


 Spark MLlib provides a (limited) set of 
classification algorithms 
  Logistic regression 

▪ Binomial logistic regression 

▪ Multinomial logistic regression 

 Decision tree classifier 

 Random forest classifier 

 Gradient-boosted tree classifier 

 Multilayer perceptron classifier 

 Linear Support Vector Machine 
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 All the available classification algorithms are 
based on two phases 
 Model generation based on a set of training data 

 Prediction of the class label of new unlabeled 
data 

 All the classification algorithms available in 
Spark work only on numerical attributes 
 Categorical values must be mapped to integer 

values (one distinct value per class) before 
applying the MLlib classification algorithms 
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 All the Spark classification algorithms are 
trained on top of an input DataFrame containing 
(at least) two columns 
 label 

▪ The class label, i.e., the attribute to be predicted by the 
classification model 
▪ It is an integer value (casted to a double) 

 features 
▪ A vector of doubles containing the values of the predictive 

attributes of the input records/data points 
▪ The data type of this column is pyspark.ml.linalg.Vector 

 Both dense and sparse vectors can be used 
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 Consider the following classification problem 
 We want to predict if new customers are good 

customers or not based on their monthly income 
and number of children 

 Predictive attributes 
▪ Monthly income 

▪ Number of children 

 Class Label (target attribute) 
▪ Customer type: Good customer/Bad customer 

▪ We map “Good customer” to 1 and “Bad customer” to 0  
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 Example of input training data 

 i.e., the set of customers for which the value of 
the class label is known 

 They are used by the classification algorithm to 
infer/train a classification model 
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CustomerType MonthlyIncome NumChildren 

Good customer 1400.0 2 

Bad customer 11105.5 0 

Good customer 2150.0 2 



 Input training data 
 
 
 
 

 Input training DataFrame that must be provided as 
input to train an MLlib classification algorithm 

 
 
 
 7 

label features 

1.0 [1400.0  ,  2.0] 

0.0 [11105.5,  0.0] 

1.0 [2150.0  ,  2.0] 

CustomerType MonthlyIncome NumChildren 

Good customer 1400.0 2 

Bad customer 11105.5 0 

Good customer 2150.0 2 



 Input training data 
 
 
 
 

 Input training DataFrame that must be provided as 
input to train an MLlib classification algorithm 
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label features 

1.0 [1400.0  ,  2.0] 

0.0 [11105.5,  0.0] 

1.0 [2150.0  ,  2.0] 

CustomerType MonthlyIncome NumChildren 

Good customer 1400.0 2 

Bad customer 11105.5 0 

Good customer 2150.0 2 

The categorical values of CustomerType (the class label column) must 
be mapped to integer values (finally casted to doubles) 



 Input training data 
 
 
 
 

 Input training DataFrame that must be provided as 
input to train an MLlib classification algorithm 
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label features 

1.0 [1400.0  ,  2.0] 

0.0 [11105.5,  0.0] 

1.0 [2150.0  ,  2.0] 

CustomerType MonthlyIncome NumChildren 

Good customer 1400.0 2 

Bad customer 11105.5 0 

Good customer 2150.0 2 

The values of the predictive attributes are “stored” in vectors of doubles. 
One single vector for each input record. 



 Input training data 
 
 
 
 

 Input training DataFrame that must be provided as 
input to train an MLlib classification algorithm 
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label features 

1.0 [1400.0  ,  2.0] 

0.0 [11105.5,  0.0] 

1.0 [2150.0  ,  2.0] 

CustomerType MonthlyIncome NumChildren 

Good customer 1400.0 2 

Bad customer 11105.5 0 

Good customer 2150.0 2 

In the generated DataFrame the names of the predictive attributes are 
not preserved. 





 The following slides show how to 

 Create a classification model based on the logistic 
regression algorithm on structured data 

▪ The model is inferred by analyzing the training data, i.e., 
the example records/data points for which the value of 
the class label is known 

 Apply the model to new unlabeled data 

▪ The inferred model is applied to predict the value of the 
class label of new unlabeled records/data points 
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 In the following example, the input training data 
is stored in a text file that contains 
 One record/data point per line 
 The records/data points are structured data with a 

fixed number of attributes (four) 
▪ One attribute is the class label 

▪ We suppose that the first column of each record contains the class 
label 

▪ The other three attributes are the predictive attributes that 
are used to predict the value of the class label 

▪ The values are already doubles (we do not need to convert 
them) 

 The input file has the header line 
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 Consider the following example input training 
data file 
label,attr1,attr2,attr3 
1.0,0.0,1.1,0.1 
0.0,2.0,1.0,-1.0 
0.0,2.0,1.3,1.0 
1.0,0.0,1.2,-0.5 

 It contains four records/data points 
 This is a binary classification problem because 

the class label assumes only two values  
 0 and 1 
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 The first operation consists in transforming 
the content of the input training file into a 
DataFrame containing two columns 

 label 

▪ The double value that is used to specify the label of each 
training record 

 features 

▪ It is a vector of doubles associated with the values of the 
predictive features 
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 Input training file 

  label,attr1,attr2,attr3 

  1.0,0.0,1.1,0.1 

  0.0,2.0,1.0,-1.0 

  0.0,2.0,1.3,1.0 

  1.0,0.0,1.2,-0.5 

 Input training DataFrame to be created 
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label features 

1.0 [0.0,1.1,0.1] 

0.0 [2.0,1.0,-1.0] 

0.0 [2.0,1.3,1.0] 

1.0 [0.0,1.2,-0.5] 



 Input training file 

  label,attr1,attr2,attr3 

  1.0,0.0,1.1,0.1 

  0.0,2.0,1.0,-1.0 

  0.0,2.0,1.3,1.0 

  1.0,0.0,1.2,-0.5 

 Input training DataFrame to be created 
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label features 

1.0 [0.0,1.1,0.1] 

0.0 [2.0,1.0,-1.0] 

0.0 [2.0,1.3,1.0] 

1.0 [0.0,1.2,-0.5] 

Name of this column: label 
Data type: double 



 Input training file 

  label,attr1,attr2,attr3 

  1.0,0.0,1.1,0.1 

  0.0,2.0,1.0,-1.0 

  0.0,2.0,1.3,1.0 

  1.0,0.0,1.2,-0.5 

 Input training DataFrame to be created 
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label features 

1.0 [0.0,1.1,0.1] 

0.0 [2.0,1.0,-1.0] 

0.0 [2.0,1.3,1.0] 

1.0 [0.0,1.2,-0.5] 

Name of this column: features 
Data type: pyspark.ml.linalg.Vector 



 The file containing the unlabeled data has the 
same format of the training data file 
 However, the first column is empty because the class 

label is unknown 
 We want to predict the class label value of each 

unlabeled data by applying the classification 
model that has been trained on the training data 

 The predicted class label value of the unlabeled 
data is stored in a new column, called 
“prediction”, of the returned DataFrame 
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 Consider the following example input unlabeled 
data file 

label,attr1,attr2,attr3 

,-1.0,1.5,1.3 

,3.0,2.0,-0.1 

,0.0,2.2,-1.5 

 It contains three unlabeled records/data points 
 Note that the first column is empty (the content 

before the first comma is the empty string) 
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 Also the unlabeled data must be stored into a 
DataFrame containing two columns 

 label 

 features 

 A label value is required also for unlabeled 
data 

 Its value is set to null for all records 

21 



 Input unlabeled data file 

  label,attr1,attr2,attr3 

 ,-1.0,1.5,1.3 

  ,3.0,2.0,-0.1 

  ,0.0,2.2,-1.5 

 Input unlabeled data DataFrame to be created 
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label features 

null [-1.0,1.5,1.3] 

null [3.0,2.0,-0.1] 

null [0.0,2.2,-1.5] 



 After the application of the classification 
model on the unlabeled data, Spark returns a 
new DataFrame containing  
 The same columns of the input DataFrame 

 A new column called prediction 
▪ For each input unlabeled record, it contains the 

predicted class label value 

 Also two other columns, associated with the 
probabilities of the predictions, are returned 
▪ We do not consider them in the following example 
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 Input unlabeled data DataFrame  
 
 
 
 

 Returned DataFrame with the predicted class label 
values 
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label features prediction rawPrediction  probability 

null [-1.0,1.5,1.3] 1.0 … … 

null [3.0,2.0,-0.1] 0.0 … … 

null [0.0,2.2,-1.5] 1.0 … … 

label feature 

null [-1.0,1.5,1.3] 

null [3.0,2.0,-0.1] 

null [0.0,2.2,-1.5] 



 Input unlabeled data DataFrame  
 
 
 
 

 Returned DataFrame with the predicted class label 
values 
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label features prediction rawPrediction  probability 

null [-1.0,1.5,1.3] 1.0 … … 

null [3.0,2.0,-0.1] 0.0 … … 

null [0.0,2.2,-1.5] 1.0 … … 

label feature 

null [-1.0,1.5,1.3] 

null [3.0,2.0,-0.1] 

null [0.0,2.2,-1.5] This column contains the predicted 
class label values 



from pyspark.mllib.linalg import Vectors 
from pyspark.ml.feature import VectorAssembler 
from pyspark.ml.classification import LogisticRegression 
 
# input and output folders 
trainingData = "ex_data/trainingData.csv" 
unlabeledData = "ex_data/unlabeledData.csv" 
outputPath = "predictionsLR/" 
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# ************************* 
# Training step 
# ************************* 
 
# Create a DataFrame from trainingData.csv 
# Training data in raw format 
trainingData = spark.read.load(trainingData,\ 
                     format="csv",\ 
                     header=True,\ 
                     inferSchema=True)  
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# Define an assembler to create a column (features) of type Vector  
# containing the double values associated with columns attr1, attr2, attr3 
assembler = VectorAssembler(inputCols=["attr1", "attr2", "attr3"],\ 
                            outputCol="features") 
 
# Apply the assembler to create column features for the training data 
trainingDataDF = assembler.transform(trainingData) 
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# Create a LogisticRegression object.   
# LogisticRegression is an Estimator that is used to  
# create a classification model based on logistic regression. 
lr = LogisticRegression() 
 
# We can set the values of the parameters of the  
# Logistic Regression algorithm using the setter methods. 
# There is one set method for each parameter 
# For example, we are setting the number of maximum iterations to 10 
# and the regularization parameter. to 0.0.1 
lr.setMaxIter(10) 
lr.setRegParam(0.01) 
 
# Train a logistic regression model on the training data 
classificationModel = lr.fit(trainingDataDF) 
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# ************************* 
# Prediction  step 
# ************************* 
# Create a DataFrame from unlabeledData.csv 
# Unlabeled data in raw format 
unlabeledData = spark.read.load(unlabeledData,\ 
                     format="csv", header=True, inferSchema=True) 
 
# Apply the same assembler we created before also on the unlabeled data  
# to create the features column 
unlabeledDataDF = assembler.transform(unlabeledData) 
 
# Make predictions on the unlabled data using the transform() method of the  
# trained classification model transform uses only the content of 'features'  
# to perform the predictions 
predictionsDF = classificationModel.transform(unlabeledDataDF) 

30 



# The returned DataFrame has the following schema (attributes) 
# - attr1 
# - attr2 
# - attr3 
# - features: vector (values of the attributes) 
# - label: double (value of the class label) 
# - rawPrediction: vector (nullable = true) 
# - probability: vector (The i-th cell contains the probability that the current  
# record belongs to the i-th class 
# - prediction: double (the predicted class label) 
 
# Select only the original features (i.e., the value of the original attributes  
# attr1, attr2, attr3) and the predicted class for each record 
predictions = predictionsDF.select("attr1", "attr2", "attr3", "prediction") 
 
# Save the result in an HDFS output folder 
predictions.write.csv(outputPath, header="true") 
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 In the previous solution we applied the same 
preprocessing steps on both training and 
unlabeled data 

 We applied the same assembler on both input 
data 

 We can use a pipeline to specify the common 
phases we apply on both input data sets 
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from pyspark.mllib.linalg import Vectors 
from pyspark.ml.feature import VectorAssembler 
from pyspark.ml.classification import LogisticRegression 
from pyspark.ml import Pipeline 
from pyspark.ml import PipelineModel 
 
# input and output folders 
trainingData = "ex_data/trainingData.csv" 
unlabeledData = "ex_data/unlabeledData.csv" 
outputPath = "predictionsLR/" 
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# ************************* 
# Training step 
# ************************* 
 
# Create a DataFrame from trainingData.csv 
# Training data in raw format 
trainingData = spark.read.load(trainingData,\ 
                     format="csv",\ 
                     header=True,\ 
                     inferSchema=True)  
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# Define an assembler to create a column (features) of type Vector  
# containing the double values associated with columns attr1, attr2, attr3 
assembler = VectorAssembler(inputCols=["attr1", "attr2", "attr3"],\ 
                            outputCol="features") 
 
# Create a LogisticRegression object   
# LogisticRegression is an Estimator that is used to  
# create a classification model based on logistic regression. 
lr = LogisticRegression() 
 
# We can set the values of the parameters of the  
# Logistic Regression algorithm using the setter methods. 
# There is one set method for each parameter 
# For example, we are setting the number of maximum iterations to 10 
# and the regularization parameter. to 0.0.1 
lr.setMaxIter(10) 
lr.setRegParam(0.01) 
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# Define a pipeline that is used to create the logistic regression 
# model on the training data. The pipeline includes also  
# the preprocessing step 
pipeline = Pipeline().setStages([assembler, lr]) 
 
# Execute the pipeline on the training data to build the  
# classification model 
classificationModel = pipeline.fit(trainingData) 
 
# Now, the classification model can be used to predict the class label 
# of new unlabeled data 
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# Define a pipeline that is used to create the logistic regression 
# model on the training data. The pipeline includes also  
# the preprocessing step 
pipeline = Pipeline().setStages([assembler, lr]) 
 
# Execute the pipeline on the training data to build the  
# classification model 
classificationModel = pipeline.fit(trainingData) 
 
# Now, the classification model can be used to predict the class label 
# of new unlabeled data 
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This is the sequence of Transformers and Estimators to 
apply on the input data. 
 



# ************************* 
# Prediction  step 
# ************************* 
# Create a DataFrame from unlabeledData.csv 
# Unlabeled data in raw format 
unlabeledData = spark.read.load(unlabeledData,\ 
                     format="csv", header=True, inferSchema=True) 
 
# Make predictions on the unlabled data using the transform() method of the  
# trained classification model transform uses only the content of 'features'  
# to perform the predictions. The model is associated with the pipeline and hence 
# also the assembler is executed 
predictions = classificationModel.transform(unlabeledData) 
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# The returned DataFrame has the following schema (attributes) 
# - attr1 
# - attr2 
# - attr3 
# - features: vector (values of the attributes) 
# - label: double (value of the class label) 
# - rawPrediction: vector (nullable = true) 
# - probability: vector (The i-th cell contains the probability that the current  
# record belongs to the i-th class 
# - prediction: double (the predicted class label) 
 
# Select only the original features (i.e., the value of the original attributes  
# attr1, attr2, attr3) and the predicted class for each record 
predictions = predictionsDF.select("attr1", "attr2", "attr3", "prediction") 
 
# Save the result in an HDFS output folder 
predictions.write.csv(outputPath, header="true") 
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 The following slides show how to 

 Create a classification model based on the 
decision tree algorithm on structured data 

▪ The model is inferred by analyzing the training data, i.e., 
the example records/data points for which the value of 
the class label is known 

 Apply the model to new unlabeled data 

▪ The inferred model is applied to predict the value of the 
class label of new unlabeled records/data points 
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 The same example structured data already 
used in the running example related to the 
logistic regression algorithm are used also in 
this example related to the decision tree 
algorithm 

 The main steps are the same of the previous 
example 

 The only difference is the definition and 
configuration of the used classification algorithm 
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from pyspark.mllib.linalg import Vectors 
from pyspark.ml.feature import VectorAssembler 
from pyspark.ml.classification import DecisionTreeClassifier 
from pyspark.ml import Pipeline 
from pyspark.ml import PipelineModel 
 
# input and output folders 
trainingData = "ex_data/trainingData.csv" 
unlabeledData = "ex_data/unlabeledData.csv" 
outputPath = "predictionsLR/" 
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# ************************* 
# Training step 
# ************************* 
 
# Create a DataFrame from trainingData.csv 
# Training data in raw format 
trainingData = spark.read.load(trainingData,\ 
                     format="csv",\ 
                     header=True,\ 
                     inferSchema=True)  
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# Define an assembler to create a column (features) of type Vector  
# containing the double values associated with columns attr1, attr2, attr3 
assembler = VectorAssembler(inputCols=["attr1", "attr2", "attr3"],\ 
                            outputCol="features") 
 
# Create a DecisionTreeClassifier object.   
# DecisionTreeClassifier is an Estimator that is used to  
# create a classification model based on decision trees. 
dt = DecisionTreeClassifier() 
 
# We can set the values of the parameters of the Decision Tree 
# For example we can set the measure that is used to decide if a  
# node must be split. In this case we set gini index 
dt.setImpurity("gini") 
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# Define a pipeline that is used to create the decision tree 
# model on the training data. The pipeline includes also  
# the preprocessing step 
pipeline = Pipeline().setStages([assembler, dt]) 
 
# Execute the pipeline on the training data to build the  
# classification model 
classificationModel = pipeline.fit(trainingData) 
 
# Now, the classification model can be used to predict the class label 
# of new unlabeled data 
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# Define a pipeline that is used to create the decision tree 
# model on the training data. The pipeline includes also  
# the preprocessing step 
pipeline = Pipeline().setStages([assembler, dt]) 
 
# Execute the pipeline on the training data to build the  
# classification model 
classificationModel = pipeline.fit(trainingData) 
 
# Now, the classification model can be used to predict the class label 
# of new unlabeled data 
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This is the sequence of Transformers and Estimators to 
apply on the input data. 
A decision tree algorithm is used in this case 



# ************************* 
# Prediction  step 
# ************************* 
# Create a DataFrame from unlabeledData.csv 
# Unlabeled data in raw format 
unlabeledData = spark.read.load(unlabeledData,\ 
                     format="csv", header=True, inferSchema=True) 
 
# Make predictions on the unlabled data using the transform() method of the  
# trained classification model transform uses only the content of 'features'  
# to perform the predictions. The model is associated with the pipeline and hence 
# also the assembler is executed 
predictions = classificationModel.transform(unlabeledData) 
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# The returned DataFrame has the following schema (attributes) 
# - attr1 
# - attr2 
# - attr3 
# - features: vector (values of the attributes) 
# - label: double (value of the class label) 
# - rawPrediction: vector (nullable = true) 
# - probability: vector (The i-th cell contains the probability that the current  
# record belongs to the i-th class 
# - prediction: double (the predicted class label) 
 
# Select only the original features (i.e., the value of the original attributes  
# attr1, attr2, attr3) and the predicted class for each record 
predictions = predictionsDF.select("attr1", "attr2", "attr3", "prediction") 
 
# Save the result in an HDFS output folder 
predictions.write.csv(outputPath, header="true") 
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 Usually the class label is a categorical value 
(i.e., a string) 

 As reported before, Spark MLlib works only 
with numerical values and hence categorical 
class label values must be mapped to integer 
(and then double) values 

 Processing and postprocessing steps are used to 
manage this transformation 
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 Input training data 
 
 
 
 

 Input DataFrame that must be generated as input 
for the MLlib classification algorithms 
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label features 

1.0 [0.0, 1.1, 0.1] 

0.0 [2.0, 1.0, -1.0] 

0.0 [2.0, 1.3, 1.0] 

categoricalLabel Attr1 Attr2 Attr3 

Positive 0.0 1.1 0.1 

Negative 2.0 1.0 -1.0 

Negative 2.0 1.3 1.0 



 Input training data 
 
 
 
 

 Input DataFrame that must be generated as input 
for the MLlib classification algorithms 
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label features 

1.0 [0.0, 1.1, 0.1] 

0.0 [2.0, 1.0, -1.0] 

0.0 [2.0, 1.3, 1.0] 

categoricalLabel Attr1 Attr2 Attr3 

Positive 0.0 1.1 0.1 

Negative 2.0 1.0 -1.0 

Negative 2.0 1.3 1.0 

The categorical values of categoricalLabel (the class label column) must 
be mapped to integer values (finally casted to doubles) 



 The Estimator StringIndexer and the 
Transformer IndexToString support the 
transformation of categorical class label into 
numerical one and vice versa  

 StringIndexer maps each categorical value of the 
class label to an integer (finally casted to a double) 

 IndexToString is used to perform the opposite 
operation 
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 Main steps 
1. Use StringIndexer to extend the input DataFrame 

with a new column, called “label”, containing the 
numerical representation of the class label column 

2. Create a column, called “features”, of type vector 
containing the predictive features 

3. Infer a classification model by using a classification 
algorithm (e.g., Decision Tree, Logistic regression) 

▪ The model is built by considering only the values of 
features and label. All the other columns are not considered 
by the classification algorithm during the generation of the 
prediction model 
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4. Apply the model on a set of unlabeled data to 
predict their numerical class label 

5. Use IndexToString  to convert the predicted 
numerical class label values to the original 
categorical values  
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 Input training file 

 categoricalLabel,attr1,attr2,attr3 

 Positive,0.0,1.1,0.1 

 Negative,2.0,1.0,-1.0 

 Negative,2.0,1.3,1.0 

 Initial training DataFrame 
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categoricalLabel 
 

features 

Positive [0.0, 1.1, 0.1] 

Negative [2.0, 1.0, -1.0] 

Negative [2.0, 1.3, 1.0] 



 Input training file 

 categoricalLabel,attr1,attr2,attr3 

 Positive,0.0,1.1,0.1 

 Negative,2.0,1.0,-1.0 

 Negative,2.0,1.3,1.0 

 Initial training DataFrame 
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categoricalLabel 
 

features 

Positive [0.0, 1.1, 0.1] 

Negative [2.0, 1.0, -1.0] 

Negative [2.0, 1.3, 1.0] 

String 

Vector 



 Initial training DataFrame 
 
 
 
 

 Training DataFrame after StringIndexer  
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categoricalLabel 
 

features label 

Positive [0.0, 1.1, 0.1] 1.0 

Negative [2.0, 1.0, -1.0] 0.0 

Negative [2.0, 1.3, 1.0] 0.0 

categoricalLabel 
 

features 

Positive [0.0, 1.1, 0.1] 

Negative [2.0, 1.0, -1.0] 

Negative [2.0, 1.3, 1.0] 



 Initial training DataFrame 
 
 
 
 

 Training DataFrame after StringIndexer  
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categoricalLabel 
 

features label 

Positive [0.0, 1.1, 0.1] 1.0 

Negative [2.0, 1.0, -1.0] 0.0 

Negative [2.0, 1.3, 1.0] 0.0 

categoricalLabel 
 

features 

Positive [0.0, 1.1, 0.1] 

Negative [2.0, 1.0, -1.0] 

Negative [2.0, 1.3, 1.0] 

Mapping generated 
by StringIndexer: 
-“Positive”: 1.o 
-“Negative”: 0.0 



 Input unlabeled data file 

  categoricalLabel,attr1,attr2,attr3 

 ,-1.0,1.5,1.3 

 ,3.0,2.0,-0.1 

 ,0.0,2.2,-1.5 

 Initial unlabeled data DataFrame 
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categoricalLabel 
 

features 

null [-1.0, 1.5, 1.3] 

null [3.0, 2.0, -0.1] 

null [0.0, 2.2, -1.5] 



 Initial unlabeled data DataFrame 
 
 
 
 

 DataFrame after prediction + IndexToString  
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categoricalLabel 
 

features 

null [-1.0, 1.5, 1.3] 

null [3.0, 2.0, -0.1] 

null [0.0, 2.2, -1.5] 

categoricalLabel 
 

features label prediction predictedLabel … 

… [-1.0, 1.5, 1.3] … 1.0 Positive 

… [3.0, 2.0, -0.1] … 0.0 Negative 

… [0.0, 2.2, -1.5] … 1.0 Positive 



 Initial unlabeled data DataFrame 
 
 
 
 

 DataFrame after prediction + IndexToString  
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categoricalLabel 
 

features label prediction predictedLabel … 

… [-1.0, 1.5, 1.3] … 1.0 Positive 

… [3.0, 2.0, -0.1] … 0.0 Negative 

… [0.0, 2.2, -1.5] … 1.0 Positive 

categoricalLabel 
 

features 

null [-1.0, 1.5, 1.3] 

null [3.0, 2.0, -0.1] 

null [0.0, 2.2, -1.5] 
Predicted label: 
numerical version 

Predicted label: 
categorical/original version 



 In the following example, the input training 
data is stored in a text file that contains 
 One record/data point per line 

 The records/data points are structured data with a 
fixed number of attributes (four) 
▪ One attribute is the class label (categoricalLabel) 

▪ Categorical attribute assuming two values: Positive, Negative 

▪ The other three attributes (attr1, attr2, attr3) are the 
predictive attributes that are used to predict the value of 
the class label 

 The input file has the header line 
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 The file containing the unlabeled data has 
the same format of the training data file 

 However, the first column is empty because the 
class label is unknown 

 We want to predict the class label value of 
each unlabeled data by applying the 
classification model that has been inferred on 
the training data 
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from pyspark.mllib.linalg import Vectors 
from pyspark.ml.feature import VectorAssembler 
from pyspark.ml.feature import StringIndexer 
from pyspark.ml.feature import IndexToString 
from pyspark.ml.classification import DecisionTreeClassifier 
from pyspark.ml import Pipeline 
from pyspark.ml import PipelineModel 
 
# input and output folders 
trainingData = "ex_dataCategorical/trainingData.csv" 
unlabeledData = "ex_dataCategorical/unlabeledData.csv" 
outputPath = "predictionsDTCategoricalPipeline/" 
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# ************************* 
# Training step 
# ************************* 
 
# Create a DataFrame from trainingData.csv 
# Training data in raw format 
trainingData = spark.read.load(trainingData,\ 
                     format="csv", header=True, inferSchema=True) 
 
# Define an assembler to create a column (features) of type Vector  
# containing the double values associated with columns attr1, attr2, attr3 
assembler = VectorAssembler(inputCols=["attr1", "attr2", "attr3"],\ 
                            outputCol="features")   
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# The StringIndexer Estimator is used to map each class label  
# value to an integer value (casted to a double). 
# A new attribute called label is generated by applying  
# transforming the content of the categoricalLabel attribute. 
labelIndexer = StringIndexer(inputCol="categoricalLabel", outputCol="label",\ 

     handleInvalid="keep").fit(trainingData) 
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# The StringIndexer Estimator is used to map each class label  
# value to an integer value (casted to a double). 
# A new attribute called label is generated by applying  
# transforming the content of the categoricalLabel attribute. 
labelIndexer = StringIndexer(inputCol="categoricalLabel", outputCol="label",\ 

     handleInvalid="keep").fit(trainingData) 
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This StringIndexer estimator is used to infer a transformer 
that  maps the categorical values of column 
“categoricalLabel” to a set of integer values stored in the 
new column called “label”. 
The list of valid label values are extracted from the training 
data 



# Create a DecisionTreeClassifier object.   
# DecisionTreeClassifier is an Estimator that is used to  
# create a classification model based on decision trees. 
dt = DecisionTreeClassifier() 
 
# We can set the values of the parameters of the Decision Tree 
# For example we can set the measure that is used to decide if a  
# node must be split. 
# In this case we set gini index 
dt.setImpurity("gini") 
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# At the end of the pipeline we must convert indexed labels back  
# to original labels (from numerical to string). 
# The content of the prediction attribute is the index of the predicted class 
# The original name of the predicted class is stored in  the predictedLabel  
# attribute. 
# IndexToString creates a new column (called predictedLabel in  
# this example) that is based on the content of the prediction column.  
# prediction is a double while predictedLabel is a string 
labelConverter = IndexToString(inputCol="prediction", outputCol="predictedLabel",\ 

           labels=labelIndexer.labels)   
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# At the end of the pipeline we must convert indexed labels back  
# to original labels (from numerical to string). 
# The content of the prediction attribute is the index of the predicted class 
# The original name of the predicted class is stored in  the predictedLabel  
# attribute. 
# IndexToString creates a new column (called predictedLabel in  
# this example) that is based on the content of the prediction column.  
# prediction is a double while predictedLabel is a string 
labelConverter = IndexToString(inputCol="prediction", outputCol="predictedLabel",\ 

           labels=labelIndexer.labels)   
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This IndexToString  component is used to remap the numerical predictions 
available in the “prediction” column to the original categorical values that are 
stored in the new column called “predictedLabel”. 
The mapping integer -> original string value is the one of labelIndexer 



# Define a pipeline that is used to create the decision tree 
# model on the training data. The pipeline includes also  
# the preprocessing and postprocessing steps 
pipeline = Pipeline().setStages([assembler, labelIndexer, dt, labelConverter]) 
 
# Execute the pipeline on the training data to build the  
# classification model 
classificationModel = pipeline.fit(trainingData) 
   
# Now, the classification model can be used to predict the class label 
# of new unlabeled data 
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# Define a pipeline that is used to create the decision tree 
# model on the training data. The pipeline includes also  
# the preprocessing and postprocessing steps 
pipeline = Pipeline().setStages([assembler, labelIndexer, dt, labelConverter]) 
 
# Execute the pipeline on the training data to build the  
# classification model 
classificationModel = pipeline.fit(trainingData) 
   
# Now, the classification model can be used to predict the class label 
# of new unlabeled data 
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This Pipeline is composed of four steps 



# ************************* 
# Prediction  step 
# ************************* 
# Create a DataFrame from unlabeledData.csv 
# Unlabeled data in raw format 
unlabeledData = spark.read.load(unlabeledData,\ 
                     format="csv", header=True, inferSchema=True) 
 
# Make predictions on the unlabled data using the transform() method of the  
# trained classification model transform uses only the content of 'features'  
# to perform the predictions. The model is associated with the pipeline and hence 
# also the assembler is executed 
predictions = classificationModel.transform(unlabeledData) 
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# The returned DataFrame has the following schema (attributes) 
# - attr1: double (nullable = true) 
# - attr2: double (nullable = true) 
# - attr3: double (nullable = true) 
# - features: vector (values of the attributes) 
# - label: double (value of the class label) 
# - rawPrediction: vector (nullable = true) 
# - probability: vector (The i-th cell contains the probability that the  
#                        current record belongs to the i-th class 
# - prediction: double (the predicted class label) 
# - predictedLabel: string (nullable = true) 
 
# Select only the original features (i.e., the value of the original attributes  
# attr1, attr2, attr3) and the predicted class for each record 
predictions = predictionsDF.select("attr1", "attr2", "attr3", "predictedLabel") 
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# The returned DataFrame has the following schema (attributes) 
# - attr1: double (nullable = true) 
# - attr2: double (nullable = true) 
# - attr3: double (nullable = true) 
# - features: vector (values of the attributes) 
# - label: double (value of the class label) 
# - rawPrediction: vector (nullable = true) 
# - probability: vector (The i-th cell contains the probability that the  
#                        current record belongs to the i-th class 
# - prediction: double (the predicted class label) 
# - predictedLabel: string (nullable = true) 
 
# Select only the original features (i.e., the value of the original attributes  
# attr1, attr2, attr3) and the predicted class for each record 
predictions = predictionsDF.select("attr1", "attr2", "attr3", "predictedLabel") 
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“predictedLabel” is the column containing 
the predicted categorical class label for the 
unlabeled data 



# Save the result in an HDFS output folder 
predictions.write.csv(outputPath, header="true") 
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 The following slides show how to 
 Create a classification model based on the logistic 

regression algorithm for textual documents 
▪ A set of specific preprocessing estimators and transformers 

are used to preprocess textual data 

 Apply the model to new textual documents 
 The input training dataset represents a textual 

document collection 
 Each line contains one document and its class 

▪ The class label 

▪ A list of words (the text of the document) 
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 Consider the following example file 
Label,Text 

1,The Spark system is based on scala 

1,Spark is a new distributed system 

0,Turin is a beautiful city 

0,Turin is in the north of Italy  
 It contains four textual documents 
 Each line contains two attributes 
 The class label (first attribute) 

 The text of the document (second attribute) 
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 Input data before preprocessing 
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Label Text 

1 The Spark system is based on scala 

1 Spark is a new distributed system 

0 Turin is a beautiful city 

0 Turin is in the north of Italy  



 A set of preprocessing steps must be applied 
on the textual attribute before generating a 
classification model 
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1. Since  Spark ML algorithms work only on 
“Tables” and double values, the textual part 
of the input data must be translated in a set 
of attributes to represent the data as a table 

 Usually a table with an attribute for each word is 
generated 
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2. Many words are useless (e.g., conjunctions) 

 Stopwords are usually removed  
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 The words appearing in almost all documents 
are not characterizing the data 
 Hence, they are not very important for the 

classification problem 
 The words appearing in few documents allow 

distinguish the content of those documents 
(and hence the class label) with respect to the 
others 
 Hence, they are very important for the 

classification problem 
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3. Traditionally a weight, based on the TF-IDF 
measure, is used to assign a difference 
importance to the words based on their 
frequency in the collection 
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 Input data after the preprocessing 
transformations (tokenization, stopword 
removal, TF-IDF computation) 
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Label Spark system scala ….. 

1 0.5 0.3 0.75 .. 

1 0.5 0.3 0 … 

0 0 0 0 … 

0 0 0 0 … 



 The DataFrame associated with the input 
data after the preprocessing transformations 
must contain, as usual, the columns 
 label 

▪ Class label value 

 features 
▪ The preprocessed version of the input text 

 There are also some other intermediate columns, 
related to applied transformations, but they are 
not considered by the classification algorithm 
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 The DataFrame associated with the input 
data after the preprocessing transformations 
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label features text ….. ….. 

1 [0.5, 0.3, 0.75, ..] The Spark system is based on scala .. .. 

1 [0.5, 0.3, 0, .. ] Spark is a new distributed system … … 

0 [0, 0, 0, ..] Turin is a beautiful city … … 

0 [0, o, o, ..] Turin is in the north of Italy  … … 



 The DataFrame associated with the input 
data after the preprocessing transformations 
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label features text ….. ….. 

1 [0.5, 0.3, 0.75, ..] The Spark system is based on scala .. .. 

1 [0.5, 0.3, 0, .. ] Spark is a new distributed system … … 

0 [0, 0, 0, ..] Turin is a beautiful city … … 

0 [0, o, o, ..] Turin is in the north of Italy  … … 

Only “label” and “features” are considered by the 
classification algorithm 



 In the following solution we will use a set of new 
Transformers to prepare input data 
 Tokenizer 

▪ To split the input text in words 

 StopWordsRemover 
▪ To remove stopwords 

 HashingTF 
▪ To compute the (approximate) term frequency of each input 

term 

 IDF 
▪ To compute the inverse document frequency of each input 

word 
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 The input data (training and unlabeled data) 
are stored in input csv files 

 Each line contains two attributes 

▪ The class label (label) 

▪ The text of the document (text) 

 We infer a linear regression model on the 
training data and apply the model on the 
unlabeled data 
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from pyspark.mllib.linalg import Vectors 
from pyspark.ml.feature import VectorAssembler 
from pyspark.ml.feature import Tokenizer 
from pyspark.ml.feature import StopWordsRemover 
from pyspark.ml.feature import HashingTF 
from pyspark.ml.feature import IDF 
from pyspark.ml.classification import LogisticRegression 
from pyspark.ml import Pipeline 
from pyspark.ml import PipelineModel 
 
# input and output folders 
trainingData = "ex_dataText/trainingData.csv" 
unlabeledData = "ex_dataText/unlabeledData.csv" 
outputPath = "predictionsLRPipelineText/" 
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# ************************* 
# Training step 
# ************************* 
 
# Create a DataFrame from trainingData.csv 
# Training data in raw format 
trainingData = spark.read.load(trainingData,\ 
                     format="csv",\ 
                     header=True,\ 
                     inferSchema=True) 
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# Configure an ML pipeline, which consists of five stages:  
# tokenizer -> split sentences in set of words 
# remover -> remove stopwords 
# hashingTF -> map set of words to a fixed-length feature vectors  (each  
# word becomes a feature and the value of the feature is the frequency of 
#  the word in the sentence) 
# idf -> compute the idf component of the TF-IDF measure 
# lr -> logistic regression classification algorithm  
 
# The Tokenizer splits each sentence in a set of words. 
# It analyzes the content of column "text" and adds the  
# new column "words" in the returned DataFrame 
tokenizer = Tokenizer().setInputCol("text").setOutputCol("words") 
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# Remove stopwords. 
# The StopWordsRemover component returns a new DataFrame with  
# a new column called "filteredWords". "filteredWords" is generated  
# by removing the stopwords from the content of column "words"  
remover = StopWordsRemover()\ 
.setInputCol("words")\ 
.setOutputCol("filteredWords") 
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# Map words to a features 
# Each word in filteredWords must become a feature in a Vector object 
# The HashingTF Transformer can be used to perform this operation. 
# This operations is based on a hash function and can potentially  
# map two different words to the same "feature". The number of conflicts 
# in influenced by the value of the numFeatures parameter.   
# The "feature" version of the words is stored in Column "rawFeatures".  
# Each feature, for a document, contains the number of occurrences  
# of that feature in the document (TF component of the TF-IDF measure)  
hashingTF = HashingTF()\ 
.setNumFeatures(1000)\ 
.setInputCol("filteredWords")\ 
.setOutputCol("rawFeatures")    
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# Apply the IDF transformation/computation. 
# Update the weight associated with each feature by considering also the  
# inverse document frequency component. The returned new column  
# is called "features", that is the standard name for the column that  
# contains the  predictive features used to create a classification model  
idf = IDF()\ 
.setInputCol("rawFeatures")\ 
.setOutputCol("features")    }); 
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# Create a classification model based on the logistic regression algorithm 
# We can set the values of the parameters of the  
# Logistic Regression algorithm using the setter methods. 
lr = LogisticRegression()\ 
.setMaxIter(10)\ 
.setRegParam(0.01) 
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# Define the pipeline that is used to create the logistic regression 
# model on the training data. 
# In this case the pipeline is composed of five steps 
# - text tokenizer 
# - stopword removal 
# - TF-IDF computation (performed in two steps) 
# - Logistic regression model generation 
pipeline = Pipeline().setStages([tokenizer, remover, hashingTF, idf, lr]) 
 
# Execute the pipeline on the training data to build the  
# classification model 
classificationModel = pipeline.fit(trainingData) 
 
# Now, the classification model can be used to predict the class label 
# of new unlabeled data 
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# ************************* 
# Prediction  step 
# ************************* 
# Read unlabeled data 
# Create a DataFrame from unlabeledData.csv 
# Unlabeled data in raw format 
unlabeledData = spark.read.load(unlabeledData,\ 
                     format="csv", header=True, inferSchema=True)  
 
   

102 



# Make predictions on unlabeled documents by using the  
# Transformer.transform() method. 
# The transform will only use the 'features' columns 
predictionsDF = classificationModel.transform(unlabeledData) 
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# The returned DataFrame has the following schema (attributes) 
# |-- label: string (nullable = true) 
# |-- text: string (nullable = true) 
# |-- words: array (nullable = true) 
# |    |-- element: string (containsNull = true) 
# |-- filteredWords: array (nullable = true) 
# |    |-- element: string (containsNull = true) 
# |-- rawFeatures: vector (nullable = true) 
# |-- features: vector (nullable = true) 
# |-- rawPrediction: vector (nullable = true) 
# |-- probability: vector (nullable = true) 
# |-- prediction: double (nullable = false) 
 
# Select only the original features (i.e., the value of the original text attribute) and  
# the predicted class for each record 
predictions = predictionsDF.select("text", "prediction") 
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# Save the result in an HDFS output folder 
predictions.write.csv(outputPath, header="true") 
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 In order to test the goodness of algorithms there 
are some evaluators 

 The Evaluator can be  
 a BinaryClassificationEvaluator for binary data 
 a MulticlassClassificationEvaluator for multiclass 

problems 
 Provided metrics are: 
 Accuracy 
 Precision 
 Recall 
 F-measure  
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 Use the MulticlassClassificationEvaluator 
estimator from pyspark.ml.evaluator  on a 
DataFrame 

 The instantiated estimator has the method 
evaluate() that is applied on a DataFrame  

 It compares the predictions with the true label 
values 

 Output 

▪ The double value of the computed performance metric 
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 Parameters of 
MulticlassClassificationEvaluator 

 metricName 

▪ ‘accuracy', ‘f1’, ‘weightedPrecision’, ‘weightedRecall’ 

 labelCol:input 

▪ Column with the true label/class value 

 predictionCol: 

▪ Input column with the predicted class/label value 
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 In the following example, the set of labeled data 
is read from a text file that contains 
 One record/data point per line 

 The records/data points are structured data with a 
fixed number of attributes (four) 
▪ One attribute is the class label (label) 

▪ The other three attributes (attr1, attr2, attr3) are the 
predictive attributes that are used to predict the value of the 
class label 

▪ All attributes are already double attributes 

 The input file has the header line 
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 Consider the following example input labeled 
data file 

label,attr1,attr2,attr3 

1,0.0,1.1,0.1 

0,2.0,1.0,-1.0 

0,2.0,1.3,1.0 

1,0.0,1.2,-0.5 

……. 
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 We initially split the labeled data set in two 
subsets 

 Training set: 75% of the labeled data  

 Test set: 25% of the labeled data  

 Then, we infer/train a logistic regression 
model on the training set 

 Finally, we evaluate the prediction quality of 
the inferred model on both the test set and 
the training set 
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from pyspark.mllib.linalg import Vectors 
from pyspark.ml.feature import VectorAssembler 
from pyspark.ml.classification import LogisticRegression 
from pyspark.ml.evaluation import MulticlassClassificationEvaluator 
from pyspark.ml import Pipeline 
from pyspark.ml import PipelineModel 
 
# input and output folders 
labeledData = "ex_dataValidation/labeledData.csv" 
outputPath = "predictionsLRPipelineValidation/“ 
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# Create a DataFrame from labeledData.csv 
# Training data in raw format 
labeledDataDF = spark.read.load(labeledData,\ 
                     format="csv", header=True,\ 
                     inferSchema=True)    
 
# Split labeled data in training and test set 
# training data : 75% 
# test data: 25% 
trainDF, testDF = labeledDataDF.randomSplit([0.75, 0.25], seed=10)  
 

114 



# Create a DataFrame from labeledData.csv 
# Training data in raw format 
labeledDataDF = spark.read.load(labeledData,\ 
                     format="csv", header=True,\ 
                     inferSchema=True)    
 
# Split labeled data in training and test set 
# training data : 75% 
# test data: 25% 
trainDF, testDF = labeledDataDF.randomSplit([0.75, 0.25], seed=10)  
 

115 

randomSplit  can be used to split the content of an input DataFrame in subsets 



# ************************* 
# Training step 
# *************************  
# Define an assembler to create a column (features) of type Vector  
# containing the double values associated with columns attr1, attr2, attr3 
assembler = VectorAssembler(inputCols=["attr1", "attr2", "attr3"],\ 
                            outputCol="features")  
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# Create a LogisticRegression object.   
# LogisticRegression is an Estimator that is used to  
# create a classification model based on logistic regression. 
lr = LogisticRegression() 
 
# We can set the values of the parameters of the  
# Logistic Regression algorithm using the setter methods. 
# There is one set method for each parameter 
# For example, we are setting the number of maximum iterations to 10 
# and the regularization parameter. to 0.0.1 
lr.setMaxIter(10) 
lr.setRegParam(0.01)    
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# Define a pipeline that is used to create the logistic regression 
# model on the training data. The pipeline includes also  
# the preprocessing step 
pipeline = Pipeline().setStages([assembler, lr])  
 
# Execute the pipeline on the training data to build the  
# classification model 
classificationModel = pipeline.fit(trainDF)  
 
# Now, the classification model can be used to predict the class label 
# of new unlabeled data     
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# Make predictions on the test data using the transform() method of the  
# trained classification model transform uses only the content of 'features'  
# to perform the predictions. The model is associated with the pipeline and hence 
# also the assembler is executed 
predictionsDF = classificationModel.transform(testDF)    
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# The predicted value is column prediction 
# The actual label is column label 
 
# Define a set of evaluators 
myEvaluatorAcc = MulticlassClassificationEvaluator(labelCol="label",\ 
                                                 predictionCol="prediction",\ 
                                                 metricName='accuracy') 
 
myEvaluatorF1 = MulticlassClassificationEvaluator(labelCol="label",\ 
                                                 predictionCol="prediction",\ 
                                                 metricName='f1') 
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myEvaluatorWeightedPrecision = 
MulticlassClassificationEvaluator(labelCol="label",\ 

                                                 predictionCol="prediction",\ 
                                                 metricName='weightedPrecision') 
 
 
myEvaluatorWeightedRecall = MulticlassClassificationEvaluator(labelCol="label",\ 
                                                 predictionCol="prediction",\ 
                                                 metricName='weightedRecall')   
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# Apply the evaluators on the predictions associated with the test data 
# Print the results on the standard output 
 
print("Accuracy on test data ", myEvaluatorAcc.evaluate(predictionsDF)) 
print("F1 on test data ", myEvaluatorF1.evaluate(predictionsDF)) 
print("Weighted recall on test data ",\ 
      myEvaluatorWeightedRecall.evaluate(predictionsDF)) 
print("Weighted precision on test data ",\ 
      myEvaluatorWeightedPrecision.evaluate(predictionsDF))  
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# We compute the prediction quality also for the training data. 
# To check if the model is overfitted on the training data 
 
# Make predictions on the training data using the transform() method of the  
# trained classification model transform uses only the content of 'features'  
# to perform the predictions. The model is associated with the pipeline and hence 
# also the assembler is executed 
predictionsTrainingDF = classificationModel.transform(trainDF) 
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# Apply the evaluators on the predictions associated with the test data 
# Print the results on the standard output 
 
print("Accuracy on training data ",\ 
      myEvaluatorAcc.evaluate(predictionsTrainingDF)) 
print("F1 on training data ",\ 
      myEvaluatorF1.evaluate(predictionsTrainingDF)) 
print("Weighted recall on training data ",\ 
      myEvaluatorWeightedRecall.evaluate(predictionsTrainingDF)) 
print("Weighted precision on training data ",\ 
      myEvaluatorWeightedPrecision.evaluate(predictionsTrainingDF)) 
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 The setting of the parameters of an algorithm is 
always a difficult task 

 A “brute force” approach can be used to find the 
setting optimizing a quality index 

 The training data is split in two subsets 

▪ The first set is used to build a model  

▪ The second one is used to evaluate the quality of the model 

 The setting that maximizes a quality index (e.g., the 
prediction accuracy) is used to build the final model 
on the whole training dataset 
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 One single split of the training set usually is 
biased 

 Hence, the cross-validation approach is 
usually used 

 It creates k splits and k models  

 The parameter setting that achieves, on the 
average, the best result on the k models is 
selected as final setting of the algorithm’s 
parameters  
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 Spark supports a brute-force grid-based approach to 
evaluate a set of possible parameter settings on a pipeline 

 Input: 
 An MLlib pipeline 
 A set of values to be evaluated for each input parameter of the 

pipeline 
▪ All the possible combinations of the specified parameter values are 

considered and the related models are automatically generated and 
evaluated by Spark 

 A quality evaluation metric to evaluate the result of the input 
pipeline 

 Output  
 The model associated with the best parameter setting, in term 

of quality evaluation metric 
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 The following example shows how a grid-
based approach can be used to tune a logistic 
regression classifier on a structured dataset 

 The pipeline that is repeated multiple times is 
based on the cross validation component 

 The input data set is the same structured 
dataset used for the example of the 
evaluators 
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 The following parameters of the logistic 
regression algorithm are considered in the 
brute-force search/parameter tuning 

 Maximum iteration 

▪ 10, 100, 1000 

 Regulation parameter  

▪ 0.1, 0.01 

 6 parameter configurations are evaluated (3 x 2) 
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from pyspark.mllib.linalg import Vectors 
from pyspark.ml.feature import VectorAssembler 
from pyspark.ml.classification import LogisticRegression 
from pyspark.ml.evaluation import MulticlassClassificationEvaluator 
from pyspark.ml.evaluation import BinaryClassificationEvaluator 
from pyspark.ml.tuning import  ParamGridBuilder 
from pyspark.ml.tuning import  CrossValidator 
from pyspark.ml import Pipeline 
from pyspark.ml import PipelineModel 
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# input and output folders 
labeledData = "ex_dataValidation/labeledData.csv" 
unlabeledData = "ex_dataValidation/unlabeledData.csv" 
outputPath = "predictionsLRPipelineTuning/" 
 
# Create a DataFrame from labeledData.csv 
# Training data in raw format 
labeledDataDF = spark.read.load(labeledData,\ 
                     format="csv",\ 
                     header=True,\ 
                     inferSchema=True) 
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# ************************* 
# Training step 
# ************************* 
 
# Define an assembler to create a column (features) of type Vector  
# containing the double values associated with columns attr1, attr2, attr3 
assembler = VectorAssembler(inputCols=["attr1", "attr2", "attr3"],\ 
                            outputCol="features") 
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# Create a LogisticRegression object.   
# LogisticRegression is an Estimator that is used to  
# create a classification model based on logistic regression. 
lr = LogisticRegression()   
 
# Define a pipeline that is used to create the logistic regression 
# model on the training data. The pipeline includes also  the preprocessing step 
pipeline = Pipeline().setStages([assembler, lr]) 
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# We use a ParamGridBuilder to construct a grid of parameter values to  
# search over. 
# We set 3 values for lr.setMaxIter and 2 values for lr.regParam. 
# This grid will evaluate 3 x 2 = 6 parameter settings for  
# the input pipeline. 
paramGrid = ParamGridBuilder()\ 
.addGrid(lr.maxIter, [10, 100, 1000])\ 
.addGrid(lr.regParam, [0.1, 0.01])\ 
.build() 
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There is one call to the addGrid method for each parameter that we want to set. 
Each call to the addGrid method is characterized by 
- The parameter we want to consider 
-The list of values to test/to consider 



# We now treat the Pipeline as an Estimator, wrapping it in a  
#  CrossValidator instance. This allows us to jointly choose parameters  
# for all Pipeline stages. 
# CrossValidator requires  
# - an Estimator 
# - a set of Estimator ParamMaps 
# - an Evaluator. 
cv = CrossValidator()\ 
.setEstimator(pipeline)\ 
.setEstimatorParamMaps(paramGrid)\ 
.setEvaluator(BinaryClassificationEvaluator())\ 
.setNumFolds(3) 
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Here, we set  
-The pipeline to be evaluated 
-The set of parameter values to be considered 
-The evaluator (i.e., the object that is used to compute the quality measure 
that is used to evaluate the quality of the model) 
- The number of folds to consider (i.e., the number or repetitions)  



# Run cross-validation. The result is the logistic regression model  
# based on the best set of parameters (based on the results of the  
# cross-validation operation). 
tunedLRmodel = cv.fit(labeledDataDF)  
   
# Now, the tuned classification model can be used to predict the class label 
# of new unlabeled data 
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The returned model is the one associated with the best parameter 
setting, based on the result of the cross-validation test 



# ************************* 
# Prediction  step 
# ************************* 
  
# Create a DataFrame from unlabeledData.csv 
# Unlabeled data in raw format 
unlabeledData = spark.read.load(unlabeledData,\ 
                     format="csv", header=True, inferSchema=True) 
 
# Make predictions on the unlabled data using the transform() method of the  
# trained tuned classification model transform uses only the content of 'features'  
# to perform the predictions. The model is associated with the pipeline and hence 
# also the assembler is executed 
predictionsDF = tunedLRmodel.transform(unlabeledData) 
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# The returned DataFrame has the following schema (attributes) 
# - features: vector (values of the attributes) 
# - label: double (value of the class label) 
# - rawPrediction: vector (nullable = true) 
# - probability: vector (The i-th cell contains the probability that the current  
# record belongs to the i-th class 
# - prediction: double (the predicted class label) 
 
# Select only the original features (i.e., the value of the original attributes  
# attr1, attr2, attr3) and the predicted class for each record 
predictions = predictionsDF.select("attr1", "attr2", "attr3", "prediction")  
 
# Save the result in an HDFS output folder 
predictions.write.csv(outputPath, header="true")    
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 Frequently the training data are sparse 

 E.g., textual data are sparse  

▪ Each document contains only a subset of the possible 
words 

 Hence, sparse vectors are frequently used 

 MLlib supports reading training examples 
stored in the LIBSVM format 

 It is a commonly used textual format that is used 
to represent sparse documents/data points 
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 The LIBSVM format 
 It is a textual format in which each line represents an 

input record/data point by using a sparse feature 
vector: 

 Each line has the format 
  label index1:value1 index2:value2 ... 
 where  
 label is an integer associated with the class label 

▪ It is the first value of each line 

 The indexes are integer values representing the 
features 

 The values are the (double) values of the features 
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 Consider the following two records/data 
points characterized by 4 predictive features 
and a class label 

 Features = [5.8, 1.7, 0  ,  0    ] --  Label = 1 

 Features = [4.1, 0   , 2.5, 1.2] --  Label = 0 

 Their LIBSVM format-based representation is 
the following 

   1 1:5.8 2:1.7 

   0 1:4.1 3:2.5 4:1.2 
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 LIBSVM files can be loaded into DataFrames 
by combining the following methods: 

 read, format("libsvm"), and load(inputpath) 

 The returned DataFrame has two columns: 

 label: double 

▪ The double value associated with the label 

 features: vector 

▪ A sparse vector associated with the predictive features 
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… 
 spark.read.format("libsvm")\ 
   .load("sample_libsvm_data.txt") 
 
.. 
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