
Lab 5
The objective of this laboratory is to start playing around with Apache Spark.

1. Problem specification
If you completed Lab 1, you should now have (at least one) files with the word frequencies in
the Amazon food reviews, in the format word\tfreq, where freq is an integer (a copy of the
output of Lab 1 is available in the HDFS shared folder /data/students/bigdata-01QYD/Lab2/).
Your task is to write a Spark application to filter these results, analyze the filtered data and
compute some statistics on them.

Task 1

The first filter you should implement is the following:

 Keep only the lines containing words that start with the prefix “ho”

The returned RDD contains the set of lines (word\tfreq) that satisfy the filtering operation.

Print on the standard output the following statistics, based on the content of the RDD
returned by the filtering operation:

 The number of selected lines

 The maximum frequency (maxfreq) among the ones of the selected lines (i.e., the
maximum value of freq in the lines obtained by applying the filter).

Task 2

Extend the previous application. Specifically, in the second part of your application, among
the lines selected by the first filter, you have to apply another filter to select only the most
frequent words. Specifically, your application must select those lines that contain words with
a frequency (freq) greater than 80% of the maximum frequency (maxfreq) computed before.

Hence, implement the following filter:

 Keep only the lines with a frequency freq greater than 0.8*maxfreq.

Finally, perform the following operations on the selected lines (the ones selected by applying
both filters):

 Count the number of selected lines and print this number on the standard output

 Save the selected words (without frequency) in an output folder (one word per line)

2. Testing the application

Run your application

1. Create a Jupyter notebook (select PySpark (Local)) and run you application on the input

HDFS folder /data/students/bigdata-01QYD/Lab2/. Set the name of the output folder in
your code.

a. Analyze the returned results (the statistics/results printed on the standard output
and the content of the output folder)

2. Create a Python script and execute it with the spark-submit command.
Note. In this version of the code prefix, input folder, and output folder must be specified
by means of three command line arguments (hint: use sys.argv[])

a. Run your application using spark-submit
b. Analyze the results. They should be consistent with the previous ones.

 Run your Python script on the nodes of the cluster by using the --master yarn
option of spark-submit

How to run your application

 Approach based on Jupyter notebooks
o Pyspark (Local) notebook - To run your application on the gateway

 Open a browser and connect to jupyter.polito.it
 Log in and open a “Pyspark (local)” notebook
 Write your application in the notebook and run it on the gateway (data are

read from and stored on HDFS but driver and executors are instantiated
on the gateway)

o PySpark (Yarn) notebook - To run your application on the nodes of the cluster

 Open a browser and connect to jupyter.polito.it
 Log in and open a “Pyspark (Yarn)” notebook
 Write your application in the notebook and run it on the nodes of the

cluster (data are read from and stored on HDFS and driver and executors
are instantiated on the nodes/servers of the cluster BigData@Polito)

 Approach based on a “standalone” python script (a textual file with the extension .py)
and the spark-submit command

o Write your Python application by using your preferred editor and save it in a
Python file (.py)

 To run a Spark script with spark-submit, your script must explicitly create
the SparkContext object. To do this, insert the following lines of code at
the beginning of your script

from pyspark import SparkConf, SparkContext
conf = SparkConf().setAppName("Name of my application")
sc = SparkContext(conf = conf)

 Remember also to stop/close the SparkContext at the end of your
application

sc.stop()

o Open a browser and connect to jupyter.polito.it
o Log in and open a Terminal
o Copy your Python script in the local file system of the gateway (use the drag and

drop approach)
o Run your Python script by executing the following command in the terminal

spark-submit --master yarn --deploy-mode client <your_script>

 Note that <your_script> must end by .py for Spark to interpret it as Python
application

 The driver is instantiated on the gateway (--deploy-mode client) and the
executors on the nodes of the cluster (--master yarn)

 You can use --master local if you want to run also the executors of your
application on the gateway (data are read from and stored on HDFS but
driver and executors are instantiated on the gateway with the setting --
master local --deploy-mode client)

How to access logs files

If you are connecting from outside Polito you can proceed as follows to retrieve the log files
from the command line:

1. Open a Terminal on the gateway jupyter.polito.it
2. Execute the following command in the Terminal:

yarn logs -applicationId <application_id>

The last parameter is the application/job ID. You can retrieve the job ID of your
application with the following command on the terminal, substituting sXXXXX with
your username

yarn application -list -appStates ALL|grep 'sXXXXXX'

Shut down JupyterHub container
As soon as you complete all the tasks and activities on JupyterHub environment,

please remember to shut down the container to let all your colleagues in all the sessions

connect on JupyterHub and do all the lab activities.

1. Go into File -> Hub Control Panel menu
2. A new browser tab opens with the “Stop My Server” button. Click on it and

wait till it disappears.

1.

2.

Click the “Stop My

Server” button

