

 Graphs are data structures composed of
nodes and edges

 Nodes/vertexes are denoted as V={v1,v2,…,vn} and
edges are denoted as E={e1,e2,…,en}

 Graph analytics is the process of analyzing
relationships between vertexes and edges

3

4

 Graphs are undirected if edges do not have a
direction

 Otherwise they are called directed graphs
 Vertexes and edges can have data associated

with them
 weight/label

▪ e.g., an edge weight may represent the strength of the
relationship

▪ e.g., a vertex label may be the string associated with the
name of the vertex

5

6

likes

likes

suggested

reviewed

reviewed

User#1 User#2

User#3

User#4

User#5

 Graphs are natural way of describing
relationships

 Practical example of analytics over graphs

 Ranking web pages (Google PageRank)

 Detecting group of friends

 Determine importance of infrastructure in
electrical networks

 ...

7

 Importance and rank of web pages

8

 Social network structure and web usage

9

 Movies watched by users

10

11

 Spark RDD-based library for performing
graph processing

 Core part of Spark

12

Spark SQL
structured

data

Spark
Streaming
real-time

MLlib
(Machine
learning
and Data
mining)

GraphX
(Graph

processing)

Spark Core

Standalone Spark
Scheduler

YARN Scheduler
(The same used by

Hadoop)
Mesos

 Low level interface with RDD
 Very powerful

 Many application and libraries built on top of it

 However, not easy to use or optimize
 No Python version of the APIs

13

 Library DataFrame-based for performing
graph processing

 Spark external package built on top of
GraphX
 https://graphframes.github.io/graphframes/docs/_site/index.html

14

https://graphframes.github.io/graphframes/docs/_site/index.html

15

16

 Define vertexes and edges of the graph

 Vertexes and edges are represented by means of
records inside DataFrames with specifically
named columns

▪ One DataFrame for the definition of the vertexes of the
graph

▪ One DataFrame for the definition of the edges of the
graph

17

 The DataFrames that are used to represent
nodes/vertexes

 Contain one record per vertex

 Must contain a column named "id" that stores
unique vertex IDs

 Can contain other columns that are used to
characterize vertexes

18

 The DataFrames that are used to represent
edges

 Contain one record per edge

 Must contain two columns "src" and "dst" storing
source vertex IDs and destination vertex IDs of
edges

 Can contain other columns that are used to
characterize edges

19

 Create a graph of type
graphframes.graphframe.GraphFrame by
invoking the constructor GraphFrame(v,e)

 v

▪ The DataFrame containing the definition of the vertexes

 e

▪ The DataFrame containing the definition of the edges

 Graphs in graphframes are directed graphs

20

21

u1
Alice,34

u6
Fanny,36

u5
Esther,32

u4
David,29

u3
Charlie,30

U2
bob,36

u7
Gabby,60

friend

friend

friend
friend

follow

follow follow

follow

22

+---+-------+---+

| id| name|age|

+---+-------+---+

| u1| Alice| 34|

| u2| Bob| 36|

| u3|Charlie| 30|

| u4| David| 29|

| u5| Esther| 32|

| u6| Fanny| 36|

| u7| Gabby| 60|

+---+-------+---+

+---+---+------------+

|src|dst|relationship|

+---+---+------------+

| u1| u2| friend|

| u2| u3| follow|

| u3| u2| follow|

| u6| u3| follow|

| u5| u6| follow|

| u5| u4| friend|

| u4| u1| friend|

| u1| u5| friend|

+---+---+------------+

Vertex DataFrame Edge DataFrame

from graphframes import GraphFrame

Vertex DataFrame
v = spark.createDataFrame([("u1", "Alice", 34),\
 ("u2", "Bob", 36),\
 ("u3", "Charlie", 30),\
 ("u4", "David", 29),\
 ("u5", "Esther", 32),\
 ("u6", "Fanny", 36),\
 ("u7", "Gabby", 60)],\
 ["id", "name", "age"])

23

Edge DataFrame
e = spark.createDataFrame([("u1", "u2", "friend"),\
 ("u2", "u3", "follow"),\
 ("u3", "u2", "follow"),\
 ("u6", "u3", "follow"),\
 ("u5", "u6", "follow"),\
 ("u5", "u4", "friend"),\
 ("u4", "u1", "friend"),\
 ("u1", "u5", "friend")],\
 ["src", "dst", "relationship"])

Create the graph
g = GraphFrame(v, e)

 24

 In undirected graphs the edges indicate a two-
way relationship (each edge can be traversed in
both directions)

 In GraphX you could use to_undirected() to
create an undirected copy of the Graph

 Unfortunately GraphFrames does not support
it
 You can convert your graph by applying a flatMap

function over the edges of the directed graph that
creates symmetric edges and then create a new
GraphFrame

25

 As with RDD and DataFrame, you can cache
graphs in GraphFrame

 Convenient if the same (complex) graph result of
(multiple) transformations is used multiple times
in the same application

 Simply invoke cache() on the GraphFrame you
want to cache

▪ It persists the DataFrame-based representation of
vertexes and edges of the graph

26

 Some specific methods are provided to
execute queries on graphs

 filterVertices(condition)

 filterEdges(condition)

 dropIsolatedVertices()

 The returned result is the filtered version of
the input graph

27

 filterVertices(condition)

 condition contains an SQL-like condition on the
values of the attributes of the vertexes

▪ E.g., “age>35”

 Selects only the vertexes for which the specified
condition is satisfied and returns a new graph with
only the subset of selected vertexes

28

 filterEdges(condition)

 condition contains an SQL-like condition on the
values of the attributes of the edges

▪ E.g., "relationship='friend' "

 Selects only the edges for which the specified
condition is satisfied and returns a new graph with
only the subset of selected edges

29

 dropIsolatedVertices()

 Drops the vertexes that are not connected with
any other node and returns a new graph without
the dropped nodes

30

 Given the input graph, create a new subgraph
including

 Only the vertexes associated with users
characterized by age between 29 and 50

 Only the edges representing the friend
relationship

 Drop isolated vertexes

31

32

Input graph

u1
Alice,

34

u6
Fanny

,36

u5
Esther

,32

u3
Charlie

,30

U2
bob,36

u7
Gabby

,60

friend

friend

friend
friend

follow

follow follow

follow

u4
David,

29

33

Filter vertexes

u1
Alice,

34

u6
Fanny

,36

u5
Esther

,32

u4
David,

29

u3
Charlie

,30

U2
bob,36

u7
Gabby

,60

friend

friend

friend
friend

follow

follow follow

follow

34

Filter edges

u1
Alice,

34

u6
Fanny

,36

u5
Esther

,32

u4
David,

29

u3
Charlie

,30

U2
bob,36

friend

friend

friend
friend

follow

follow follow

follow

35

Drop isolated vertexes

u1
Alice,

34

u6
Fanny

,36

u5
Esther

,32

u4
David,

29

u3
Charlie

,30

U2
bob,36

friend

friend

friend
friend

36

Output graph

u1
Alice,

34

u5
Esther

,32

u4
David,

29

U2
bob,36

friend

friend

friend
friend

37

Input graph

u1
Alice,

34

u6
Fanny

,36

u5
Esther

,32

u3
Charlie

,30

U2
bob,36

u7
Gabby

,60

friend

friend

friend
friend

follow

follow follow

follow

u1
Alice,

34

u5
Esther

,32

U2
bob,36

friend

friend

friend
friend

Output graph

u4
David,

29

u4
David,

29

from graphframes import GraphFrame

Vertex DataFrame
v = spark.createDataFrame([("u1", "Alice", 34),\
 ("u2", "Bob", 36),\
 ("u3", "Charlie", 30),\
 ("u4", "David", 29),\
 ("u5", "Esther", 32),\
 ("u6", "Fanny", 36),\
 ("u7", "Gabby", 60)],\
 ["id", "name", "age"])

38

Edge DataFrame
e = spark.createDataFrame([("u1", "u2", "friend"),\
 ("u2", "u3", "follow"),\
 ("u3", "u2", "follow"),\
 ("u6", "u3", "follow"),\
 ("u5", "u6", "follow"),\
 ("u5", "u4", "friend"),\
 ("u4", "u1", "friend"),\
 ("u1", "u5", "friend")],\
 ["src", "dst", "relationship"])

Create the graph
g = GraphFrame(v, e)

 39

selectedUsersandFriendRelGraph = g\
.filterVertices("age>=29 AND age<=50")\
.filterEdges("relationship='friend'")
. dropIsolatedVertices()

40

 Given a GraphFrame, we can easily access its
vertexes and edges

 g.vertices returns the DataFrame associated with
the vertexes of the input graph

 g.edges returns the DataFrame associated with
the edges of the input graph

41

 All the standard DataFrame transformations/
actions are available also for the DataFrames
that are used to store vertexes and edges

 For example, the number of vertexes and the
number of edges can be computed by invoking
the count() action on the DataFrames vertices and
edges, respectively

42

 Given the input graph

 Count how many vertexes and edges has the
graph

 Find the smallest value of age (i.e., the age of the
youngest user in the graph)

 Count the number of edges of type "follow" in the
graph

43

from graphframes import GraphFrame

Vertex DataFrame
v = spark.createDataFrame([("u1", "Alice", 34),\
 ("u2", "Bob", 36),\
 ("u3", "Charlie", 30),\
 ("u4", "David", 29),\
 ("u5", "Esther", 32),\
 ("u6", "Fanny", 36),\
 ("u7", "Gabby", 60)],\
 ["id", "name", "age"])

44

Edge DataFrame
e = spark.createDataFrame([("u1", "u2", "friend"),\
 ("u2", "u3", "follow"),\
 ("u3", "u2", "follow"),\
 ("u6", "u3", "follow"),\
 ("u5", "u6", "follow"),\
 ("u5", "u4", "friend"),\
 ("u4", "u1", "friend"),\
 ("u1", "u5", "friend")],\
 ["src", "dst", "relationship"])

Create the graph
g = GraphFrame(v, e)

 45

Count how many vertexes and edges has the graph
print("Number of vertexes: ",g.vertices.count())
print("Number of edges: ",g.edges.count())

Print on the standard output the smallest value of age
(i.e., the age of the youngest user in the graph)
g.vertices.agg({"age":"min"}).show()

Print on the standard output
the number of "follow" edges in the graph.
numFollows = g.edges.filter("relationship = 'follow' ").count()

print(numFollows)

46

 Motif finding refers to searching for
structural patterns in graphs

 A simple Domain-Specific Language (DSL) is
used to specify the structure of the patterns
we are interested in

 The paths/subgraphs in the graph matching the
specified structural pattern are selected

47

 The basic unit of a pattern is a connection
between vertexes
 (v1) – [e1] -> (v2)

 means

 An arbitrary edge [e1] from an arbitrary vertex (v1)
to another arbitrary vertex (v2)

 Edges are denoted by square brackets
 [e1]

 Vertexes are expressed by round brackets
 (v1), (v2)

48

v1 v2

e1

 Patterns are chains of basic units

 (v1) – [e1] -> (v2); (v2) – [e2] -> (v3)

 means

 An arbitrary edge from an arbitrary vertex v1 to
another arbitrary vertex v2 and another arbitrary
edge from v2 to another arbitrary vertex v3

▪ v3 and v1 can be the same vertex

49

v1 v2

e1

e2

v1 v3 v2

e1 e2

 The same vertex name is used in a pattern to
have a reference to the same vertex

 (v1) – [e1] -> (v2); (v2) – [e2] -> (v1)

 means

 An arbitrary edge from an arbitrary vertex v1 to
another arbitrary vertex v2 and vice-versa

50

v1 v2

e1

e2

 It is acceptable to omit names for vertices or
edges in patterns when not needed
 (v1)-[]->(v2)

 expresses an arbitrary edge between two arbitrary
vertexes v1,v2 but does not assign a name to the
edge

 These are called anonymous vertexes and
edges

51

v1 v2

 A basic unit (an edge between two vertexes)
can be negated to indicate that the edge
should not be present in the graph

 (v1)-[]->(v2); !(v2)-[]->(v1)

 means

 Edges from v1 to v2 but no edges from v2 to v1

52

v1 v2

 The find(motif) method of GraphFrame is
used to select motifs

 motif

▪ DSL representation of the structural pattern

53

 find() returns a DataFrame of all the paths
matching the structural motif/pattern
 One path per record

 The returned DataFrame will have a column for
each of the named elements (vertexes and edges)
in the structural pattern/motif
▪ Each column is a struct

▪ The fields of each struct are the labels/features of the associated
vertex or edge

 It can return duplicate rows/records
▪ If there are many paths connecting the same nodes

54

 More complex queries on the structure and
content of the patterns can be expressed by
applying filters to the result DataFrame

 i.e., more complex queries can be applied by
combing find() and filter()

55

 Find the paths/subgraphs matching the
pattern

(v1) – [e1] -> (v2); (v2) – [e2] -> (v1)

 Store the result in a DataFrame

56

u1
Alice,34

u6
Fanny,

36

u5
Esther

,32

u4
David,29

u3
Charlie

,30

U2
bob,36

u7
Gabby,

60

friend

friend

friend
friend

follow

follow follow

follow

 Find the paths/subgraphs matching the
pattern

(v1) – [e1] -> (v2); (v2) – [e2] -> (v1)

 Store the result in a DataFrame

57

u1
Alice,34

u6
Fanny,

36

u5
Esther

,32

u4
David,29

u3
Charlie

,30

U2
bob,36

u7
Gabby,

60

friend

friend

friend
friend

follow

follow follow

follow

 Find the paths/subgraphs matching the
pattern

(v1) – [e1] -> (v2); (v2) – [e2] -> (v1)

 Store the result in a DataFrame

58

u1
Alice,34

u6
Fanny,

36

u5
Esther

,32

u4
David,29

u3
Charlie

,30

U2
bob,36

u7
Gabby,

60

friend

friend

friend
friend

follow

follow follow

follow

Pay attention that two paths are returned:
• u2 -> follow -> u3 -> follow ->u2
• u3 -> follow -> u2 -> follow ->u3

 Find the paths/subgraphs matching the
pattern

(v1) – [e1] -> (v2); (v2) – [e2] -> (v1)

 Content of the returned DataFrame
 +--------------------+--------------------+--------------------+---------------------+
 | v1 | e1 | v2 | e2 |
 +--------------------+--------------------+--------------------+---------------------+
 | [u2, Bob, 36] | [u2, u3, follow] | [u3, Charlie, 30] | [u3, u2, follow] |
 | [u3, Charlie, 30] | [u3, u2, follow] | [u2, Bob, 36] | [u2, u3, follow] |
 +--------------------+--------------------+--------------------+---------------------+

59

 Find the paths/subgraphs matching the
pattern

(v1) – [e1] -> (v2); (v2) – [e2] -> (v1)

 Content of the returned DataFrame
 +--------------------+--------------------+--------------------+---------------------+
 | v1 | e1 | v2 | e2 |
 +--------------------+--------------------+--------------------+---------------------+
 | [u2, Bob, 36] | [u2, u3, follow] | [u3, Charlie, 30] | [u3, u2, follow] |
 | [u3, Charlie, 30] | [u3, u2, follow] | [u2, Bob, 36] | [u2, u3, follow] |
 +--------------------+--------------------+--------------------+---------------------+

60

There is one column for each (distinct) named vertex and edge of the
structural pattern

 Find the paths/subgraphs matching the
pattern

(v1) – [e1] -> (v2); (v2) – [e2] -> (v1)

 Content of the returned DataFrame
 +--------------------+--------------------+--------------------+---------------------+
 | v1 | e1 | v2 | e2 |
 +--------------------+--------------------+--------------------+---------------------+
 | [u2, Bob, 36] | [u2, u3, follow] | [u3, Charlie, 30] | [u3, u2, follow] |
 | [u3, Charlie, 30] | [u3, u2, follow] | [u2, Bob, 36] | [u2, u3, follow] |
 +--------------------+--------------------+--------------------+---------------------+

61

The records are associated with the vertexes and edges of the selected
paths

 Find the paths/subgraphs matching the
pattern

(v1) – [e1] -> (v2); (v2) – [e2] -> (v1)

 Content of the returned DataFrame
 +--------------------+--------------------+--------------------+---------------------+
 | v1 | e1 | v2 | e2 |
 +--------------------+--------------------+--------------------+---------------------+
 | [u2, Bob, 36] | [u2, u3, follow] | [u3, Charlie, 30] | [u3, u2, follow] |
 | [u3, Charlie, 30] | [u3, u2, follow] | [u2, Bob, 36] | [u2, u3, follow] |
 +--------------------+--------------------+--------------------+---------------------+

62

All columns are associated with the data type “struct”.
Each struct has the same “schema/features” of the associated vertex or
edge.

from graphframes import GraphFrame

Vertex DataFrame
v = spark.createDataFrame([("u1", "Alice", 34),\
 ("u2", "Bob", 36),\
 ("u3", "Charlie", 30),\
 ("u4", "David", 29),\
 ("u5", "Esther", 32),\
 ("u6", "Fanny", 36),\
 ("u7", "Gabby", 60)],\
 ["id", "name", "age"])

63

Edge DataFrame
e = spark.createDataFrame([("u1", "u2", "friend"),\
 ("u2", "u3", "follow"),\
 ("u3", "u2", "follow"),\
 ("u6", "u3", "follow"),\
 ("u5", "u6", "follow"),\
 ("u5", "u4", "friend"),\
 ("u4", "u1", "friend"),\
 ("u1", "u5", "friend")],\
 ["src", "dst", "relationship"])

Create the graph
g = GraphFrame(v, e)

 64

Retrieve the motifs associated with the pattern
vertex -> edge -> vertex -> edge ->vertex
motifs = g.find("(v1)-[e1]->(v2); (v2)-[e2]->(v1)")

65

 Find the paths/subgraphs matching the
pattern

(v1)- [friend] -> (v2); (v2)- [follow] -> (v3)

 Store the result in a DataFrame

66

u1
Alice,34

u6
Fanny,

36

u5
Esther

,32

u4
David,29

u3
Charlie

,30

U2
bob,36

u7
Gabby,

60

friend

friend

friend
friend

follow

follow follow

follow

 Find the paths/subgraphs matching the
pattern

(v1)- [friend] -> (v2); (v2)- [follow] -> (v3)

 Store the result in a DataFrame

67

u1
Alice,34

u6
Fanny,

36

u5
Esther

,32

u4
David,29

u3
Charlie

,30

U2
bob,36

u7
Gabby,

60

friend

friend

friend
friend

follow

follow follow

follow

First selected path

 Find the paths/subgraphs matching the
pattern

(v1)- [friend] -> (v2); (v2)- [follow] -> (v3)

 Store the result in a DataFrame

68

u1
Alice,34

u6
Fanny,

36

u5
Esther

,32

u4
David,29

u3
Charlie

,30

U2
bob,36

u7
Gabby,

60

friend

friend

friend
friend

follow

follow follow

follow

Second selected path

from graphframes import GraphFrame

Vertex DataFrame
v = spark.createDataFrame([("u1", "Alice", 34),\
 ("u2", "Bob", 36),\
 ("u3", "Charlie", 30),\
 ("u4", "David", 29),\
 ("u5", "Esther", 32),\
 ("u6", "Fanny", 36),\
 ("u7", "Gabby", 60)],\
 ["id", "name", "age"])

69

Edge DataFrame
e = spark.createDataFrame([("u1", "u2", "friend"),\
 ("u2", "u3", "follow"),\
 ("u3", "u2", "follow"),\
 ("u6", "u3", "follow"),\
 ("u5", "u6", "follow"),\
 ("u5", "u4", "friend"),\
 ("u4", "u1", "friend"),\
 ("u1", "u5", "friend")],\
 ["src", "dst", "relationship"])

Create the graph
g = GraphFrame(v, e)

 70

Retrieve the motifs associated with the pattern
vertex -> edge -> vertex -> edge ->vertex
motifs = g.find("(v1)-[friend]->(v2); (v2)-[follow]->(v3)")

Filter the motifs (the content of the motifs DataFrame)
Select only the ones matching the pattern
vertex -> friend-> vertex -> follow ->vertex
motifsFriendFollow = motifs\
.filter("friend.relationship='friend' AND follow.relationship='follow' ")

71

Retrieve the motifs associated with the pattern
vertex -> edge -> vertex -> edge ->vertex
motifs = g.find("(v1)-[friend]->(v2); (v2)-[follow]->(v3)")

Filter the motifs (the content of the motifs DataFrame)
Select only the ones matching the pattern
vertex -> friend-> vertex -> follow ->vertex
motifsFriendFollow = motifs\
.filter("friend.relationship='friend' AND follow.relationship='follow' ")

72

Columns friend and follow are structs with three fields/attributes
- src
- dst
- relationship

Retrieve the motifs associated with the pattern
vertex -> edge -> vertex -> edge ->vertex
motifs = g.find("(v1)-[friend]->(v2); (v2)-[follow]->(v3)")

Filter the motifs (the content of the motifs DataFrame)
Select only the ones matching the pattern
vertex -> friend-> vertex -> follow ->vertex
motifsFriendFollow = motifs\
.filter("friend.relationship='friend' AND follow.relationship='follow' ")

73

To access a field of a struct column use the
syntax columnName.field

 Some specific properties are provided to
compute basic statistics on the degrees of the
vertexes
 degrees

 inDegrees

 outDegrees
 The returned result of each of this property is a

DataFrame with
 id

 (in/out)Degree value

74

 degrees

 Returns the degree of each vertex

▪ i.e., the number of edges associated with each vertex

 The result is stored in a DataFrame with Columns
(vertex) “id” and “degree”

▪ One record per vertex

▪ Only the vertexes with degree>=1 are stored in the
returned DataFrame

75

 inDegrees

 Returns the in-degree of each vertex

▪ i.e., the number of in-edges associated with each vertex

 The result is stored in a DataFrame with Columns
(vertex) “id” and “inDegree”

▪ One record per vertex

▪ Only the vertexes with in-degree>=1 are stored in the
returned DataFrame

76

 outDegrees

 Returns the out-degree of each vertex

▪ i.e., the number of out-edges associated with each
vertex

 The result is stored in a DataFrame with Columns
(vertex) “id” and “outDegree”

▪ One record per vertex

▪ Only the vertexes with out-degree>=1 are stored in the
returned DataFrame

77

 Given the input graph, compute

 Degree of each vertex

 inDegree of each vertex

 outDegree of each vertex

78

from graphframes import GraphFrame

Vertex DataFrame
v = spark.createDataFrame([("u1", "Alice", 34),\
 ("u2", "Bob", 36),\
 ("u3", "Charlie", 30),\
 ("u4", "David", 29),\
 ("u5", "Esther", 32),\
 ("u6", "Fanny", 36),\
 ("u7", "Gabby", 60)],\
 ["id", "name", "age"])

79

Edge DataFrame
e = spark.createDataFrame([("u1", "u2", "friend"),\
 ("u2", "u3", "follow"),\
 ("u3", "u2", "follow"),\
 ("u6", "u3", "follow"),\
 ("u5", "u6", "follow"),\
 ("u5", "u4", "friend"),\
 ("u4", "u1", "friend"),\
 ("u1", "u5", "friend")],\
 ["src", "dst", "relationship"])

Create the graph
g = GraphFrame(v, e)

 80

Retrieve the DataFrame with the information about the degree of
each vertex
vertexesDegreesDF = g.degrees

Retrieve the DataFrame with the information about the in-degree of
each vertex
vertexesInDegreesDF = g.inDegrees

Retrieve the DataFrame with the information about the out-degree of
each vertex
vertexesOutDegreesDF = g.outDegrees

81

 Given the input graph, select only the ids of
the vertexes with at least 2 in-edges

82

u1
Alice,34

u6
Fanny,

36

u5
Esther

,32

u4
David,29

u3
Charlie

,30

U2
bob,36

u7
Gabby,

60

friend

friend

friend
friend

follow

follow follow

follow

Input graph

 Given the input graph, select only the ids of
the vertexes with at least 2 in-edges

83

u1
Alice,34

u6
Fanny,

36

u5
Esther

,32

u4
David,29

u3
Charlie

,30

U2
bob,36

u7
Gabby,

60

friend

friend

friend
friend

follow

follow follow

follow

Input graph

 Given the input graph, select only the ids of
the vertexes with at least 2 in-edges

84

u1
Alice,34

u6
Fanny,

36

u5
Esther

,32

u4
David,29

u3
Charlie

,30

U2
bob,36

u7
Gabby,

60

friend

friend

friend
friend

follow

follow follow

follow

Input graph

 Given the input graph, select only the ids of
the vertexes with at least 2 in-edges

85

u1
Alice,34

u6
Fanny,

36

u5
Esther

,32

u4
David,29

u3
Charlie

,30

U2
bob,36

u7
Gabby,

60

friend

friend

friend
friend

follow

follow follow

follow

Input graph

Selected IDs
u2
u3

from graphframes import GraphFrame

Vertex DataFrame
v = spark.createDataFrame([("u1", "Alice", 34),\
 ("u2", "Bob", 36),\
 ("u3", "Charlie", 30),\
 ("u4", "David", 29),\
 ("u5", "Esther", 32),\
 ("u6", "Fanny", 36),\
 ("u7", "Gabby", 60)],\
 ["id", "name", "age"])

86

Edge DataFrame
e = spark.createDataFrame([("u1", "u2", "friend"),\
 ("u2", "u3", "follow"),\
 ("u3", "u2", "follow"),\
 ("u6", "u3", "follow"),\
 ("u5", "u6", "follow"),\
 ("u5", "u4", "friend"),\
 ("u4", "u1", "friend"),\
 ("u1", "u5", "friend")],\
 ["src", "dst", "relationship"])

Create the graph
g = GraphFrame(v, e)

 87

Retrieve the DataFrame with the information about the in-degree of
each vertex
vertexesInDegreesDF = g.inDegrees

Select only the vertexes with and in-degree value >=2
selectedVertexesDF = vertexesInDegreesDF.filter("inDegree>=2")

Select only the content of Column id
selectedVertexesIDsDF = selectedVertexesDF.select("id")

88

