of equivalence (=)

Semi-join

- \sum The semi-join of two relations A and B selects all the tuples of A that are *"semantically linked"* to at least a tuple of B
 - the information of B does not appear in the result

Find information relative to professors that hold at least one course

Courses

<u>CCode</u>	CName	Semester	ProfID
M2170	Computer science	1	D102
M4880	Digital systems	2	D104
F1401	Electronics	1	D104
F0410	Databases	2	D102

Professors

ProfID	PName	Department
D102	Green	Computer engineering
D105	Black	Computer engineering
D104	White	Department of electronics

Professors. ProfID	Professors. PName	Professors. Department	Courses. CCode	Courses. CName	Courses. Semester	Courses. ProfID
D102	Green	Computer engineering	M2170	Computer science	1	D102
D102	Green	Computer engineering	M4880	Digital systems	2	D104
D102	Green	Computer engineering	F1401	Electronics	1	D104
D102	Green	Computer engineering	F0410	Databases	2	D102
D105	Black	Computer engineering	M2170	Computer science	1	D102
D105	Black	Computer engineering	M4880	Digital systems	2	D104
D105	Black	Computer engineering	F1401	Electronics	1	D104
D104	White	Department of electronics	F1401	Electronics	1	D104
G						67

Professors ProfID	Professors. PName	Professors. Department	Courses. CCode	Courses. CName	Courses. Semester	Courses. ProfID
D102	Green	Computer engineering	M2170	Computer science	1	D102
D102	Green	Computer engineering	F0410	Databases	2	D102
D104	White	Department of electronics	M4880	Digital systems	2	D104
D104	White	Electronics	F1401	Electronics	3	D104

R	Professors. ProfID	Professors. PName	Professors. Department	
	D102	Green	Computer engineering	
	D104	White	Department of electronics	

Semi-join: definition

$$R = A \bowtie_p B$$

 \sum The semi-join of two relations A and B generates a relation R

- which has the same schema as A
- containing all the tuples of A for which the predicate specified by p is true
- \sum The predicate *p* is expressed in the same form as the theta-join (comparison between the attributes of A and of B)

Semi-join: properties

 \sum The semi-join can be expressed as a function of the theta-join

• $A \bowtie_{p} B = \pi_{schema(A)}(A \bowtie_{p} B)$

The semi-join *does not satisfy* the commutative property

R

Find information relative to professors that hold at least one course

R=Professors ⊳_pCourses

Professors

Courses

p: Professors.ProfID=Courses.ProfID

Professors. ProfID	Professors. PName	Professors. Department
D102	Green	Computer engineering
D104	White	Department of electronics

Relational algebra

Outer join

Outer-join

- \sum Version of join that allows us to conserve the information relative to tuples that are not semantically linked by the join predicate
 - complete the tuples that lack a counterpart with null values
- ${\ensuremath{\unrhd}}$ There are three kinds of outer-join
 - left: only the tuples of the first operand are completed
 - right: only the tuples of the second operand are completed
 - full: the tuples of both operands are completed

Left outer-join

 ${\hfill}{>}$ The left outer-join of two relations A and B generates the pairs made up of

 a tuple of A and one of B that are "semantically linked"

+

 a tuple of A "not semantically linked" to a tuple of B completed with null values for all the attributes of B

Find information about professors and about the courses that they hold

Courses

<u>CCode</u>	CName	Semester	ProfID
M2170	Computer science	1	D102
M4880	Digital systems	2	D104
F1401	Electronics	1	D104
F0410	Databases	2	D102

Professors

ProfID	PName	Department
D102	Green	Computer engineering
D105	Black	Computer engineering
D104	White	Department of electronics

R

Professors. ProfID	Professors. PName	Professors. Department	Courses. CCode	Courses. CName	Courses. Semester	Courses. ProfID
D102	Green	Computer engineering	M2170	<i>Computer</i> <i>science</i>	1	D102
D102	Green	Computer engineering	F0410	Databases	2	D102
D104	White	Department of electronics	M4880	Digital systems	2	D104
D104	White	Department of electronics	F1401	Electronics	1	D104

R

Professors. ProfID	Professors. PName	Professors. Department	Courses. CCode	Courses. CName	Courses. Semester	Courses. ProfID
D102	Green	Computer engineering	M2170	Computer science	1	D102
D102	Green	Computer engineering	F0410	Databases	2	D102
D104	White	Department of electronics	M4880	Digital systems	2	D104
D104	White	Department of electronics	F1401	Electronics	1	D104
D105	Black	Computer engineering	null	null	null	null

Left outer-join: definition

$$R = A D \otimes_{p} B$$

\sum The left outer-join of two relations A and B generates a relation R

- whose schema is the union of the schemas of A and B
- containing the pairs made up of
 - a tuple of A and a tuple of B for which the predicate p is true
 - a tuple of A that is not correlated by means of the predicate p to tuples of B completed with null values for all of the attributes of B

 $D_{M}^{B}G$

Find information about professors and about the courses that they hold

p: Professors.ProfID=Courses.ProfID

Find information about professors and about the courses that they hold

Professors. ProfID	Professors. PName	Professors. Department	Courses. CCode	Courses. CName	Courses. Semester	Courses. ProfID
D102	Green	Computer engineering	M2170	Computer science	1	D102
D102	Green	Computer engineering	F0410	Databases	2	D102
D104	White	Department of electronics	M4880	Digital systems	2	D104
D104	White	Department of electronics	F1401	Electronics	1	D104
D105	Black	Computer engineering	null	null	null	null

R

Right outer-join: definition

$$R = A \bowtie_p B$$

\sum The right outer-join of two relations A and B generates a relation R

- whose schema is the union of the schemas of A and B
- containing the pairs made up of
 - a tuple of A and a tuple of B for which the predicate p is true
 - a tuple of B that is not correlated by means of the predicate p to tuples of A completed with null values for all of the attributes of A

 D_{MG}^{B-} The right outer-join *is not* commutative

Full outer-join: definition

$$R = A D B$$

${}^{\textstyle \sum}$ The full outer-join of two relations A and B generates the relation R

 whose schema is the union of the schemas of A and B

Full outer-join: definition

$$R = A D B$$

\sum The full outer-join of two relations A and B generates the relation R

• containing the pairs formed by

- a tuple of A and a tuple of B for which predicate p is true
- a tuple of A that is not correlated by means of the predicate *p* to tuples of B completed with null values for all of the attributes of B
- a tuple of B that is not correlated by means of the predicate *p* to tuples of A completed with null values for all of the attributes of A

Full outer-join: properties

$R = A \supset I_p B$ > The full outer-join is commutative

Relational algebra

Union and intersection

Union

 \sum The union of two relations A and B selects all the tuples present in at least one of the two relations

Union: example of relations

DegreeCourseProf

<u>ProfID</u>	PName	Department
D102	Green	Computer engineering
D105	Black	Computer engineering
D104	White	Department of electronics

MasterCourseProf

<u>ProfID</u>	PName	Department
D102	Green	Computer engineering
D101	Rossi	Department of electrics

Union: example

Find information relative to the professors of degree courses or master's degrees

Union: example

DegreeCourseProf

ProfID	PName	Department
D102	Green	Computer engineering
D105	Black	Computer engineering
D104	White	Department of electronics

MasterCourseProf

R

ProfID	PName	Department
D102	Green	<i>Computer</i> <i>engineering</i>
D101	Red	Department of electrics

\sum	NB:	Duplicated	tuples
DMG	are	deleted	

ProfID	PName	Department
D102	Green	Computer engineering
D105	Black	Computer engineering
D104	White	Department of electronics
D101	Red	Department of electrics

Union: definition

$\mathsf{R} = \mathsf{A} \cup \mathsf{B}$

- \sum The union of two relations A and B generates the relation R
 - which has the same schema of A and B
 - containing all the tuples belonging to A and all the tuples belonging to B (or to both)
- imes Compatibility
 - the relations A and B have to have the same schema (number and kind of attributes)
- $\mathop{\textstyle\sum}$ Duplicated tuples are deleted

 $\overset{\sum}{}_{G}$ The union is commutative and associative

Union: example

R = DegreeCourseProf \cup MasterCourseProf

Find information relative to the professors of degree courses or master's degrees

DegreeCoursesProf MasterCourseProf

R

ProfID	PName	Department
D102	Green	Computer engineering
D105	Black	Computer engineering
D104	White	Department of electronics
D101	Red	Department of electrics
	ProfID D102 D105 D104 D101	ProfIDPNameD102GreenD105BlackD104WhiteD101Red

Intersection

 \sum The intersection of two relations A and B selects all the tuples present in both relations

Intersection: example

Find information relative to professors teaching both degree courses and master's

Intersection: example of relations

DegreeCourseProf

<u>ProfID</u>	PName	Department
D102	Green	Computer engineering
D105	Black	Computer engineering
D104	White	Department of electronics

MasterCourseProf

<u>ProfID</u>	PName	Department
D102	Green	Computer engineering
D101	Rossi	Department of electrics

Intersection: example

DegreeCourseProf

<u>ProfID</u>	PName	Department	
D102	Green	Computer engineering	
D105	Black	Computer engineering	
D104	White	Department of electronics	

MasterCourseProf

ProfID	PName	Department	
D102	Green	Computer engineering	
D101	Red	Department of electrics	

R	ProfID	PName	Department
	D102	Green	Computer engineering

Intersection: definition

$\mathsf{R}=\mathsf{A}\cap\mathsf{B}$

${}^{\textstyle \sum}$ The intersection of two relations A and B generates a relation R

- with the same schema of A and B
- containing all the tuples belonging to both A and B

imes Compatibility

 relations A and B must have the same schema (number and type of attributes)

 $\mathop{\textstyle \sum}$ Intersection is commutative and associative

Intersection: example

Find information relative to professors teaching both degree courses and master's

२	ProfID	PName	Department
	D102	Green	Computer engineering

Relational algebra

Difference and anti-join

Difference

 \sum The difference of two relations A and B selects all the tuples present *exclusively* in A

Difference

A-B≠B-A

Difference: example (n.1)

Find the professors teaching degree courses but not master's

Difference: example (n.1)

DegreeCourseProf

ProfID	PName	Department
D102	Green	Computer engineering
D105	Black	Computer engineering
D104	White	Department of electronics

MasterCourseProf

ProfID	PName	Department
D102	Green	Computer engineering
D101	Red	Department of electrics

R	ProfID	PName	Department
	D105	Black	Computer engineering
	D104	White	Department of electronics

Difference: definition

 $\mathsf{R} = \mathsf{A} - \mathsf{B}$

 ${}^{\textstyle \sum}$ The difference of two relations A and B generates a relation R

- with the same schema of A and B
- containing all tuples belonging to A that do not belong to B
- imes Compatibility
 - relations A and B must have the same schema (number and type of attributes)
- The difference *does not satisfy* the commutative property, nor the associative property

Difference: example (n.1)

Find the professors teaching degree courses but not master's

R

ProfID	PName	Department
D105	Black	Computer engineering
D104	White	Department of electronics

Difference: example (n. 2)

Find the professors teaching master courses but not degree's

R = MasterCourseProf - DegreeCourseProf MasterCourseProf DegreeCourseProf

Difference: example (n. 2)

MasterCourseProf

<u>ProfID</u>	PName	Department
D102	Green	Computer engineering
D101	Red	Department of electrics

DegreeCourseProf

<u>ProfID</u>	PName	Department
D102	Green	Computer engineering
D105	Black	Computer engineering
D104	White	Department of electronics

R

ProfID	PName	Department
D101	Rossi	Department of electrics

Difference: example (n. 3)

Co	1.11	rc	
CU	u	5	CS

<u>CCode</u>	CName	Semester	ProfID
M2170	Computer science	1	D102
M4880	Digital systems	2	D104
F1401	Electronics	1	D104
F0410	Databases	2	D102

Professors

ProfID	PName	Department
D102	Green	Computer engineering
D105	Black	Computer engineering
D104	White	Department of electronics

Find identifier, name and department of professors that are not holding any courses

Professors

Professor Identifiers —

ProfID	PName	Dipartimento
D102	Green	Computer engineering
D105	Black	Computer engineering
D104	White	Department of electronics

Courses

<u>CCode</u>	CName	Semester	ProfID	_
M2170	Compuer science	1	D102	
M4880	Digital systems	2	D104	
F1401	Electronics	1	D104	
F0410	Databases	2	D102	\searrow

Identifiers of professors that holds at least a course

110

Find identifier, name and department of professors that are not holding any courses

$\begin{array}{ccc} \pi_{ProfID} & \pi_{ProfID} \\ \mu & \mu \\ Professors & Courses \end{array}$

Find identifier, name and department of professors that are not holding any courses

Find identifier, name and department of professors that are not holding any courses

 $R = Professors \Join ((\pi_{ProfID} Professors) - (\pi_{ProfID} Courses))$

R	ProfID	PName	Department
	D105	Black	Computer engineering

Anti-join

- \sum The anti-join of two relations A and B selects all the tuples of A that are *"not semantically linked"* to tuples of B
 - the information of B does not appear in the result

Anti-join: example

> Find identifier, name and department of professors that are not holding any courses

Anti-join: example

Professors

ProfID	PName	Department	
D102	Green	Computer engineering	
D105	Black	Computer engineering	
D104	White	Department of electronics	

Courses

D

<u>CCode</u>	CName	Semester	ProfID
M2170	Informatica 1	1	D102
M4880	Sistemi digitali	2	D104
F1401	Elettronica	1	D104
F0410	Basi di dati	2	D102

R	ProfID	PName	Department	
^B MG	D105	Black	Computer engineering	118

Anti-join: definition

$$R = A \overline{\bowtie}_p B$$

${\hfill}{>}$ The anti-join of two relations A and B generates a relation R

- with the same schema of A
- containing all the tuples of A for which there is no tuple of B for which the predicate p is true
- \sum The predicate p is expressed in the same way as for the theta-join and the semi-join
- \sum The anti-join *does not satisfy* the commutative property, nor the associative property

Anti-join: example

Find identifier, name and department of professors that are not holding any courses

 $R = Professors \overline{\bowtie}_{p}Courses$

Professors Courses p: Professors.ProfID=Courses.ProfID

R

ProfID	PName	Department
D105	Black	Computer engineering

Relational algebra

Division and other operators

Division: example

Find all the students that have passed the exams of all courses of the first year

PassedExams

<u>StudentID</u>	<u>CCourse</u>
S1	C1
S1	C2
S1	C3
S1	C4
S1	C5
S1	C6
S2	C1
S2	C2
S3	C2
S4	C2
S4	C4
S4	C5

FirstYearCourses

<u>CCourse</u>

122

Division: example

PassedExams

D

	<u>StudentID</u>	<u>CCourse</u>
	<i>S1</i>	С1
	S1	C2
	S1	C3
	S1	C4
	S1	C5
	S1	C6
	<i>52</i>	С1
	S2	C2
	S3	C2
	S4	C2
F	S4	C4
N	S4	C5

FirstYearsCourses

Division: example (n. 2)

PassedExams

D

	StudentID	<u>CCourse</u>
	S1	C1
	<i>S1</i>	С2
	S1	C3
	<i>S1</i>	С4
	S1	C5
	S1	C6
	S2	C1
	S2	C2
	S3	C2
	54	С2
t	<u> </u>	С4
N	S4	C5

FirstYearCourses

Division: example (n. 3)

PassedExams

D

<u>StudentID</u>	<u>CCourse</u>
<i>S1</i>	<i>C1</i>
<i>S1</i>	С2
<i>S1</i>	СЗ
<i>S1</i>	<i>C4</i>
<i>S1</i>	С5
<i>S1</i>	Сб
S2	C1
S2	C2
S3	C2
S4	C2
BC S4	C4
S4	C5

FirstYearCourse

Division: definition

R = A / B

- \sum The division of relation A by relation B generates a relation R
 - whose schema is *schema(A) schema(B)*
 - containing all the tuples of A such that for each tuple (Y:y) present in B there is a tuple (X:x, Y:y) in A
- Division *does not satisfy* the commutative property, nor the associative property

Division: example

Find all the students that have passed the exams of all courses of the first year

R = PassedExams / FirstYearCourses

Other operators

- \hdownoise Various other operators have been proposed so as to extend the expressive power of relational algebra
 - extension with a new attribute, defined by a scalar expression
 - GROSS_WEIGHT=NET_WEIGHT+TARE
 - aggregate function calculation
 - max, min, avg, count, sum
 - possibly with the definition of subsets in which to group the data (GROUP BY of SQL)

