
1

 Input file
A1008ULQSWI006,B0017OAQIY
A100EBHBG1GF5,B0013T5YO4
A1017Y0SGBINVS,B0009F3SAK
A101F8M8DPFOM9,B005HY2BRO,B000H7MFVI
A102H88HCCJJAB,B0007A8XV6
A102ME7M2YW2P5,B000FKGT8W
A102QP2OSXRVH,B001EQ5SGU,B000EH0RTS
A102TGNH1D915Z,B000RHXKC6,B0002DHNXC,B0002DHNXC,B000XJK7UG,B00008DFK5,B000

SP1CWW,B0009YD7P2,B000SP1CWW,B00008DFK5,B0009YD7P2
A1051WAJL0HJWH,B000W5U5H6
A1052V04GOA7RV,B002GJ9JY6,B001E5E3JY,B008ZRKZSM,B002GJ9JWS
……….

 Each line contains
 a reviewer ID (AXXXXXX) and
 the list of products reviewed by her/him (BXXXXXX)

2

 Your goal is to find the top 100 pairs of
products most often reviewed (and so
bought) together

 We consider two products as reviewed (i.e.,
bought) together if they appear in the same
line of the input file

3

 At least three different “approaches” can be
used to solve Lab 3

4

5

1. A chain of two MapReduce jobs is used

 The first job computes the number of
occurrences of each pair of products that occur
together in at least one line of the input file

▪ It is like a word count where each “word” is a pair of
products

 The second job selects the top-k pairs of
products, in terms of num. of occurrences,
among the pairs emitted by the first job

▪ It implements the top-k pattern

 6

 The first job computes the number of
occurrences of each pair of products
analyzing the input file

7

Mapper #1

Mapper #N

Reducer #1

Reducer #M

….

(“product_x,product_y”, num. Occurrences_xy)
(“product_x,product_z”, num. Occurrences_xz)
…

(“product_y,product_z”, num. Occurrences_yz)
(“product_z,product_w”, num. Occurrences_zw)
…

….

(“product_x,product_y”, 1)
(“product_y,product_z”, 1)
…

(“product_z,product_w”, 1)
(“product_y,product_z”, 1)
…

 The second job computes the global top-k
pairs of products in terms of num. of
occurrences

8

Mapper #1

Mapper #J

Reducer #1

Global top-k list
(“product_x,product_y”, num. Occurrences_xy)
(“product_y,product_z”, num. Occurrences_yz)
…

….

Local top-k list Mapper #1
(NullWritable, (“product_x,product_y”, num. Occurrences_xy))
…

Local top-k list Mapper #J
(NullWritable, (“product_y,product_z”, num. Occurrences_yz))
…

9

2. One single MapReduce job is used

 The job

▪ Computes the number of occurrences of each pair of
products

▪ It is again like a word count where each “word” is a pair of
products

▪ However, the reducer does not emit all the pairs (pair of
products, #of occurrences) that it computes

▪ The top-k list is computed in the reducer and is emitted in its
cleanup method

10

▪ In the reducer, the job computes also the top-k list
▪ By initializing the top-k list in the setup method of the reducer

▪ By updating the top-k list in the reduce method (immediately
after the computation of the frequency of the current pair of
products)

▪ By emitting the final top-k list in the cleanup method of the
reducer

▪ There must be one single instance of the reducer in
order to compute the final global top-k list

11

 There is one single job that computes the
number of occurrences and the global top-k
list at the same time in its single instance of
the reducer

12

Mapper #1

Mapper #N

Reducer #1 ….
Global top-k list
(“product_x,product_y”, num. Occurrences_xy)
(“product_y,product_z”, num. Occurrences_yz)
…

(“product_x,product_y”, 1)
(“product_y,product_z”, 1)
…

(“product_z,product_w”, 1)
(“product_y,product_z”, 1)
…

13

3. A chain of two MapReduce jobs is used

 The first job is the same job used by Solution #2

▪ However, in this case the number of instances of the
reducers class is set to a value greater than one

▪ This setting allows parallelizing the reduce step of the first job

▪ Each reducer emits a local top-k list
▪ The first job returns a number of local top-k lists equal to the

number of reducers of the first job

14

 The second job computes the final top-k list
merging the pairs of the local top-k lists emitted
by the first job

▪ It is based on the standard Top-k pattern

15

 The first job computes the number of
occurrences of each pair of products but each
instance of the reducer emits only its local
top-k pairs

16

Mapper #1

Mapper #N

Reducer #1

Reducer #M

…. ….

(“product_x,product_y”, 1)
(“product_y,product_z”, 1)
…

(“product_z,product_w”, 1)
(“product_y,product_z”, 1)
…

Local top-k list Reducer #1
(“product_x,product_y”, num. Occurrences_xy)
…

Local top-k list Reducer #M
(“product_y,product_z”, num. Occurrences_yz)
…

 The second job computes the global top-k
pairs of products in terms of num. of
occurrences merging the local list of job #1

17

Mapper #1

Mapper #J

Reducer #1

Global top-k list
(“product_x,product_y”, num. Occurrences_xy)
(“product_y,product_z”, num. Occurrences_yz)
…

….

Emit a copy of the input data = Local top-k list emitted by a reducer of Job #1
(NullWritable, (“product_x,product_y”, num. Occurrences_xy))
…

Emit a copy of the input data = Local top-k list emitted by a reducer of Job #J
(NullWritable, (“product_y,product_z”, num. Occurrences_yz))
…

18

 Solution #1

 +Adopts two standard patterns

 - However, the output of the first job is very large
▪ One pair for each pair of products occurring together at least one

time in the input file

19

 Solution #2

 +Only one job is instantiated and executed (there is
only one job in Solution #2) and its output is already
the final top-k list

 - However, only one reducer is instantiated
▪ It could become a bottleneck because one single reducer must

analyze the potentially large set of pairs emitted by the mappers
sequentially

▪ The slowest of the three solutions

 This solution MUST NOT BE USED
▪ It is highly inefficient

20

 Solution #3

 +Each reducer of the first job emits only the pair
contained in its local top-k lists
▪ One top-k list for each reducer

▪ The pairs of the top-k lists emitted by the reducers are
significantly smaller than all the pairs of products
occurring together at least one time

▪ Since the first job instantiates many reducers, the
parallelism is maintained for the first job that is the
heaviest one

 - It is not a standard pattern

 21

