7
=
0
)
7
>
)
wid
=
0
=
0
o
-
c
S
=
V
7
S
a
S
i)
=
(@]

Oracle Triggers

Trigger syntax

CREATE TRIGGER 7riggerName
Mode Event {OR Event}

ON T7argetiable

[[REFERENCING ReferenceName]
FOR EACH ROW

[WHEN Predicate]]

PL/SQL Block

> The action is

® a sequence of SQL instructions
® a PL/SQL block

> Mo transactional and DDL instructions
DBG i

Before statement triggers are executed
For each tuple in 7argetTable affected by the
triggering statement
a) Before row triggers are executed
b) The triggering statement is executed

+ integrity constraints are checked on tuples
c) After row triggers are executed

Integrity constraints on tables are checked
After statement triggers are executed

>~ The execution order for triggers with the same
event, mode and granularity is not specified

® it is a source of non determinism

>~ When an error occurs
® rollback of all operations performed by the triggers

® rollback of the triggering statement in the
triggering transaction

> Trigger execution may activate other triggers

® Cascaded trigger activation may lead to non
termination of trigger execution

>~ A maximum length for the cascading trigger
execution may be set

® default = 32 triggers
> If the maximum is exceeded
® an execution error is returned

= v

Mutating tables

2> A mutating table is the table modified by the
statement (i.e., event) triggering the trigger
>~ The mutating table
® cannot be accessed in row level triggers
® may only be accessed in statement triggers
>~ Limited access on mutating tables only
characterizes Oracle applications

® accessing mutating tables is a/ways allowed in
SQL3

Database Management Systems

Guidelines in writing triggers in Oracle

> > Execution Mode INSTEAD OF is allowed in
Oracle but it should be avoided

> Usage of before triggers in Oracle to be
compliant with the standard
® Modifications of the NEW variable in tuples

affected by the triggering statement are
allowed in before triggers

® Other databases modifications apart those
reported in the previous point are not allowed on
before triggers

® Before triggers cannot trigger other triggers

7
=
0
)
7
>
)
wid
=
0
=
0
o
-
c
S
=
V
7
S
a
S
i)
=
(@]

Trigger Design

>~ The design of a single trigger is usually simple

® [dentify
® execution semantics
® event
® condition (optional)
® action

10

>~ Understanding mutual interactions among
triggers is more complex
® The action of one trigger may be the event of a
different trigger
® Cascaded execution

>~ If mutual triggering occurs
® Infinite execution is possible

11

2 Termination

® For an arbitrary database state and user
transaction, trigger execution terminates in a final
state (also after an abort)

>~ Confluence

® For an arbitrary database state and user
transaction, trigger execution terminates in a
unigue final state, independently of the execution
order of triggers

>~ Termination is the most important property

>~ Confluence is enforced by deterministic trigger

execution L
DG

>~ Termination is guaranteed at run time by
aborting trigger execution after a given cascading
length

>~ Termination may be verified at design time by
means of the triggering graph
® a node for each trigger
® a directed edge T, =T, if trigger T, is performing an
action triggering trigger T;
>~ A cycle in the graph shows potential non

terminating executions N

Example

> Trigger managing salary amounts

® \When a given average salary value is exceeded, a
salary reduction is automatically enforced

>~ The following table is given
Employee (Emp#, Ename, ..., Salary)
2 Event
® Update of the Salary attribute in Employee

® Insert into Employee
® Will write only trigger for update

14

Example

> Trigger managing salary amounts

® \When a given average salary value is exceeded, a
salary reduction is automatically enforced

>~ The following table is given

Employee (Emp#, Ename, ..., Salary)
2 Execution semantics

® After the modification events

® Separate execution for each update instruction
>~ No condition for execution

15

Example

CREATE TRIGGER SalaryMonitor
AFTER UPDATE OF Salary ON Employee
FOR EACH STATEMENT
BEGIN
update Employee
set Salary = Salary * K
where 2500 < (select AVG (Salary) from Employee);
END;

The value of K may be _
K=0.9 — execution terminates SalaryMonitor
K=1.1 — infinite execution

- -
“ - Sl

&, o . 2D > -
- s "i- K\ . - /

.

Trigger applications

>~ Internal applications
® maintenance of complex integrity constraints
® replication management
® materialized view maintenance

>~ Business Rules

® Incorporate into the DBMS application knowledge
® E.g., reorder rule

>~ Alerters
® widely used for notification

17

> Triggers are exploited to enforce complex
integrity constraints

>~ Design procedure

1. Write the constraint as a SQL predicate
® It provides a condition for the trigger execution

2. Identify the events which may violate the
constraint

® j.e. the condition

3. Define the constraint management technique in
the action

18

- -
‘ . ot

X q' , igpen - - 4 ——
i, i ‘Q&\ ~ -

.

Desigh example (1)

>~ The following tables are given
® Supplier S (S#, SName, ...)
® Part P (P#, PName, ...)
® Supply SP (S#, P#, Qty)
>~ Constraint to be enforced

® A part may be supplied by at most 10 different
suppliers

19

“ - ‘*_.

= < \ = _‘;’ =
> q' , fahen ~ - 4 =
. ,' = i ‘Q&\ ~ -

.

Desigh example (1)

>~ Constraint predicate

select P#

from SP

group by P#

having count(*) > 10

® set of parts violating the constraint

2 Events
® insert on SP
® update of P# on SP

2 Action

® reject the violating transaction
20

2 Execution semantics

® after the modification

® statement level
® to capture the effect of the entire modification
® (Oracle) to allow access to the mutating table

>~ (Oracle) No condition

® The condition cannot be specified in the WHEN
clause

® [t is checked in the trigger body
>~ Design for Oracle trigger semantics

21

CREATE TRIGGER TooManySuppliers
AFTER UPDATE OF P# OR INSERT ON SP
DECLARE
N number;
BEGIN
select count(*) into N
from SP
where P# IN (select P# from SP
group by P#
having count(*) > 10);
if (N <> 0) then
raise_application_error (xxx, ‘constraint violated’);
end if;
END;

22

>~ The following tables are given
® Supplier S (S#, SName, ...)
® Part P (P#, PName, ...)
® Supply SP (S#, P#, Qty)
>~ Constraint to be enforced

® The quantity of a product supply cannot be larger
than 1000. If it is larger, trim it to 1000.

> Check constraints do not allow compensating
actions

® Implement with a trigger

23

“ - ‘*_.

X q' , igpen - - 4 ——
" ,' = i ‘Q&\ ~ -

.

Desigh example (2)

>~ Constraint predicate

® Qty > 1000

® [t is also the trigger condition
2 Events

® insert on SP

® update of Qty on SP
2 Action

® Qty = 1000

24

2 Execution semantics

® bpefore the modification takes place

® jts effect can be changed before the constraint is
checked

® row level
® cach tuple is modified separately

25

CREATE TRIGGER ExcessiveQty

BEFORE UPDATE OF Qty OR INSERT ON SP
FOR EACH ROW

WHEN (NEW.Qty > 1000)

BEGIN

:NEW.Qty := 1000;

END;

26

