7
=
0
)
7
>
)
V
7
S
a
S
i)
=
(@]

Triggers

>~ Active Database Systems
>~ Oracle Triggers
>~ Triggers for materialized view managament

7
=
0
)
7
>
)
wid
=
0
=
0
o
-
c
S
=
V
7
S
a
S
i)
=
(@]

Active Database Systems

>~ Traditional DBMS operation is passive

® (Queries and updates are explicitly requested by
users

® The knowledge of processes operating on data is
typically embedded into applications

>~ Active database systems

® Reactivity is a service provided by a normal DBMS

® Reactivity monitors specific database events and
triggers actions in response

>~ Reactivity is provided by automatically executing
rules
>~ Rules are in the form
® Event
® Condition
® Action

> Also called active or ECA rules

Active rules

> Event

® Database modification operation
>~ Condition

® Predicate on the database state

® If the condition is true, the action is executed
2 Action

® Sequence of SQL instructions or application
procedure

>~ Component of the DBMS, in charge of
® Tracking events
® Executing rules when appropriate
® based on the execution strategy of the DBMS

> Rule execution is interleaved with traditional
transaction execution

Example

>~ The active rule manages reorder in an inventory
stock

® when the stocked quantity of a product goes
below a given threshold

® a new order for the product should be issued
2 Event

® Update of the quantity on hand for product x

® Insert of a new product x

Example

2~ The active rule manages reorder in an inventory
stock

® when the stocked quantity of a product goes
below a given threshold

® a new order for the product should be issued
2~ Condition
® The quantity on hand is below a given threshold
and there are no pending orders for product x
2 Action

® Issue an order with given reorder quantity for
product x

- -
‘ - ot

&, o . 2D > -
- i, i ‘Q&\ . - /

.

Applications of active rules

>~ Internal applications
® maintenance of complex integrity constraints
® replication management
® materialized view maintenance

>~ Business Rules

® Incorporate into the DBMS application knowledge
® E.g., reorder rule

>~ Alerters
® widely used for notification

10

Triggers

>~ Commercial products implement active rules by
means of friggers

>~ SQL provides instructions for defining triggers

® Triggers are defined by means of the DDL
instruction CREATE TRIGGER

> Trigger syntax and semantics are covered in the
SQL3 standard

® Some commercial products implement different
features with respect to the standard

11

2 Event

® Insert, delete, update of a table

® Each trigger can only monitor events on a single
table

>~ Condition

® SQL predicate (it is optional)
2 Action

® Sequence of SQL instructions

® Proprietary programming language blocks
® e.g. Oracle PL/SQL

® Java block
12

When the events take place
If the condition is true
Then the action is executed

>~ Seems very simple but...
® Execution modes
® Execution granularity

triggering]
'evaluation]

‘execution]

13

>~ Immediate

® The trigger is executed /mmediately before or after
the triggering statement

>~ Deferred
® The trigger is executed immediately before commit

>~ Only the immediate option is available in
commercial systems

14

“ - ‘*_.

= < \ = _‘;’ =
> q' , fahen ~ - 4 =
. ,' = i ‘Q&\ ~ -

.

Execution granularity

>~ Tuple (or row level)

® One separate execution of the trigger for each
tuple affected by the triggering statement

2 Statement

® One single trigger execution for all tuples affected
by the triggering statement

15

>> Table T A B
1 5
2 9
8 20

2 Transaction statement UPDATET
SET A=A+1
WHERE B<10;

2 Trigger execution
® A row level trigger executes twice
® A statement level trigger executes once

16

7
=
0
)
7
>
)
wid
=
0
=
0
o
-
c
S
=
V
7
S
a
S
i)
=
(@]

Oracle Triggers

17

Trigger syntax

CREATE TRIGGER 7riggerName
Mode Event {OR Event}

ON T7argetiable

[[REFERENCING ReferenceName]
FOR EACH ROW

[WHEN Predicate]]

PL/SQL Block

CREATE TRIGGER 7riggerName

Mode Event {OR Event}
[ON largetiable]
[[REFERENCING ReferenceName]
FOR EACH ROW
[WHEN Predicate]]
PL/SQL Block

> Mode is BEFORE or AFTER
® Also INSTEAD OF but it should be avoided

19

CREATE TRIGGER 7riggerName

Mode Event {OR Event}
[ON largetiable]
[[REFERENCING ReferenceName]
FOR EACH ROW
[WHEN Predicate]]
PL/SQL Block

> Event ON Targetiable is
® INSERT
® DELETE
® UPDATE [OF ColumnName]

20

CREATE TRIGGER 7riggerName
Mode Event {OR Event}

ON T7argetiable

[[REFERENCING ReferenceName]

FOR EACH ROW
[WHEN Predicate]]
PL/SQL Block

>~ FOR EACH ROW specifies row level execution
semantics

® If omitted, the execution semantics is statement
level

G 21

CREATE TRIGGER 7riggerName
Mode Event {OR Event}

ON T7argetiable

[[REFERENCING ReferenceName]

FOR EACH ROW
[WHEN Predicate]]
PL/SQL Block

>~ The old and new states of the row triggering a row
level trigger may be accessed by means of the

® QOLD.ColumnName variable
® NEW.ColumnName variable

G 22

CREATE TRIGGER 7riggerName
Mode Event {OR Event }
ON T7argetiable

[[REFERENCING ReferenceName]
FOR EACH ROW

[WHEN Predicate]]

PL/SQL Block

> To rename the state variables

® REFERENCING OLD AS OldVariableName
® similarly for NEW

23

CREATE TRIGGER 7riggerName
Mode Event {OR Event}

ON T7argetiable

[[REFERENCING ReferenceName]
FOR EACH ROW

[WHEN Predicate]]
PL/SQL Block

>~ Only for row level execution semantics (i.e., FOR
EACH ROW)

® A condition may be optionally specified
® The old and new state variables may be accessed

G 24

Trigger syntax

CREATE TRIGGER 7riggerName
Mode Event {OR Event}

ON T7argetiable

[[REFERENCING ReferenceName]
FOR EACH ROW

[WHEN Predicate]]

PL/SQL Block

> The action is

® a sequence of SQL instructions
® a PL/SQL block

> Mo transactional and DDL instructions
DG

25

> Execution modes
® immediate before
® immediate after

>~ Granularity is
® row (tuple)
® statement

>~ Execution is triggered by insert, delete, or update
statements in a transaction

26

Before statement triggers are executed
For each tuple in 7argetTable affected by the
triggering statement
a) Before row triggers are executed
b) The triggering statement is executed

+ integrity constraints are checked on tuples
c) After row triggers are executed

Integrity constraints on tables are checked
After statement triggers are executed

27

Example

> Trigger to manage reorder in an inventory stock

® when the stocked quantity of a product goes
below a given threshold

® a new order for the product should be issued

>~ The following database schema is given

Inventory (Part#, QtyOnHand, ThresholdQty,
ReorderQty)

PendingOrders(Part#, OrderDate, OrderedQty)

28

Example

> Trigger to manage reorder in an inventory stock

® when the stocked quantity of a product goes
below a given threshold

® a new order for the product should be issued
2 Event

® Update of the quantity on hand for product x

® Insert of a new product x

2 Execution semantics
® After the modification event

® Separate execution for each row of the Inventory
table

29

CREATE TRIGGER Reorder
AFTER UPDATE OF QtyOnHand OR INSERT ON Inventory
FOR EACH ROW

Example

> Trigger to manage reorder in an inventory stock

® when the stocked quantity of a product goes
below a given threshold

® a new order for the product should be issued

>~ Condition
® The quantity on hand is below a given threshold

31

Trigger example

CREATE TRIGGER Reorder

AFTER UPDATE OF QtyOnHand OR INSERT ON Inventory
FOR EACH ROW

WHEN (NEW.QtyOnHand < NEW.ThresholdQty)

32

Example

> Trigger to manage reorder in an inventory stock

® when the stocked quantity of a product goes
below a given threshold

® a new order for the product should be issued

>~ Condition
® The quantity on hand is below a given threshold

and there are no pending orders for product x
® This part cannot be introduced into the WHEN
clause

2 Action

® [ssue an order with given reorder quantity for
product x 33

K\ 1 .

Example: Trigger body

DECLARE

N number;

BEGIN

select count(*) into N

from PendingOrders

where Part# = :NEW.Part#;

If (N=0) then
insert into PendingOrders(Part#,0rderedQty,OrderDate)
values (:NEW.Part#, :NEW.ReorderQty, SYSDATE);

end if;

END;

CREATE TRIGGER Reorder

AFTER UPDATE OF QtyOnHand OR INSERT ON Inventory

FOR EACH ROW

WHEN (NEW.QtyOnHand < NEW. ThresholdQty)

DECLARE

N number;

BEGIN

select count(*) into N

from PendingOrders

where Part# = :NEW.Part#;

If (N=0) then
insert into PendingOrders(Part#,0rderedQty,OrderDate)
values (:NEW.Part#, :NEW.ReorderQty, SYSDATE);

end if;

END; 35

Database Management Systems

Triggers for materialized view maintenance

>~ Materialized views are queries persistently stored
in the database

® provide increased performance
® contain redundant information
® c.g., aggregate computations
> Triggers are exploited to maintain redundant data

® Propagate data modifications on tables to
materialized view

37

> > Tables

® Student S (SId, SName, DCId)
® Degree course DC (DCId, DCName)

> Materialized view

® Enrolled students ES (DCId, TotalStudents)

® For each degree course, TotalStudents counts the
total number of enrolled students

® Defined by query

SELECT DCId, COUNT(*)
FROM S
GROUP BY DClId;

38

> > Tables

® Student S (SId, SName, DCId)
® Degree course DC (DCId, DCName)

> Materialized view

® Enrolled students ES (DCId, TotalStudents)

® For each degree course, TotalStudents counts the
total number of enrolled students

® A new degree course is inserted in materialized
view ES when the first student is enrolled in it

® A degree course is deleted from ES when the last
student quits it

S6

> > Database schema

S (SId, SName, DCId)
DC (DCId, DCName)
ES (DCId, TotalStudents)
>~ Propagate modifications on table S to
materialized view (table) ES
® Inserting new tuples into S
® Deleting tuples from S

® Updating the DCId attribute in one or more tuples
of S

G 40

>~ Design three triggers to manage separately each
data modification

® Insert trigger, delete trigger, update trigger
® All triggers share the same execution semantics
2 Execution semantics

® after the modification takes place
® Table ES is updated after table S has been modified

® row leve/

® Separate execution for each tuple of table S
® significantly simpler to implement

41

> Event

® inserton S
>~ No condition

® [t is always executed
> Action

® if table ES contains the DCId in which the student
is enrolled

® increment TotalStudents
® otherwise

® add a new tuple in table ES for the degree course,
with TotalStudents set to 1

42

CREATE TRIGGER InsertNewStudent
AFTER INSERT ON S
FOR EACH ROW
DECLARE N number;
BEGIN
--- check if table ES contains the tuple for the degree course
--- NEW.DCId in which the student enrolls -> COUNT the number of
--- tuple and store the result into N
if (N <> 0) then
--- the tuple for the NEW.DCId degree course is available in
--- ES > UPDATE ES
else
--- no tuple for the NEW.DCId degree course available in ES
--- - INSERT INTO ES
end if;

END: *

CREATE TRIGGER InsertNewStudent

AFTER INSERT ON S

FOR EACH ROW

DECLARE

N number;

BEGIN

--- check if table ES contains the tuple for the degree
--- course NEW.DCId in which the student enrolls
select count(*) into N

from ES

where DCId = :NEW. DCId;

44

if (N <> 0) then
--- the tuple for the NEW.DCId degree course is
--- available in ES
update ES
set TotalStudents = TotalStudents +1
where DCId = :NEW.DCId;
else
--- no tuple for the NEW.DCId degree course is
--- available in ES
insert into ES (DCId, TotalStudents)
values (:NEW.DCId, 1);
end if;
END; 45

p, == -
I
” - > i

ete trigger (3)

> Event
® delete from S
>~ No condition
® [t is always executed

2 Action

® if the student was the only student enrolled in the
degree course

® delete the corresponding tuple from ES

® otherwise
® decrement TotalStudents

46

D

56

CREATE TRIGGER DeleteStudent
AFTER DELETE ON S
FOR EACH ROW
DECLARE
N number;
BEGIN
--- read the number of students enrolled on the degree course
--- OLD.DCId and store it into N
if (N> 1) then
--- there are many enrolled students -> UPDATE ES
else
--- there is a single enrolled student -> DELETE the tuple FROM ES
end if;

END;
47

CREATE TRIGGER DeleteStudent
AFTER DELETE ON S

FOR EACH ROW

DECLARE

N number;

BEGIN

--- read the number of students enrolled on
--- the degree course OLD.DCId
select TotalStudents into N

from ES

where DCId = :OLD.DCId;

48

if (N> 1) then
--- there are many enrolled students
update ES
set TotalStudents = TotalStudents — 1
where DCId = :OLD.DCId;

else
--- there is a single enrolled student
delete from ES
where DCId = :OLD.DCId;

end if;

END;

2 Event

® Update of DCId on S

>~ No condition
® [t is always executed

2 Action

® update table ES for the degree course where the
student was enrolled

® decrement TotalStudents, or delete tuple if last
student

® update table ES for the degree course where the
student /s currently enrolled

® increment TotalStudents, or insert new tuple if first

student
50

CREATE TRIGGER UpdateDegreeCourse
AFTER UPDATE OF DCId ON S

FOR EACH ROW

DECLARE

N number;

BEGIN

--- read the number of students enrolled in
--- degree course OLD.DCId

select TotalStudents into N

from ES

where DCId = :OLD.DCId;

51

if (N> 1) then
--- there are many enrolled students
update ES
set TotalStudents = TotalStudents — 1
where DCId = :OLD.DCId;

else
--- there is a single enrolled student
delete from ES
where DCId = :OLD.DCId;

end if;

--- check if table ES contains the tuple for the degree
--- course NEW.DCId in which the student is enrolled

select count(*) into N
from ES
where DCId = :NEW. DCId;

if (N <> 0) then

--- the tuple for the NEW.DCId degree course is available in ES
update ES
set TotalStudents = TotalStudents +1
where DCId = :NEW.DCId;

else
--- no tuple for the NEW.DCId degree course is available in ES
insert into ES (DCId, TotalStudents)
values (:NEW.DCId, 1);
end if;
END;

