

 Spark MLlib provides a (limited) set of
classification algorithms
 Logistic regression

▪ Binomial logistic regression

▪ Multinomial logistic regression

 Decision tree classifier

 Random forest classifier

 Gradient-boosted tree classifier

 Multilayer perceptron classifier

 Linear Support Vector Machine

 2

 All the available classification algorithms are
based on two phases
 Model generation based on a set of training data

 Prediction of the class label of new unlabeled
data

 All the classification algorithms available in
Spark work only on numerical attributes
 Categorical values must be mapped to integer

values (one distinct value per class) before
applying the MLlib classification algorithms

3

 All the Spark classification algorithms are
trained on top of an input DataFrame containing
(at least) two columns
 label

▪ The class label, i.e., the attribute to be predicted by the
classification model
▪ It is an integer value (casted to a double)

 features
▪ A vector of doubles containing the values of the predictive

attributes of the input records/data points
▪ The data type of this column is pyspark.ml.linalg.Vector

 Both dense and sparse vectors can be used

4

 Consider the following classification problem
 We want to predict if new customers are good

customers or not based on their monthly income
and number of children

 Predictive attributes
▪ Monthly income

▪ Number of children

 Class Label (target attribute)
▪ Customer type: Good customer/Bad customer

▪ We map “Good customer” to 1 and “Bad customer” to 0

5

 Example of input training data

 i.e., the set of customers for which the value of
the class label is known

 They are used by the classification algorithm to
infer/train a classification model

6

CustomerType MonthlyIncome NumChildren

Good customer 1400.0 2

Bad customer 11105.5 0

Good customer 2150.0 2

 Input training data

 Input training DataFrame that must be provided as
input to train an MLlib classification algorithm

 7

label features

1.0 [1400.0 , 2.0]

0.0 [11105.5, 0.0]

1.0 [2150.0 , 2.0]

CustomerType MonthlyIncome NumChildren

Good customer 1400.0 2

Bad customer 11105.5 0

Good customer 2150.0 2

 Input training data

 Input training DataFrame that must be provided as
input to train an MLlib classification algorithm

 8

label features

1.0 [1400.0 , 2.0]

0.0 [11105.5, 0.0]

1.0 [2150.0 , 2.0]

CustomerType MonthlyIncome NumChildren

Good customer 1400.0 2

Bad customer 11105.5 0

Good customer 2150.0 2

The categorical values of CustomerType (the class label column) must
be mapped to integer values (finally casted to doubles)

 Input training data

 Input training DataFrame that must be provided as
input to train an MLlib classification algorithm

 9

label features

1.0 [1400.0 , 2.0]

0.0 [11105.5, 0.0]

1.0 [2150.0 , 2.0]

CustomerType MonthlyIncome NumChildren

Good customer 1400.0 2

Bad customer 11105.5 0

Good customer 2150.0 2

The values of the predictive attributes are “stored” in vectors of doubles.
One single vector for each input record.

 Input training data

 Input training DataFrame that must be provided as
input to train an MLlib classification algorithm

 10

label features

1.0 [1400.0 , 2.0]

0.0 [11105.5, 0.0]

1.0 [2150.0 , 2.0]

CustomerType MonthlyIncome NumChildren

Good customer 1400.0 2

Bad customer 11105.5 0

Good customer 2150.0 2

In the generated DataFrame the names of the predictive attributes are
not preserved.

 The following slides show how to

 Create a classification model based on the logistic
regression algorithm on structured data

▪ The model is inferred by analyzing the training data, i.e.,
the example records/data points for which the value of
the class label is known

 Apply the model to new unlabeled data

▪ The inferred model is applied to predict the value of the
class label of new unlabeled records/data points

12

 In the following example, the input training data
is stored in a text file that contains
 One record/data point per line
 The records/data points are structured data with a

fixed number of attributes (four)
▪ One attribute is the class label

▪ We suppose that the first column of each record contains the class
label

▪ The other three attributes are the predictive attributes that
are used to predict the value of the class label

▪ The values are already doubles (we do not need to convert
them)

 The input file has the header line

13

 Consider the following example input training
data file
label,attr1,attr2,attr3
1.0,0.0,1.1,0.1
0.0,2.0,1.0,-1.0
0.0,2.0,1.3,1.0
1.0,0.0,1.2,-0.5

 It contains four records/data points
 This is a binary classification problem because

the class label assumes only two values
 0 and 1

14

 The first operation consists in transforming
the content of the input training file into a
DataFrame containing two columns

 label

▪ The double value that is used to specify the label of each
training record

 features

▪ It is a vector of doubles associated with the values of the
predictive features

15

 Input training file

 label,attr1,attr2,attr3

 1.0,0.0,1.1,0.1

 0.0,2.0,1.0,-1.0

 0.0,2.0,1.3,1.0

 1.0,0.0,1.2,-0.5

 Input training DataFrame to be created

16

label features

1.0 [0.0,1.1,0.1]

0.0 [2.0,1.0,-1.0]

0.0 [2.0,1.3,1.0]

1.0 [0.0,1.2,-0.5]

 Input training file

 label,attr1,attr2,attr3

 1.0,0.0,1.1,0.1

 0.0,2.0,1.0,-1.0

 0.0,2.0,1.3,1.0

 1.0,0.0,1.2,-0.5

 Input training DataFrame to be created

17

label features

1.0 [0.0,1.1,0.1]

0.0 [2.0,1.0,-1.0]

0.0 [2.0,1.3,1.0]

1.0 [0.0,1.2,-0.5]

Name of this column: label
Data type: double

 Input training file

 label,attr1,attr2,attr3

 1.0,0.0,1.1,0.1

 0.0,2.0,1.0,-1.0

 0.0,2.0,1.3,1.0

 1.0,0.0,1.2,-0.5

 Input training DataFrame to be created

18

label features

1.0 [0.0,1.1,0.1]

0.0 [2.0,1.0,-1.0]

0.0 [2.0,1.3,1.0]

1.0 [0.0,1.2,-0.5]

Name of this column: features
Data type: pyspark.ml.linalg.Vector

 The file containing the unlabeled data has the
same format of the training data file
 However, the first column is empty because the class

label is unknown
 We want to predict the class label value of each

unlabeled data by applying the classification
model that has been trained on the training data

 The predicted class label value of the unlabeled
data is stored in a new column, called
“prediction”, of the returned DataFrame

19

 Consider the following example input unlabeled
data file

label,attr1,attr2,attr3

,-1.0,1.5,1.3

,3.0,2.0,-0.1

,0.0,2.2,-1.5

 It contains three unlabeled records/data points
 Note that the first column is empty (the content

before the first comma is the empty string)

20

 Also the unlabeled data must be stored into a
DataFrame containing two columns

 label

 features

 A label value is required also for unlabeled
data

 Its value is set to null for all records

21

 Input unlabeled data file

 label,attr1,attr2,attr3

 ,-1.0,1.5,1.3

 ,3.0,2.0,-0.1

 ,0.0,2.2,-1.5

 Input unlabeled data DataFrame to be created

22

label features

null [-1.0,1.5,1.3]

null [3.0,2.0,-0.1]

null [0.0,2.2,-1.5]

 After the application of the classification
model on the unlabeled data, Spark returns a
new DataFrame containing
 The same columns of the input DataFrame

 A new column called prediction
▪ For each input unlabeled record, it contains the

predicted class label value

 Also two other columns, associated with the
probabilities of the predictions, are returned
▪ We do not consider them in the following example

23

 Input unlabeled data DataFrame

 Returned DataFrame with the predicted class label
values

 24

label features prediction rawPrediction probability

null [-1.0,1.5,1.3] 1.0 … …

null [3.0,2.0,-0.1] 0.0 … …

null [0.0,2.2,-1.5] 1.0 … …

label feature

null [-1.0,1.5,1.3]

null [3.0,2.0,-0.1]

null [0.0,2.2,-1.5]

 Input unlabeled data DataFrame

 Returned DataFrame with the predicted class label
values

 25

label features prediction rawPrediction probability

null [-1.0,1.5,1.3] 1.0 … …

null [3.0,2.0,-0.1] 0.0 … …

null [0.0,2.2,-1.5] 1.0 … …

label feature

null [-1.0,1.5,1.3]

null [3.0,2.0,-0.1]

null [0.0,2.2,-1.5] This column contains the predicted
class label values

from pyspark.mllib.linalg import Vectors
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.classification import LogisticRegression

input and output folders
trainingData = "ex_data/trainingData.csv"
unlabeledData = "ex_data/unlabeledData.csv"
outputPath = "predictionsLR/"

26

Training step

Create a DataFrame from trainingData.csv
Training data in raw format
trainingData = spark.read.load(trainingData,\
 format="csv",\
 header=True,\
 inferSchema=True)

27

Define an assembler to create a column (features) of type Vector
containing the double values associated with columns attr1, attr2, attr3
assembler = VectorAssembler(inputCols=["attr1", "attr2", "attr3"],\
 outputCol="features")

Apply the assembler to create column features for the training data
trainingDataDF = assembler.transform(trainingData)

28

Create a LogisticRegression object.
LogisticRegression is an Estimator that is used to
create a classification model based on logistic regression.
lr = LogisticRegression()

We can set the values of the parameters of the
Logistic Regression algorithm using the setter methods.
There is one set method for each parameter
For example, we are setting the number of maximum iterations to 10
and the regularization parameter. to 0.0.1
lr.setMaxIter(10)
lr.setRegParam(0.01)

Train a logistic regression model on the training data
classificationModel = lr.fit(trainingDataDF)

29

Prediction step

Create a DataFrame from unlabeledData.csv
Unlabeled data in raw format
unlabeledData = spark.read.load(unlabeledData,\
 format="csv", header=True, inferSchema=True)

Apply the same assembler we created before also on the unlabeled data
to create the features column
unlabeledDataDF = assembler.transform(unlabeledData)

Make predictions on the unlabled data using the transform() method of the
trained classification model transform uses only the content of 'features'
to perform the predictions
predictionsDF = classificationModel.transform(unlabeledDataDF)

30

The returned DataFrame has the following schema (attributes)
- attr1
- attr2
- attr3
- features: vector (values of the attributes)
- label: double (value of the class label)
- rawPrediction: vector (nullable = true)
- probability: vector (The i-th cell contains the probability that the current
record belongs to the i-th class
- prediction: double (the predicted class label)

Select only the original features (i.e., the value of the original attributes
attr1, attr2, attr3) and the predicted class for each record
predictions = predictionsDF.select("attr1", "attr2", "attr3", "prediction")

Save the result in an HDFS output folder
predictions.write.csv(outputPath, header="true")

31

 In the previous solution we applied the same
preprocessing steps on both training and
unlabeled data

 We applied the same assembler on both input
data

 We can use a pipeline to specify the common
phases we apply on both input data sets

32

from pyspark.mllib.linalg import Vectors
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.classification import LogisticRegression
from pyspark.ml import Pipeline
from pyspark.ml import PipelineModel

input and output folders
trainingData = "ex_data/trainingData.csv"
unlabeledData = "ex_data/unlabeledData.csv"
outputPath = "predictionsLR/"

33

Training step

Create a DataFrame from trainingData.csv
Training data in raw format
trainingData = spark.read.load(trainingData,\
 format="csv",\
 header=True,\
 inferSchema=True)

34

Define an assembler to create a column (features) of type Vector
containing the double values associated with columns attr1, attr2, attr3
assembler = VectorAssembler(inputCols=["attr1", "attr2", "attr3"],\
 outputCol="features")

Create a LogisticRegression object
LogisticRegression is an Estimator that is used to
create a classification model based on logistic regression.
lr = LogisticRegression()

We can set the values of the parameters of the
Logistic Regression algorithm using the setter methods.
There is one set method for each parameter
For example, we are setting the number of maximum iterations to 10
and the regularization parameter. to 0.0.1
lr.setMaxIter(10)
lr.setRegParam(0.01)

35

Define a pipeline that is used to create the logistic regression
model on the training data. The pipeline includes also
the preprocessing step
pipeline = Pipeline().setStages([assembler, lr])

Execute the pipeline on the training data to build the
classification model
classificationModel = pipeline.fit(trainingData)

Now, the classification model can be used to predict the class label
of new unlabeled data

36

Define a pipeline that is used to create the logistic regression
model on the training data. The pipeline includes also
the preprocessing step
pipeline = Pipeline().setStages([assembler, lr])

Execute the pipeline on the training data to build the
classification model
classificationModel = pipeline.fit(trainingData)

Now, the classification model can be used to predict the class label
of new unlabeled data

37

This is the sequence of Transformers and Estimators to
apply on the input data.

Prediction step

Create a DataFrame from unlabeledData.csv
Unlabeled data in raw format
unlabeledData = spark.read.load(unlabeledData,\
 format="csv", header=True, inferSchema=True)

Make predictions on the unlabled data using the transform() method of the
trained classification model transform uses only the content of 'features'
to perform the predictions. The model is associated with the pipeline and hence
also the assembler is executed
predictions = classificationModel.transform(unlabeledData)

38

The returned DataFrame has the following schema (attributes)
- attr1
- attr2
- attr3
- features: vector (values of the attributes)
- label: double (value of the class label)
- rawPrediction: vector (nullable = true)
- probability: vector (The i-th cell contains the probability that the current
record belongs to the i-th class
- prediction: double (the predicted class label)

Select only the original features (i.e., the value of the original attributes
attr1, attr2, attr3) and the predicted class for each record
predictions = predictionsDF.select("attr1", "attr2", "attr3", "prediction")

Save the result in an HDFS output folder
predictions.write.csv(outputPath, header="true")

39

 The following slides show how to

 Create a classification model based on the
decision tree algorithm on structured data

▪ The model is inferred by analyzing the training data, i.e.,
the example records/data points for which the value of
the class label is known

 Apply the model to new unlabeled data

▪ The inferred model is applied to predict the value of the
class label of new unlabeled records/data points

41

 The same example structured data already
used in the running example related to the
logistic regression algorithm are used also in
this example related to the decision tree
algorithm

 The main steps are the same of the previous
example

 The only difference is the definition and
configuration of the used classification algorithm

42

from pyspark.mllib.linalg import Vectors
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.classification import DecisionTreeClassifier
from pyspark.ml import Pipeline
from pyspark.ml import PipelineModel

input and output folders
trainingData = "ex_data/trainingData.csv"
unlabeledData = "ex_data/unlabeledData.csv"
outputPath = "predictionsLR/"

43

Training step

Create a DataFrame from trainingData.csv
Training data in raw format
trainingData = spark.read.load(trainingData,\
 format="csv",\
 header=True,\
 inferSchema=True)

44

Define an assembler to create a column (features) of type Vector
containing the double values associated with columns attr1, attr2, attr3
assembler = VectorAssembler(inputCols=["attr1", "attr2", "attr3"],\
 outputCol="features")

Create a DecisionTreeClassifier object.
DecisionTreeClassifier is an Estimator that is used to
create a classification model based on decision trees.
dt = DecisionTreeClassifier()

We can set the values of the parameters of the Decision Tree
For example we can set the measure that is used to decide if a
node must be split. In this case we set gini index
dt.setImpurity("gini")

45

Define a pipeline that is used to create the decision tree
model on the training data. The pipeline includes also
the preprocessing step
pipeline = Pipeline().setStages([assembler, dt])

Execute the pipeline on the training data to build the
classification model
classificationModel = pipeline.fit(trainingData)

Now, the classification model can be used to predict the class label
of new unlabeled data

46

Define a pipeline that is used to create the decision tree
model on the training data. The pipeline includes also
the preprocessing step
pipeline = Pipeline().setStages([assembler, dt])

Execute the pipeline on the training data to build the
classification model
classificationModel = pipeline.fit(trainingData)

Now, the classification model can be used to predict the class label
of new unlabeled data

47

This is the sequence of Transformers and Estimators to
apply on the input data.
A decision tree algorithm is used in this case

Prediction step

Create a DataFrame from unlabeledData.csv
Unlabeled data in raw format
unlabeledData = spark.read.load(unlabeledData,\
 format="csv", header=True, inferSchema=True)

Make predictions on the unlabled data using the transform() method of the
trained classification model transform uses only the content of 'features'
to perform the predictions. The model is associated with the pipeline and hence
also the assembler is executed
predictions = classificationModel.transform(unlabeledData)

48

The returned DataFrame has the following schema (attributes)
- attr1
- attr2
- attr3
- features: vector (values of the attributes)
- label: double (value of the class label)
- rawPrediction: vector (nullable = true)
- probability: vector (The i-th cell contains the probability that the current
record belongs to the i-th class
- prediction: double (the predicted class label)

Select only the original features (i.e., the value of the original attributes
attr1, attr2, attr3) and the predicted class for each record
predictions = predictionsDF.select("attr1", "attr2", "attr3", "prediction")

Save the result in an HDFS output folder
predictions.write.csv(outputPath, header="true")

49

 Usually the class label is a categorical value
(i.e., a string)

 As reported before, Spark MLlib works only
with numerical values and hence categorical
class label values must be mapped to integer
(and then double) values

 Processing and postprocessing steps are used to
manage this transformation

51

 Input training data

 Input DataFrame that must be generated as input
for the MLlib classification algorithms

52

label features

1.0 [0.0, 1.1, 0.1]

0.0 [2.0, 1.0, -1.0]

0.0 [2.0, 1.3, 1.0]

categoricalLabel Attr1 Attr2 Attr3

Positive 0.0 1.1 0.1

Negative 2.0 1.0 -1.0

Negative 2.0 1.3 1.0

 Input training data

 Input DataFrame that must be generated as input
for the MLlib classification algorithms

53

label features

1.0 [0.0, 1.1, 0.1]

0.0 [2.0, 1.0, -1.0]

0.0 [2.0, 1.3, 1.0]

categoricalLabel Attr1 Attr2 Attr3

Positive 0.0 1.1 0.1

Negative 2.0 1.0 -1.0

Negative 2.0 1.3 1.0

The categorical values of categoricalLabel (the class label column) must
be mapped to integer values (finally casted to doubles)

 The Estimator StringIndexer and the
Transformer IndexToString support the
transformation of categorical class label into
numerical one and vice versa

 StringIndexer maps each categorical value of the
class label to an integer (finally casted to a double)

 IndexToString is used to perform the opposite
operation

54

 Main steps
1. Use StringIndexer to extend the input DataFrame

with a new column, called “label”, containing the
numerical representation of the class label column

2. Create a column, called “features”, of type vector
containing the predictive features

3. Infer a classification model by using a classification
algorithm (e.g., Decision Tree, Logistic regression)

▪ The model is built by considering only the values of
features and label. All the other columns are not considered
by the classification algorithm during the generation of the
prediction model

55

4. Apply the model on a set of unlabeled data to
predict their numerical class label

5. Use IndexToString to convert the predicted
numerical class label values to the original
categorical values

56

 Input training file

 categoricalLabel,attr1,attr2,attr3

 Positive,0.0,1.1,0.1

 Negative,2.0,1.0,-1.0

 Negative,2.0,1.3,1.0

 Initial training DataFrame

57

categoricalLabel

features

Positive [0.0, 1.1, 0.1]

Negative [2.0, 1.0, -1.0]

Negative [2.0, 1.3, 1.0]

 Input training file

 categoricalLabel,attr1,attr2,attr3

 Positive,0.0,1.1,0.1

 Negative,2.0,1.0,-1.0

 Negative,2.0,1.3,1.0

 Initial training DataFrame

58

categoricalLabel

features

Positive [0.0, 1.1, 0.1]

Negative [2.0, 1.0, -1.0]

Negative [2.0, 1.3, 1.0]

String

Vector

 Initial training DataFrame

 Training DataFrame after StringIndexer

59

categoricalLabel

features label

Positive [0.0, 1.1, 0.1] 1.0

Negative [2.0, 1.0, -1.0] 0.0

Negative [2.0, 1.3, 1.0] 0.0

categoricalLabel

features

Positive [0.0, 1.1, 0.1]

Negative [2.0, 1.0, -1.0]

Negative [2.0, 1.3, 1.0]

 Initial training DataFrame

 Training DataFrame after StringIndexer

60

categoricalLabel

features label

Positive [0.0, 1.1, 0.1] 1.0

Negative [2.0, 1.0, -1.0] 0.0

Negative [2.0, 1.3, 1.0] 0.0

categoricalLabel

features

Positive [0.0, 1.1, 0.1]

Negative [2.0, 1.0, -1.0]

Negative [2.0, 1.3, 1.0]

Mapping generated
by StringIndexer:
-“Positive”: 1.o
-“Negative”: 0.0

 Input unlabeled data file

 categoricalLabel,attr1,attr2,attr3

 ,-1.0,1.5,1.3

 ,3.0,2.0,-0.1

 ,0.0,2.2,-1.5

 Initial unlabeled data DataFrame

61

categoricalLabel

features

null [-1.0, 1.5, 1.3]

null [3.0, 2.0, -0.1]

null [0.0, 2.2, -1.5]

 Initial unlabeled data DataFrame

 DataFrame after prediction + IndexToString

62

categoricalLabel

features

null [-1.0, 1.5, 1.3]

null [3.0, 2.0, -0.1]

null [0.0, 2.2, -1.5]

categoricalLabel

features label prediction predictedLabel …

… [-1.0, 1.5, 1.3] … 1.0 Positive

… [3.0, 2.0, -0.1] … 0.0 Negative

… [0.0, 2.2, -1.5] … 1.0 Positive

 Initial unlabeled data DataFrame

 DataFrame after prediction + IndexToString

63

categoricalLabel

features label prediction predictedLabel …

… [-1.0, 1.5, 1.3] … 1.0 Positive

… [3.0, 2.0, -0.1] … 0.0 Negative

… [0.0, 2.2, -1.5] … 1.0 Positive

categoricalLabel

features

null [-1.0, 1.5, 1.3]

null [3.0, 2.0, -0.1]

null [0.0, 2.2, -1.5]
Predicted label:
numerical version

Predicted label:
categorical/original version

 In the following example, the input training
data is stored in a text file that contains
 One record/data point per line

 The records/data points are structured data with a
fixed number of attributes (four)
▪ One attribute is the class label (categoricalLabel)

▪ Categorical attribute assuming two values: Positive, Negative

▪ The other three attributes (attr1, attr2, attr3) are the
predictive attributes that are used to predict the value of
the class label

 The input file has the header line

64

 The file containing the unlabeled data has
the same format of the training data file

 However, the first column is empty because the
class label is unknown

 We want to predict the class label value of
each unlabeled data by applying the
classification model that has been inferred on
the training data

65

from pyspark.mllib.linalg import Vectors
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.feature import StringIndexer
from pyspark.ml.feature import IndexToString
from pyspark.ml.classification import DecisionTreeClassifier
from pyspark.ml import Pipeline
from pyspark.ml import PipelineModel

input and output folders
trainingData = "ex_dataCategorical/trainingData.csv"
unlabeledData = "ex_dataCategorical/unlabeledData.csv"
outputPath = "predictionsDTCategoricalPipeline/"

66

Training step

Create a DataFrame from trainingData.csv
Training data in raw format
trainingData = spark.read.load(trainingData,\
 format="csv", header=True, inferSchema=True)

Define an assembler to create a column (features) of type Vector
containing the double values associated with columns attr1, attr2, attr3
assembler = VectorAssembler(inputCols=["attr1", "attr2", "attr3"],\
 outputCol="features")

67

The StringIndexer Estimator is used to map each class label
value to an integer value (casted to a double).
A new attribute called label is generated by applying
transforming the content of the categoricalLabel attribute.
labelIndexer = StringIndexer(inputCol="categoricalLabel", outputCol="label",\

 handleInvalid="keep").fit(trainingData)

68

The StringIndexer Estimator is used to map each class label
value to an integer value (casted to a double).
A new attribute called label is generated by applying
transforming the content of the categoricalLabel attribute.
labelIndexer = StringIndexer(inputCol="categoricalLabel", outputCol="label",\

 handleInvalid="keep").fit(trainingData)

69

This StringIndexer estimator is used to infer a transformer
that maps the categorical values of column
“categoricalLabel” to a set of integer values stored in the
new column called “label”.
The list of valid label values are extracted from the training
data

Create a DecisionTreeClassifier object.
DecisionTreeClassifier is an Estimator that is used to
create a classification model based on decision trees.
dt = DecisionTreeClassifier()

We can set the values of the parameters of the Decision Tree
For example we can set the measure that is used to decide if a
node must be split.
In this case we set gini index
dt.setImpurity("gini")

70

At the end of the pipeline we must convert indexed labels back
to original labels (from numerical to string).
The content of the prediction attribute is the index of the predicted class
The original name of the predicted class is stored in the predictedLabel
attribute.
IndexToString creates a new column (called predictedLabel in
this example) that is based on the content of the prediction column.
prediction is a double while predictedLabel is a string
labelConverter = IndexToString(inputCol="prediction", outputCol="predictedLabel",\

 labels=labelIndexer.labels)

71

At the end of the pipeline we must convert indexed labels back
to original labels (from numerical to string).
The content of the prediction attribute is the index of the predicted class
The original name of the predicted class is stored in the predictedLabel
attribute.
IndexToString creates a new column (called predictedLabel in
this example) that is based on the content of the prediction column.
prediction is a double while predictedLabel is a string
labelConverter = IndexToString(inputCol="prediction", outputCol="predictedLabel",\

 labels=labelIndexer.labels)

72

This IndexToString component is used to remap the numerical predictions
available in the “prediction” column to the original categorical values that are
stored in the new column called “predictedLabel”.
The mapping integer -> original string value is the one of labelIndexer

Define a pipeline that is used to create the decision tree
model on the training data. The pipeline includes also
the preprocessing and postprocessing steps
pipeline = Pipeline().setStages([assembler, labelIndexer, dt, labelConverter])

Execute the pipeline on the training data to build the
classification model
classificationModel = pipeline.fit(trainingData)

Now, the classification model can be used to predict the class label
of new unlabeled data

73

Define a pipeline that is used to create the decision tree
model on the training data. The pipeline includes also
the preprocessing and postprocessing steps
pipeline = Pipeline().setStages([assembler, labelIndexer, dt, labelConverter])

Execute the pipeline on the training data to build the
classification model
classificationModel = pipeline.fit(trainingData)

Now, the classification model can be used to predict the class label
of new unlabeled data

74

This Pipeline is composed of four steps

Prediction step

Create a DataFrame from unlabeledData.csv
Unlabeled data in raw format
unlabeledData = spark.read.load(unlabeledData,\
 format="csv", header=True, inferSchema=True)

Make predictions on the unlabled data using the transform() method of the
trained classification model transform uses only the content of 'features'
to perform the predictions. The model is associated with the pipeline and hence
also the assembler is executed
predictions = classificationModel.transform(unlabeledData)

75

The returned DataFrame has the following schema (attributes)
- attr1: double (nullable = true)
- attr2: double (nullable = true)
- attr3: double (nullable = true)
- features: vector (values of the attributes)
- label: double (value of the class label)
- rawPrediction: vector (nullable = true)
- probability: vector (The i-th cell contains the probability that the
current record belongs to the i-th class
- prediction: double (the predicted class label)
- predictedLabel: string (nullable = true)

Select only the original features (i.e., the value of the original attributes
attr1, attr2, attr3) and the predicted class for each record
predictions = predictionsDF.select("attr1", "attr2", "attr3", "predictedLabel")

76

The returned DataFrame has the following schema (attributes)
- attr1: double (nullable = true)
- attr2: double (nullable = true)
- attr3: double (nullable = true)
- features: vector (values of the attributes)
- label: double (value of the class label)
- rawPrediction: vector (nullable = true)
- probability: vector (The i-th cell contains the probability that the
current record belongs to the i-th class
- prediction: double (the predicted class label)
- predictedLabel: string (nullable = true)

Select only the original features (i.e., the value of the original attributes
attr1, attr2, attr3) and the predicted class for each record
predictions = predictionsDF.select("attr1", "attr2", "attr3", "predictedLabel")

77

“predictedLabel” is the column containing
the predicted categorical class label for the
unlabeled data

Save the result in an HDFS output folder
predictions.write.csv(outputPath, header="true")

78

 The following slides show how to
 Create a classification model based on the logistic

regression algorithm for textual documents
▪ A set of specific preprocessing estimators and transformers

are used to preprocess textual data

 Apply the model to new textual documents
 The input training dataset represents a textual

document collection
 Each line contains one document and its class

▪ The class label

▪ A list of words (the text of the document)

80

 Consider the following example file
Label,Text

1,The Spark system is based on scala

1,Spark is a new distributed system

0,Turin is a beautiful city

0,Turin is in the north of Italy
 It contains four textual documents
 Each line contains two attributes
 The class label (first attribute)

 The text of the document (second attribute)

81

 Input data before preprocessing

82

Label Text

1 The Spark system is based on scala

1 Spark is a new distributed system

0 Turin is a beautiful city

0 Turin is in the north of Italy

 A set of preprocessing steps must be applied
on the textual attribute before generating a
classification model

83

1. Since Spark ML algorithms work only on
“Tables” and double values, the textual part
of the input data must be translated in a set
of attributes to represent the data as a table

 Usually a table with an attribute for each word is
generated

84

2. Many words are useless (e.g., conjunctions)

 Stopwords are usually removed

85

 The words appearing in almost all documents
are not characterizing the data
 Hence, they are not very important for the

classification problem
 The words appearing in few documents allow

distinguish the content of those documents
(and hence the class label) with respect to the
others
 Hence, they are very important for the

classification problem

86

3. Traditionally a weight, based on the TF-IDF
measure, is used to assign a difference
importance to the words based on their
frequency in the collection

87

 Input data after the preprocessing
transformations (tokenization, stopword
removal, TF-IDF computation)

88

Label Spark system scala …..

1 0.5 0.3 0.75 ..

1 0.5 0.3 0 …

0 0 0 0 …

0 0 0 0 …

 The DataFrame associated with the input
data after the preprocessing transformations
must contain, as usual, the columns
 label

▪ Class label value

 features
▪ The preprocessed version of the input text

 There are also some other intermediate columns,
related to applied transformations, but they are
not considered by the classification algorithm

89

 The DataFrame associated with the input
data after the preprocessing transformations

90

label features text ….. …..

1 [0.5, 0.3, 0.75, ..] The Spark system is based on scala

1 [0.5, 0.3, 0, ..] Spark is a new distributed system … …

0 [0, 0, 0, ..] Turin is a beautiful city … …

0 [0, o, o, ..] Turin is in the north of Italy … …

 The DataFrame associated with the input
data after the preprocessing transformations

91

label features text ….. …..

1 [0.5, 0.3, 0.75, ..] The Spark system is based on scala

1 [0.5, 0.3, 0, ..] Spark is a new distributed system … …

0 [0, 0, 0, ..] Turin is a beautiful city … …

0 [0, o, o, ..] Turin is in the north of Italy … …

Only “label” and “features” are considered by the
classification algorithm

 In the following solution we will use a set of new
Transformers to prepare input data
 Tokenizer

▪ To split the input text in words

 StopWordsRemover
▪ To remove stopwords

 HashingTF
▪ To compute the (approximate) term frequency of each input

term

 IDF
▪ To compute the inverse document frequency of each input

word

92

 The input data (training and unlabeled data)
are stored in input csv files

 Each line contains two attributes

▪ The class label (label)

▪ The text of the document (text)

 We infer a linear regression model on the
training data and apply the model on the
unlabeled data

93

from pyspark.mllib.linalg import Vectors
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.feature import Tokenizer
from pyspark.ml.feature import StopWordsRemover
from pyspark.ml.feature import HashingTF
from pyspark.ml.feature import IDF
from pyspark.ml.classification import LogisticRegression
from pyspark.ml import Pipeline
from pyspark.ml import PipelineModel

input and output folders
trainingData = "ex_dataText/trainingData.csv"
unlabeledData = "ex_dataText/unlabeledData.csv"
outputPath = "predictionsLRPipelineText/"

94

Training step

Create a DataFrame from trainingData.csv
Training data in raw format
trainingData = spark.read.load(trainingData,\
 format="csv",\
 header=True,\
 inferSchema=True)

95

Configure an ML pipeline, which consists of five stages:
tokenizer -> split sentences in set of words
remover -> remove stopwords
hashingTF -> map set of words to a fixed-length feature vectors (each
word becomes a feature and the value of the feature is the frequency of
the word in the sentence)
idf -> compute the idf component of the TF-IDF measure
lr -> logistic regression classification algorithm

The Tokenizer splits each sentence in a set of words.
It analyzes the content of column "text" and adds the
new column "words" in the returned DataFrame
tokenizer = Tokenizer().setInputCol("text").setOutputCol("words")

96

Remove stopwords.
The StopWordsRemover component returns a new DataFrame with
a new column called "filteredWords". "filteredWords" is generated
by removing the stopwords from the content of column "words"
remover = StopWordsRemover()\
.setInputCol("words")\
.setOutputCol("filteredWords")

97

Map words to a features
Each word in filteredWords must become a feature in a Vector object
The HashingTF Transformer can be used to perform this operation.
This operations is based on a hash function and can potentially
map two different words to the same "feature". The number of conflicts
in influenced by the value of the numFeatures parameter.
The "feature" version of the words is stored in Column "rawFeatures".
Each feature, for a document, contains the number of occurrences
of that feature in the document (TF component of the TF-IDF measure)
hashingTF = HashingTF()\
.setNumFeatures(1000)\
.setInputCol("filteredWords")\
.setOutputCol("rawFeatures")

98

Apply the IDF transformation/computation.
Update the weight associated with each feature by considering also the
inverse document frequency component. The returned new column
is called "features", that is the standard name for the column that
contains the predictive features used to create a classification model
idf = IDF()\
.setInputCol("rawFeatures")\
.setOutputCol("features") });

99

Create a classification model based on the logistic regression algorithm
We can set the values of the parameters of the
Logistic Regression algorithm using the setter methods.
lr = LogisticRegression()\
.setMaxIter(10)\
.setRegParam(0.01)

100

Define the pipeline that is used to create the logistic regression
model on the training data.
In this case the pipeline is composed of five steps
- text tokenizer
- stopword removal
- TF-IDF computation (performed in two steps)
- Logistic regression model generation
pipeline = Pipeline().setStages([tokenizer, remover, hashingTF, idf, lr])

Execute the pipeline on the training data to build the
classification model
classificationModel = pipeline.fit(trainingData)

Now, the classification model can be used to predict the class label
of new unlabeled data

101

Prediction step

Read unlabeled data
Create a DataFrame from unlabeledData.csv
Unlabeled data in raw format
unlabeledData = spark.read.load(unlabeledData,\
 format="csv", header=True, inferSchema=True)

102

Make predictions on unlabeled documents by using the
Transformer.transform() method.
The transform will only use the 'features' columns
predictionsDF = classificationModel.transform(unlabeledData)

103

The returned DataFrame has the following schema (attributes)
|-- label: string (nullable = true)
|-- text: string (nullable = true)
|-- words: array (nullable = true)
| |-- element: string (containsNull = true)
|-- filteredWords: array (nullable = true)
| |-- element: string (containsNull = true)
|-- rawFeatures: vector (nullable = true)
|-- features: vector (nullable = true)
|-- rawPrediction: vector (nullable = true)
|-- probability: vector (nullable = true)
|-- prediction: double (nullable = false)

Select only the original features (i.e., the value of the original text attribute) and
the predicted class for each record
predictions = predictionsDF.select("text", "prediction")

104

Save the result in an HDFS output folder
predictions.write.csv(outputPath, header="true")

105

106

 In order to test the goodness of algorithms there
are some evaluators

 The Evaluator can be
 a BinaryClassificationEvaluator for binary data
 a MulticlassClassificationEvaluator for multiclass

problems
 Provided metrics are:
 Accuracy
 Precision
 Recall
 F-measure

107

 Use the MulticlassClassificationEvaluator
estimator from pyspark.ml.evaluator on a
DataFrame

 The instantiated estimator has the method
evaluate() that is applied on a DataFrame

 It compares the predictions with the true label
values

 Output

▪ The double value of the computed performance metric

108

 Parameters of
MulticlassClassificationEvaluator

 metricName

▪ ‘accuracy', ‘f1’, ‘weightedPrecision’, ‘weightedRecall’

 labelCol:input

▪ Column with the true label/class value

 predictionCol:

▪ Input column with the predicted class/label value

109

 In the following example, the set of labeled data
is read from a text file that contains
 One record/data point per line

 The records/data points are structured data with a
fixed number of attributes (four)
▪ One attribute is the class label (label)

▪ The other three attributes (attr1, attr2, attr3) are the
predictive attributes that are used to predict the value of the
class label

▪ All attributes are already double attributes

 The input file has the header line

110

 Consider the following example input labeled
data file

label,attr1,attr2,attr3

1,0.0,1.1,0.1

0,2.0,1.0,-1.0

0,2.0,1.3,1.0

1,0.0,1.2,-0.5

…….

111

 We initially split the labeled data set in two
subsets

 Training set: 75% of the labeled data

 Test set: 25% of the labeled data

 Then, we infer/train a logistic regression
model on the training set

 Finally, we evaluate the prediction quality of
the inferred model on both the test set and
the training set

112

from pyspark.mllib.linalg import Vectors
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
from pyspark.ml import Pipeline
from pyspark.ml import PipelineModel

input and output folders
labeledData = "ex_dataValidation/labeledData.csv"
outputPath = "predictionsLRPipelineValidation/“

113

Create a DataFrame from labeledData.csv
Training data in raw format
labeledDataDF = spark.read.load(labeledData,\
 format="csv", header=True,\
 inferSchema=True)

Split labeled data in training and test set
training data : 75%
test data: 25%
trainDF, testDF = labeledDataDF.randomSplit([0.75, 0.25], seed=10)

114

Create a DataFrame from labeledData.csv
Training data in raw format
labeledDataDF = spark.read.load(labeledData,\
 format="csv", header=True,\
 inferSchema=True)

Split labeled data in training and test set
training data : 75%
test data: 25%
trainDF, testDF = labeledDataDF.randomSplit([0.75, 0.25], seed=10)

115

randomSplit can be used to split the content of an input DataFrame in subsets

Training step

Define an assembler to create a column (features) of type Vector
containing the double values associated with columns attr1, attr2, attr3
assembler = VectorAssembler(inputCols=["attr1", "attr2", "attr3"],\
 outputCol="features")

116

Create a LogisticRegression object.
LogisticRegression is an Estimator that is used to
create a classification model based on logistic regression.
lr = LogisticRegression()

We can set the values of the parameters of the
Logistic Regression algorithm using the setter methods.
There is one set method for each parameter
For example, we are setting the number of maximum iterations to 10
and the regularization parameter. to 0.0.1
lr.setMaxIter(10)
lr.setRegParam(0.01)

117

Define a pipeline that is used to create the logistic regression
model on the training data. The pipeline includes also
the preprocessing step
pipeline = Pipeline().setStages([assembler, lr])

Execute the pipeline on the training data to build the
classification model
classificationModel = pipeline.fit(trainDF)

Now, the classification model can be used to predict the class label
of new unlabeled data

118

Make predictions on the test data using the transform() method of the
trained classification model transform uses only the content of 'features'
to perform the predictions. The model is associated with the pipeline and hence
also the assembler is executed
predictionsDF = classificationModel.transform(testDF)

119

The predicted value is column prediction
The actual label is column label

Define a set of evaluators
myEvaluatorAcc = MulticlassClassificationEvaluator(labelCol="label",\
 predictionCol="prediction",\
 metricName='accuracy')

myEvaluatorF1 = MulticlassClassificationEvaluator(labelCol="label",\
 predictionCol="prediction",\
 metricName='f1')

120

myEvaluatorWeightedPrecision =
MulticlassClassificationEvaluator(labelCol="label",\

 predictionCol="prediction",\
 metricName='weightedPrecision')

myEvaluatorWeightedRecall = MulticlassClassificationEvaluator(labelCol="label",\
 predictionCol="prediction",\
 metricName='weightedRecall')

121

Apply the evaluators on the predictions associated with the test data
Print the results on the standard output

print("Accuracy on test data ", myEvaluatorAcc.evaluate(predictionsDF))
print("F1 on test data ", myEvaluatorF1.evaluate(predictionsDF))
print("Weighted recall on test data ",\
 myEvaluatorWeightedRecall.evaluate(predictionsDF))
print("Weighted precision on test data ",\
 myEvaluatorWeightedPrecision.evaluate(predictionsDF))

122

We compute the prediction quality also for the training data.
To check if the model is overfitted on the training data

Make predictions on the training data using the transform() method of the
trained classification model transform uses only the content of 'features'
to perform the predictions. The model is associated with the pipeline and hence
also the assembler is executed
predictionsTrainingDF = classificationModel.transform(trainDF)

123

Apply the evaluators on the predictions associated with the test data
Print the results on the standard output

print("Accuracy on training data ",\
 myEvaluatorAcc.evaluate(predictionsTrainingDF))
print("F1 on training data ",\
 myEvaluatorF1.evaluate(predictionsTrainingDF))
print("Weighted recall on training data ",\
 myEvaluatorWeightedRecall.evaluate(predictionsTrainingDF))
print("Weighted precision on training data ",\
 myEvaluatorWeightedPrecision.evaluate(predictionsTrainingDF))

124

 The setting of the parameters of an algorithm is
always a difficult task

 A “brute force” approach can be used to find the
setting optimizing a quality index

 The training data is split in two subsets

▪ The first set is used to build a model

▪ The second one is used to evaluate the quality of the model

 The setting that maximizes a quality index (e.g., the
prediction accuracy) is used to build the final model
on the whole training dataset

126

 One single split of the training set usually is
biased

 Hence, the cross-validation approach is
usually used

 It creates k splits and k models

 The parameter setting that achieves, on the
average, the best result on the k models is
selected as final setting of the algorithm’s
parameters

127

 Spark supports a brute-force grid-based approach to
evaluate a set of possible parameter settings on a pipeline

 Input:
 An MLlib pipeline
 A set of values to be evaluated for each input parameter of the

pipeline
▪ All the possible combinations of the specified parameter values are

considered and the related models are automatically generated and
evaluated by Spark

 A quality evaluation metric to evaluate the result of the input
pipeline

 Output
 The model associated with the best parameter setting, in term

of quality evaluation metric

128

 The following example shows how a grid-
based approach can be used to tune a logistic
regression classifier on a structured dataset

 The pipeline that is repeated multiple times is
based on the cross validation component

 The input data set is the same structured
dataset used for the example of the
evaluators

129

 The following parameters of the logistic
regression algorithm are considered in the
brute-force search/parameter tuning

 Maximum iteration

▪ 10, 100, 1000

 Regulation parameter

▪ 0.1, 0.01

 6 parameter configurations are evaluated (3 x 2)

130

from pyspark.mllib.linalg import Vectors
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
from pyspark.ml.evaluation import BinaryClassificationEvaluator
from pyspark.ml.tuning import ParamGridBuilder
from pyspark.ml.tuning import CrossValidator
from pyspark.ml import Pipeline
from pyspark.ml import PipelineModel

131

input and output folders
labeledData = "ex_dataValidation/labeledData.csv"
unlabeledData = "ex_dataValidation/unlabeledData.csv"
outputPath = "predictionsLRPipelineTuning/"

Create a DataFrame from labeledData.csv
Training data in raw format
labeledDataDF = spark.read.load(labeledData,\
 format="csv",\
 header=True,\
 inferSchema=True)

132

Training step

Define an assembler to create a column (features) of type Vector
containing the double values associated with columns attr1, attr2, attr3
assembler = VectorAssembler(inputCols=["attr1", "attr2", "attr3"],\
 outputCol="features")

133

Create a LogisticRegression object.
LogisticRegression is an Estimator that is used to
create a classification model based on logistic regression.
lr = LogisticRegression()

Define a pipeline that is used to create the logistic regression
model on the training data. The pipeline includes also the preprocessing step
pipeline = Pipeline().setStages([assembler, lr])

134

We use a ParamGridBuilder to construct a grid of parameter values to
search over.
We set 3 values for lr.setMaxIter and 2 values for lr.regParam.
This grid will evaluate 3 x 2 = 6 parameter settings for
the input pipeline.
paramGrid = ParamGridBuilder()\
.addGrid(lr.maxIter, [10, 100, 1000])\
.addGrid(lr.regParam, [0.1, 0.01])\
.build()

135

We use a ParamGridBuilder to construct a grid of parameter values to
search over.
We set 3 values for lr.setMaxIter and 2 values for lr.regParam.
This grid will evaluate 3 x 2 = 6 parameter settings for
the input pipeline.
paramGrid = ParamGridBuilder()\
.addGrid(lr.maxIter, [10, 100, 1000])\
.addGrid(lr.regParam, [0.1, 0.01])\
.build()

136

There is one call to the addGrid method for each parameter that we want to set.
Each call to the addGrid method is characterized by
- The parameter we want to consider
-The list of values to test/to consider

We now treat the Pipeline as an Estimator, wrapping it in a
CrossValidator instance. This allows us to jointly choose parameters
for all Pipeline stages.
CrossValidator requires
- an Estimator
- a set of Estimator ParamMaps
- an Evaluator.
cv = CrossValidator()\
.setEstimator(pipeline)\
.setEstimatorParamMaps(paramGrid)\
.setEvaluator(BinaryClassificationEvaluator())\
.setNumFolds(3)

137

We now treat the Pipeline as an Estimator, wrapping it in a
CrossValidator instance. This allows us to jointly choose parameters
for all Pipeline stages.
CrossValidator requires
- an Estimator
- a set of Estimator ParamMaps
- an Evaluator.
cv = CrossValidator()\
.setEstimator(pipeline)\
.setEstimatorParamMaps(paramGrid)\
.setEvaluator(BinaryClassificationEvaluator())\
.setNumFolds(3)

138

Here, we set
-The pipeline to be evaluated
-The set of parameter values to be considered
-The evaluator (i.e., the object that is used to compute the quality measure
that is used to evaluate the quality of the model)
- The number of folds to consider (i.e., the number or repetitions)

Run cross-validation. The result is the logistic regression model
based on the best set of parameters (based on the results of the
cross-validation operation).
tunedLRmodel = cv.fit(labeledDataDF)

Now, the tuned classification model can be used to predict the class label
of new unlabeled data

139

Run cross-validation. The result is the logistic regression model
based on the best set of parameters (based on the results of the
cross-validation operation).
tunedLRmodel = cv.fit(labeledDataDF)

Now, the tuned classification model can be used to predict the class label
of new unlabeled data

140

The returned model is the one associated with the best parameter
setting, based on the result of the cross-validation test

Prediction step

Create a DataFrame from unlabeledData.csv
Unlabeled data in raw format
unlabeledData = spark.read.load(unlabeledData,\
 format="csv", header=True, inferSchema=True)

Make predictions on the unlabled data using the transform() method of the
trained tuned classification model transform uses only the content of 'features'
to perform the predictions. The model is associated with the pipeline and hence
also the assembler is executed
predictionsDF = tunedLRmodel.transform(unlabeledData)

141

The returned DataFrame has the following schema (attributes)
- features: vector (values of the attributes)
- label: double (value of the class label)
- rawPrediction: vector (nullable = true)
- probability: vector (The i-th cell contains the probability that the current
record belongs to the i-th class
- prediction: double (the predicted class label)

Select only the original features (i.e., the value of the original attributes
attr1, attr2, attr3) and the predicted class for each record
predictions = predictionsDF.select("attr1", "attr2", "attr3", "prediction")

Save the result in an HDFS output folder
predictions.write.csv(outputPath, header="true")

142

143

 Frequently the training data are sparse

 E.g., textual data are sparse

▪ Each document contains only a subset of the possible
words

 Hence, sparse vectors are frequently used

 MLlib supports reading training examples
stored in the LIBSVM format

 It is a commonly used textual format that is used
to represent sparse documents/data points

144

 The LIBSVM format
 It is a textual format in which each line represents an

input record/data point by using a sparse feature
vector:

 Each line has the format
 label index1:value1 index2:value2 ...
 where
 label is an integer associated with the class label

▪ It is the first value of each line

 The indexes are integer values representing the
features

 The values are the (double) values of the features

145

 Consider the following two records/data
points characterized by 4 predictive features
and a class label

 Features = [5.8, 1.7, 0 , 0] -- Label = 1

 Features = [4.1, 0 , 2.5, 1.2] -- Label = 0

 Their LIBSVM format-based representation is
the following

 1 1:5.8 2:1.7

 0 1:4.1 3:2.5 4:1.2

146

 LIBSVM files can be loaded into DataFrames
by combining the following methods:

 read, format("libsvm"), and load(inputpath)

 The returned DataFrame has two columns:

 label: double

▪ The double value associated with the label

 features: vector

▪ A sparse vector associated with the predictive features

147

…
 spark.read.format("libsvm")\
 .load("sample_libsvm_data.txt")

..

148

