
DB
MG

Database Systems

Triggers

1

DB
MG

2

Triggers

Active Database Systems

Oracle Triggers

Triggers for materialized view managament

DB
MG

Database Management Systems

Active Database Systems

3

DB
MG

Active database systems

Traditional DBMS operation is passive

Queries and updates are explicitly requested by
users

The knowledge of processes operating on data is
typically embedded into applications

Active database systems

Reactivity is a service provided by a normal DBMS

Reactivity monitors specific database events and
triggers actions in response

4

DB
MG

Active database systems

Reactivity is provided by automatically executing
rules

Rules are in the form

Event

Condition

Action

Also called active or ECA rules

5

DB
MG

Active rules

Event

Database modification operation

Condition

Predicate on the database state

If the condition is true, the action is executed

Action

Sequence of SQL instructions or application
procedure

6

DB
MG

Rule engine

Component of the DBMS, in charge of

Tracking events

Executing rules when appropriate

based on the execution strategy of the DBMS

Rule execution is interleaved with traditional
transaction execution

7

DB
MG

Example

The active rule manages reorder in an inventory
stock

when the stocked quantity of a product goes
below a given threshold

a new order for the product should be issued

Event

Update of the quantity on hand for product x

Insert of a new product x

8

DB
MG

Example

The active rule manages reorder in an inventory
stock

when the stocked quantity of a product goes
below a given threshold

a new order for the product should be issued

Condition

The quantity on hand is below a given threshold

and there are no pending orders for product x

Action

Issue an order with given reorder quantity for
product x

9

DB
MG

Applications of active rules

Internal applications

maintenance of complex integrity constraints

replication management

materialized view maintenance

Business Rules

Incorporate into the DBMS application knowledge

E.g., reorder rule

Alerters

widely used for notification

10

DB
MG

Triggers

Commercial products implement active rules by
means of triggers

SQL provides instructions for defining triggers

Triggers are defined by means of the DDL
instruction CREATE TRIGGER

Trigger syntax and semantics are covered in the
SQL3 standard

Some commercial products implement different
features with respect to the standard

11

DB
MG

Trigger structure

Event

Insert, delete, update of a table

Each trigger can only monitor events on a single
table

Condition

SQL predicate (it is optional)

Action

Sequence of SQL instructions

Proprietary programming language blocks

e.g. Oracle PL/SQL

Java block
12

DB
MG

Execution process

When the events take place [triggering]

If the condition is true [evaluation]

Then the action is executed [execution]

Seems very simple but…

Execution modes

Execution granularity

13

DB
MG

Execution mode

Immediate

The trigger is executed immediately before or after
the triggering statement

Deferred

The trigger is executed immediately before commit

Only the immediate option is available in
commercial systems

14

DB
MG

Execution granularity

Tuple (or row level)

One separate execution of the trigger for each
tuple affected by the triggering statement

Statement

One single trigger execution for all tuples affected
by the triggering statement

15

DB
MG

Granularity example

Table T

Transaction statement

Trigger execution

A row level trigger executes twice

A statement level trigger executes once
16

A B

1 5

2 9

8 20

UPDATE T

SET A=A+1

WHERE B<10;

DB
MG

Database Management Systems

Oracle Triggers

17

DB
MG

Trigger syntax

18

CREATE TRIGGER TriggerName

Mode Event {OR Event }

ON TargetTable

[[REFERENCING ReferenceName]

FOR EACH ROW

[WHEN Predicate]]

PL/SQL Block

DB
MG

Trigger syntax

Mode is BEFORE or AFTER

Also INSTEAD OF but it should be avoided

19

CREATE TRIGGER TriggerName

Mode Event {OR Event }

ON TargetTable

[[REFERENCING ReferenceName]

FOR EACH ROW

[WHEN Predicate]]

PL/SQL Block

19

DB
MG

Trigger syntax

Event ON TargetTable is

INSERT

DELETE

UPDATE [OF ColumnName]

20

CREATE TRIGGER TriggerName

Mode Event {OR Event }

ON TargetTable

[[REFERENCING ReferenceName]

FOR EACH ROW

[WHEN Predicate]]

PL/SQL Block

DB
MG

Trigger syntax

FOR EACH ROW specifies row level execution
semantics

If omitted, the execution semantics is statement
level

21

CREATE TRIGGER TriggerName

Mode Event {OR Event }

ON TargetTable

[[REFERENCING ReferenceName]

FOR EACH ROW

[WHEN Predicate]]

PL/SQL Block

DB
MG

Trigger syntax

The old and new states of the row triggering a row
level trigger may be accessed by means of the

OLD.ColumnName variable

NEW.ColumnName variable

22

CREATE TRIGGER TriggerName

Mode Event {OR Event }

ON TargetTable

[[REFERENCING ReferenceName]

FOR EACH ROW

[WHEN Predicate]]

PL/SQL Block

DB
MG

Trigger syntax

To rename the state variables

REFERENCING OLD AS OldVariableName

similarly for NEW

23

CREATE TRIGGER TriggerName

Mode Event {OR Event }

ON TargetTable

[[REFERENCING ReferenceName]

FOR EACH ROW

[WHEN Predicate]]

PL/SQL Block

DB
MG

Trigger syntax

Only for row level execution semantics (i.e., FOR
EACH ROW)

A condition may be optionally specified

The old and new state variables may be accessed

24

CREATE TRIGGER TriggerName

Mode Event {OR Event }

ON TargetTable

[[REFERENCING ReferenceName]

FOR EACH ROW

[WHEN Predicate]]

PL/SQL Block

DB
MG

Trigger syntax

The action is

a sequence of SQL instructions

a PL/SQL block

No transactional and DDL instructions
25

CREATE TRIGGER TriggerName

Mode Event {OR Event }

ON TargetTable

[[REFERENCING ReferenceName]

FOR EACH ROW

[WHEN Predicate]]

PL/SQL Block

DB
MG

Trigger semantics

Execution modes

immediate before

immediate after

Granularity is

row (tuple)

statement

Execution is triggered by insert, delete, or update
statements in a transaction

26

DB
MG

Execution algorithm

1. Before statement triggers are executed

2. For each tuple in TargetTable affected by the
triggering statement

a) Before row triggers are executed

b) The triggering statement is executed

+ integrity constraints are checked on tuples

c) After row triggers are executed

3. Integrity constraints on tables are checked

4. After statement triggers are executed

27

DB
MG

Example

Trigger to manage reorder in an inventory stock

when the stocked quantity of a product goes
below a given threshold

a new order for the product should be issued

The following database schema is given

Inventory (Part#, QtyOnHand, ThresholdQty,
ReorderQty)

PendingOrders(Part#, OrderDate, OrderedQty)

28

DB
MG

Example

Trigger to manage reorder in an inventory stock

when the stocked quantity of a product goes
below a given threshold

a new order for the product should be issued

Event

Update of the quantity on hand for product x

Insert of a new product x

Execution semantics

After the modification event

Separate execution for each row of the Inventory
table

29

DB
MG

Trigger example

30

CREATE TRIGGER Reorder

AFTER UPDATE OF QtyOnHand OR INSERT ON Inventory

FOR EACH ROW

DB
MG

Example

Trigger to manage reorder in an inventory stock

when the stocked quantity of a product goes
below a given threshold

a new order for the product should be issued

Condition

The quantity on hand is below a given threshold

31

DB
MG

Trigger example

32

CREATE TRIGGER Reorder

AFTER UPDATE OF QtyOnHand OR INSERT ON Inventory

FOR EACH ROW

WHEN (NEW.QtyOnHand < NEW.ThresholdQty)

DB
MG

Example

Trigger to manage reorder in an inventory stock

when the stocked quantity of a product goes
below a given threshold

a new order for the product should be issued

Condition

The quantity on hand is below a given threshold

and there are no pending orders for product x

This part cannot be introduced into the WHEN
clause

Action

Issue an order with given reorder quantity for
product x 33

DB
MG

Example: Trigger body

34

DECLARE

N number;

BEGIN

select count(*) into N

from PendingOrders

where Part# = :NEW.Part#;

If (N=0) then

insert into PendingOrders(Part#,OrderedQty,OrderDate)

values (:NEW.Part#, :NEW.ReorderQty, SYSDATE);

end if;

END;

DB
MG

Complete trigger example

35

CREATE TRIGGER Reorder

AFTER UPDATE OF QtyOnHand OR INSERT ON Inventory

FOR EACH ROW

WHEN (NEW.QtyOnHand < NEW. ThresholdQty)

DECLARE

N number;

BEGIN

select count(*) into N

from PendingOrders

where Part# = :NEW.Part#;

If (N=0) then

insert into PendingOrders(Part#,OrderedQty,OrderDate)

values (:NEW.Part#, :NEW.ReorderQty, SYSDATE);

end if;

END;

DB
MG

Database Management Systems

Triggers for materialized view maintenance

36

DB
MG

Triggers for materialized view maintenance

Materialized views are queries persistently stored
in the database

provide increased performance

contain redundant information

e.g., aggregate computations

Triggers are exploited to maintain redundant data

Propagate data modifications on tables to
materialized view

3737

DB
MG

Design example (3)

Tables

Student S (SId, SName, DCId)

Degree course DC (DCId, DCName)

Materialized view

Enrolled students ES (DCId, TotalStudents)

For each degree course, TotalStudents counts the
total number of enrolled students

Defined by query

38

SELECT DCId, COUNT(*)

FROM S

GROUP BY DCId;

38

DB
MG

Design example (3)

Tables

Student S (SId, SName, DCId)

Degree course DC (DCId, DCName)

Materialized view

Enrolled students ES (DCId, TotalStudents)

For each degree course, TotalStudents counts the
total number of enrolled students

A new degree course is inserted in materialized
view ES when the first student is enrolled in it

A degree course is deleted from ES when the last
student quits it

3939

DB
MG

Design example (3)

Database schema

S (SId, SName, DCId)

DC (DCId, DCName)

ES (DCId, TotalStudents)

Propagate modifications on table S to
materialized view (table) ES

Inserting new tuples into S

Deleting tuples from S

Updating the DCId attribute in one or more tuples
of S

4040

DB
MG

Design example (3)

Design three triggers to manage separately each
data modification

Insert trigger, delete trigger, update trigger

All triggers share the same execution semantics

Execution semantics

after the modification takes place

Table ES is updated after table S has been modified

row level

Separate execution for each tuple of table S

significantly simpler to implement

4141

DB
MG

Insert trigger (3)

Event

insert on S

No condition

It is always executed

Action

if table ES contains the DCId in which the student
is enrolled

increment TotalStudents

otherwise
add a new tuple in table ES for the degree course,
with TotalStudents set to 1

4242

DB
MG

43

CREATE TRIGGER InsertNewStudent

AFTER INSERT ON S

FOR EACH ROW

DECLARE N number;

BEGIN

--- check if table ES contains the tuple for the degree course

--- NEW.DCId in which the student enrolls -> COUNT the number of

--- tuple and store the result into N

if (N <> 0) then

--- the tuple for the NEW.DCId degree course is available in

--- ES → UPDATE ES

else

--- no tuple for the NEW.DCId degree course available in ES

--- → INSERT INTO ES

end if;

END;

Insert trigger (3)

DB
MG

44

Insert trigger (3)

CREATE TRIGGER InsertNewStudent

AFTER INSERT ON S

FOR EACH ROW

DECLARE

N number;

BEGIN

--- check if table ES contains the tuple for the degree

--- course NEW.DCId in which the student enrolls

select count(*) into N

from ES

where DCId = :NEW. DCId;

44

DB
MG

45

Insert trigger (3)

if (N <> 0) then

--- the tuple for the NEW.DCId degree course is

--- available in ES

update ES

set TotalStudents = TotalStudents +1

where DCId = :NEW.DCId;

else

--- no tuple for the NEW.DCId degree course is

--- available in ES

insert into ES (DCId, TotalStudents)

values (:NEW.DCId, 1);

end if;

END; 45

DB
MG

Delete trigger (3)

Event

delete from S

No condition

It is always executed

Action

if the student was the only student enrolled in the
degree course

delete the corresponding tuple from ES

otherwise

decrement TotalStudents

4646

DB
MG

47

Delete trigger (3)

CREATE TRIGGER DeleteStudent

AFTER DELETE ON S

FOR EACH ROW

DECLARE

N number;

BEGIN

--- read the number of students enrolled on the degree course

--- OLD.DCId and store it into N

if (N > 1) then

--- there are many enrolled students -> UPDATE ES

else

--- there is a single enrolled student -> DELETE the tuple FROM ES

end if;

END;
47

DB
MG

48

Delete trigger (3)

CREATE TRIGGER DeleteStudent

AFTER DELETE ON S

FOR EACH ROW

DECLARE

N number;

BEGIN

--- read the number of students enrolled on

--- the degree course OLD.DCId

select TotalStudents into N

from ES

where DCId = :OLD.DCId;

48

DB
MG

49

Delete trigger (3)

if (N > 1) then

--- there are many enrolled students

update ES

set TotalStudents = TotalStudents – 1

where DCId = :OLD.DCId;

else

--- there is a single enrolled student

delete from ES

where DCId = :OLD.DCId;

end if;

END;

49

DB
MG

Update trigger (3)

Event

Update of DCId on S

No condition

It is always executed

Action

update table ES for the degree course where the
student was enrolled

decrement TotalStudents, or delete tuple if last
student

update table ES for the degree course where the
student is currently enrolled

increment TotalStudents, or insert new tuple if first
student

5050

DB
MG

51

Update trigger (3)

CREATE TRIGGER UpdateDegreeCourse
AFTER UPDATE OF DCId ON S

FOR EACH ROW

DECLARE

N number;

BEGIN

--- read the number of students enrolled in

--- degree course OLD.DCId

select TotalStudents into N

from ES

where DCId = :OLD.DCId;

51

DB
MG

52

Update trigger (3)

if (N > 1) then

--- there are many enrolled students

update ES

set TotalStudents = TotalStudents – 1

where DCId = :OLD.DCId;

else

--- there is a single enrolled student

delete from ES

where DCId = :OLD.DCId;

end if;

52

DB
MG

53

Update trigger (3)

--- check if table ES contains the tuple for the degree
--- course NEW.DCId in which the student is enrolled

select count(*) into N

from ES

where DCId = :NEW. DCId;

53

DB
MG

54

Update trigger (3)

if (N <> 0) then

--- the tuple for the NEW.DCId degree course is available in ES

update ES

set TotalStudents = TotalStudents +1

where DCId = :NEW.DCId;

else

--- no tuple for the NEW.DCId degree course is available in ES

insert into ES (DCId, TotalStudents)

values (:NEW.DCId, 1);

end if;

END;

54

