




 Graphs are data structures composed of 
nodes and edges 

 Nodes/vertexes are denoted as V={v1,v2,…,vn} and 
edges are denoted as E={e1,e2,…,en}  

 Graph analytics is the process of analyzing 
relationships between vertexes and edges 
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 Graphs are undirected if edges do not have a 
direction 

 Otherwise they are called directed graphs 
 Vertexes and edges can have data associated 

with them 
 weight/label 

▪ e.g., an edge weight may represent the strength of the 
relationship 

▪ e.g., a vertex label may be the string associated with the 
name of the vertex 
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 Graphs are natural way of describing 
relationships 

 Practical example of analytics over graphs 

 Ranking web pages (Google PageRank) 

 Detecting group of friends  

 Determine importance of infrastructure in 
electrical networks 

 ... 
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 Importance and rank of web pages 
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 Social network structure and web usage 
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 Movies watched by users 
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 Spark RDD-based library for performing 
graph processing 

 Core part of Spark 
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 Low level interface with RDD 
 Very powerful 

 Many application and libraries built on top of it 

 However, not easy to use or optimize 
 No Python version of the APIs 
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 Library DataFrame-based for performing 
graph processing 

 Spark external package built on top of 
GraphX 
 https://graphframes.github.io/graphframes/docs/_site/index.html 
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https://graphframes.github.io/graphframes/docs/_site/index.html
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 Define vertexes and edges of the graph 

 Vertexes and edges are represented by means of 
records inside DataFrames with specifically 
named columns 

▪ One DataFrame for the definition of the vertexes of the 
graph 

▪ One DataFrame for the definition of the edges of the 
graph 
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 The DataFrames that are used to represent 
nodes/vertexes 

 Contain one record per vertex 

 Must contain a column named "id" that stores 
unique vertex IDs 

 Can contain other columns that are used to 
characterize vertexes 
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 The DataFrames that are used to represent 
edges 

 Contain one record per edge 

 Must contain two columns "src" and "dst" storing 
source vertex IDs and destination vertex IDs of 
edges 

 Can contain other columns that are used to 
characterize edges 
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 Create a graph of type 
graphframes.graphframe.GraphFrame by 
invoking the constructor GraphFrame(v,e) 

 v 

▪ The DataFrame containing the definition of the vertexes 

 e 

▪ The DataFrame containing the definition of the edges 

 Graphs in graphframes are directed graphs 
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+---+-------+---+ 

| id|   name|age| 

+---+-------+---+ 

| u1|  Alice| 34| 

| u2|    Bob| 36| 

| u3|Charlie| 30| 

| u4|  David| 29| 

| u5| Esther| 32| 

| u6|  Fanny| 36| 

| u7|  Gabby| 60| 

+---+-------+---+ 

+---+---+------------+ 

|src|dst|relationship| 

+---+---+------------+ 

| u1| u2|      friend| 

| u2| u3|      follow| 

| u3| u2|      follow| 

| u6| u3|      follow| 

| u5| u6|      follow| 

| u5| u4|      friend| 

| u4| u1|      friend| 

| u1| u5|      friend| 

+---+---+------------+ 

Vertex DataFrame Edge DataFrame 



from graphframes import GraphFrame 
 
# Vertex DataFrame 
v = spark.createDataFrame([ ("u1", "Alice", 34),\ 
                              ("u2", "Bob", 36),\ 
                              ("u3", "Charlie", 30),\ 
                              ("u4", "David", 29),\ 
                              ("u5", "Esther", 32),\ 
                              ("u6", "Fanny", 36),\ 
                              ("u7", "Gabby", 60)],\ 
                            ["id", "name", "age"]) 
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# Edge DataFrame 
e = spark.createDataFrame([  ("u1", "u2", "friend"),\ 
                              ("u2", "u3", "follow"),\ 
                              ("u3", "u2", "follow"),\ 
                              ("u6", "u3", "follow"),\ 
                              ("u5", "u6", "follow"),\ 
                              ("u5", "u4", "friend"),\ 
                              ("u4", "u1", "friend"),\ 
                              ("u1", "u5", "friend")],\ 
                           ["src", "dst", "relationship"]) 
 
# Create the graph 
g = GraphFrame(v, e) 
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 In undirected graphs the edges indicate a two-
way relationship (each edge can be traversed in 
both directions) 

 In GraphX you could use to_undirected() to 
create an undirected copy of the Graph 

 Unfortunately GraphFrames does not support 
it 
 You can convert your graph by applying a flatMap 

function over the edges of the directed graph that 
creates symmetric edges and then create a new 
GraphFrame  

 
25 



 As with RDD and DataFrame, you can cache 
graphs in GraphFrame 

 Convenient if the same (complex) graph result of 
(multiple) transformations is used multiple times 
in the same application 

 Simply invoke cache() on the GraphFrame you 
want to cache 

▪ It persists the DataFrame-based  representation of 
vertexes and edges of the graph 
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 Some specific methods are provided  to 
execute queries on graphs 

 filterVertices(condition)  

 filterEdges(condition) 

 dropIsolatedVertices() 

 The returned result is the filtered version of 
the input graph 
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 filterVertices(condition)  

 condition contains an SQL-like condition on the 
values of the attributes of the vertexes 

▪ E.g., “age>35” 

 Selects only the vertexes for which the specified 
condition is satisfied and returns a new graph with 
only the subset of selected vertexes 
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 filterEdges(condition) 

 condition contains an SQL-like condition on the 
values of the attributes of the edges 

▪ E.g., "relationship='friend' " 

 Selects only the edges for which the specified 
condition is satisfied and returns a new graph with 
only the subset of selected edges 
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 dropIsolatedVertices()  

 Drops the vertexes that are not connected with 
any other node and returns a new graph without 
the dropped nodes 
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 Given the input graph, create a new subgraph 
including 

 Only the vertexes associated with users 
characterized by age between 29 and 50 

 Only the edges representing the friend 
relationship 

 Drop isolated vertexes 
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from graphframes import GraphFrame 
 
# Vertex DataFrame 
v = spark.createDataFrame([ ("u1", "Alice", 34),\ 
                              ("u2", "Bob", 36),\ 
                              ("u3", "Charlie", 30),\ 
                              ("u4", "David", 29),\ 
                              ("u5", "Esther", 32),\ 
                              ("u6", "Fanny", 36),\ 
                              ("u7", "Gabby", 60)],\ 
                            ["id", "name", "age"]) 
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# Edge DataFrame 
e = spark.createDataFrame([  ("u1", "u2", "friend"),\ 
                              ("u2", "u3", "follow"),\ 
                              ("u3", "u2", "follow"),\ 
                              ("u6", "u3", "follow"),\ 
                              ("u5", "u6", "follow"),\ 
                              ("u5", "u4", "friend"),\ 
                              ("u4", "u1", "friend"),\ 
                              ("u1", "u5", "friend")],\ 
                           ["src", "dst", "relationship"]) 
 
# Create the graph 
g = GraphFrame(v, e) 
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selectedUsersandFriendRelGraph = g\ 
.filterVertices("age>=29 AND age<=50")\ 
.filterEdges("relationship='friend'") 
. dropIsolatedVertices() 
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 Given a GraphFrame, we can easily access its 
vertexes and edges 

 g.vertices returns the DataFrame associated with 
the vertexes of the input graph 

 g.edges returns the DataFrame associated with 
the edges of the input graph 
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 All the standard DataFrame transformations/ 
actions are available also for the DataFrames 
that are used to store vertexes and edges 

 For example, the number of vertexes and the 
number of edges can be computed by invoking 
the count() action on the DataFrames vertices and 
edges, respectively 
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 Given the input graph 

 Count how many vertexes and edges has the 
graph 

 Find the smallest value of age (i.e., the age of the 
youngest user in the graph) 

 Count the number of edges of type "follow" in the 
graph 
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from graphframes import GraphFrame 
 
# Vertex DataFrame 
v = spark.createDataFrame([ ("u1", "Alice", 34),\ 
                              ("u2", "Bob", 36),\ 
                              ("u3", "Charlie", 30),\ 
                              ("u4", "David", 29),\ 
                              ("u5", "Esther", 32),\ 
                              ("u6", "Fanny", 36),\ 
                              ("u7", "Gabby", 60)],\ 
                            ["id", "name", "age"]) 
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# Edge DataFrame 
e = spark.createDataFrame([  ("u1", "u2", "friend"),\ 
                              ("u2", "u3", "follow"),\ 
                              ("u3", "u2", "follow"),\ 
                              ("u6", "u3", "follow"),\ 
                              ("u5", "u6", "follow"),\ 
                              ("u5", "u4", "friend"),\ 
                              ("u4", "u1", "friend"),\ 
                              ("u1", "u5", "friend")],\ 
                           ["src", "dst", "relationship"]) 
 
# Create the graph 
g = GraphFrame(v, e) 
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# Count how many vertexes and edges has the graph 
print("Number of vertexes: ",g.vertices.count()) 
print("Number of edges: ",g.edges.count()) 
 
# Print on the standard output the smallest value of age  
# (i.e., the age of the youngest user in the graph) 
g.vertices.agg({"age":"min"}).show() 
 
# Print on the standard output  
# the number of "follow" edges in the graph. 
numFollows = g.edges.filter("relationship = 'follow' ").count() 
 
print(numFollows) 
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 Motif finding refers to searching for 
structural patterns in graphs 

 A simple Domain-Specific Language (DSL) is 
used to specify the structure of the patterns 
we are interested in 

 The paths/subgraphs in the graph matching the 
specified structural pattern are selected 
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 The basic unit of a pattern is a connection 
between vertexes 
 (v1) – [e1] -> (v2) 

 means  

 An arbitrary edge [e1] from an arbitrary vertex (v1) 
to another arbitrary vertex (v2) 

 Edges are denoted by square brackets  
 [e1] 

 Vertexes are expressed by round brackets 
 (v1), (v2) 
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v1 v2 

e1 



 Patterns are chains of basic units 

 (v1) – [e1] -> (v2); (v2) – [e2] -> (v3) 

 means  

 An arbitrary edge from an arbitrary vertex v1 to 
another arbitrary vertex v2 and another arbitrary 
edge from v2 to another arbitrary vertex v3 

▪ v3 and v1 can be the same vertex 
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 The same vertex name is used in a pattern to 
have a reference to the same vertex 

 (v1) – [e1] -> (v2); (v2) – [e2] -> (v1) 

 means  

 An arbitrary edge from an arbitrary vertex v1 to 
another arbitrary vertex v2 and vice-versa 
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v1 v2 
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 It is acceptable to omit names for vertices or 
edges in patterns when not needed 
 (v1)-[]->(v2) 

 expresses an arbitrary edge between two arbitrary 
vertexes v1,v2 but does not assign a name to the 
edge 

 
 

 These are called anonymous vertexes and 
edges 
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v1 v2 



 A basic unit (an edge between two vertexes) 
can be negated to indicate that the edge 
should not be present in the graph 

 (v1)-[]->(v2); !(v2)-[]->(v1) 

 means 

 Edges from v1 to v2 but no edges from v2 to v1 
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v1 v2 



 The find(motif) method of GraphFrame is 
used to select motifs 

 motif 

▪  DSL representation of the structural pattern 
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 find() returns a DataFrame of all the paths 
matching the structural motif/pattern 
 One path per record 

 The returned DataFrame will have a column for 
each of the named elements (vertexes and edges) 
in the structural pattern/motif 
▪ Each column is a struct 

▪ The fields of each struct are the labels/features of the associated 
vertex or edge  

 It can return duplicate rows/records 
▪ If there are many paths connecting the same nodes 
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 More complex queries on the structure and 
content of the patterns can be expressed by 
applying filters to the result DataFrame 

 i.e., more complex queries can be applied by 
combing find() and filter() 
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 Find the paths/subgraphs matching the 
pattern  

(v1) – [e1] -> (v2); (v2) – [e2] -> (v1) 
 

 Store the result in a DataFrame 
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 Find the paths/subgraphs matching the 
pattern  

(v1) – [e1] -> (v2); (v2) – [e2] -> (v1) 
 

 Store the result in a DataFrame 
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 Find the paths/subgraphs matching the 
pattern  

(v1) – [e1] -> (v2); (v2) – [e2] -> (v1) 
 

 Store the result in a DataFrame 
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Pay attention that two paths are returned: 
• u2 -> follow -> u3 -> follow ->u2 
• u3 -> follow -> u2 -> follow ->u3 



 Find the paths/subgraphs matching the 
pattern  

(v1) – [e1] -> (v2); (v2) – [e2] -> (v1) 
 

 Content of the returned DataFrame 
 +--------------------+--------------------+--------------------+---------------------+ 
 |               v1                |              e1               |               v2               |              e2                 |  
 +--------------------+--------------------+--------------------+---------------------+ 
 |  [u2, Bob, 36]       |  [u2, u3, follow]  |  [u3, Charlie, 30] |  [u3, u2, follow]    | 
 |  [u3, Charlie, 30] |  [u3, u2, follow]  |  [u2, Bob, 36]       |  [u2, u3, follow]    | 
 +--------------------+--------------------+--------------------+---------------------+ 
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 Find the paths/subgraphs matching the 
pattern  

(v1) – [e1] -> (v2); (v2) – [e2] -> (v1) 
 

 Content of the returned DataFrame 
 +--------------------+--------------------+--------------------+---------------------+ 
 |               v1                |              e1               |               v2               |              e2                 |  
 +--------------------+--------------------+--------------------+---------------------+ 
 |  [u2, Bob, 36]       |  [u2, u3, follow]  |  [u3, Charlie, 30] |  [u3, u2, follow]    | 
 |  [u3, Charlie, 30] |  [u3, u2, follow]  |  [u2, Bob, 36]       |  [u2, u3, follow]    | 
 +--------------------+--------------------+--------------------+---------------------+ 
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There is one column for each (distinct) named vertex and edge of the 
structural pattern 



 Find the paths/subgraphs matching the 
pattern  

(v1) – [e1] -> (v2); (v2) – [e2] -> (v1) 
 

 Content of the returned DataFrame 
 +--------------------+--------------------+--------------------+---------------------+ 
 |               v1                |              e1               |               v2               |              e2                 |  
 +--------------------+--------------------+--------------------+---------------------+ 
 |  [u2, Bob, 36]       |  [u2, u3, follow]  |  [u3, Charlie, 30] |  [u3, u2, follow]    | 
 |  [u3, Charlie, 30] |  [u3, u2, follow]  |  [u2, Bob, 36]       |  [u2, u3, follow]    | 
 +--------------------+--------------------+--------------------+---------------------+ 

61 

The records are associated with the vertexes and edges of the selected  
paths 



 Find the paths/subgraphs matching the 
pattern  

(v1) – [e1] -> (v2); (v2) – [e2] -> (v1) 
 

 Content of the returned DataFrame 
 +--------------------+--------------------+--------------------+---------------------+ 
 |               v1                |              e1               |               v2               |              e2                 |  
 +--------------------+--------------------+--------------------+---------------------+ 
 |  [u2, Bob, 36]       |  [u2, u3, follow]  |  [u3, Charlie, 30] |  [u3, u2, follow]    | 
 |  [u3, Charlie, 30] |  [u3, u2, follow]  |  [u2, Bob, 36]       |  [u2, u3, follow]    | 
 +--------------------+--------------------+--------------------+---------------------+ 
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All columns are associated with the data type “struct”. 
Each struct has the  same “schema/features” of the associated vertex or 
edge. 



from graphframes import GraphFrame 
 
# Vertex DataFrame 
v = spark.createDataFrame([ ("u1", "Alice", 34),\ 
                              ("u2", "Bob", 36),\ 
                              ("u3", "Charlie", 30),\ 
                              ("u4", "David", 29),\ 
                              ("u5", "Esther", 32),\ 
                              ("u6", "Fanny", 36),\ 
                              ("u7", "Gabby", 60)],\ 
                            ["id", "name", "age"]) 
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# Edge DataFrame 
e = spark.createDataFrame([  ("u1", "u2", "friend"),\ 
                              ("u2", "u3", "follow"),\ 
                              ("u3", "u2", "follow"),\ 
                              ("u6", "u3", "follow"),\ 
                              ("u5", "u6", "follow"),\ 
                              ("u5", "u4", "friend"),\ 
                              ("u4", "u1", "friend"),\ 
                              ("u1", "u5", "friend")],\ 
                           ["src", "dst", "relationship"]) 
 
# Create the graph 
g = GraphFrame(v, e) 
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# Retrieve the motifs associated with the pattern  
# vertex ->  edge -> vertex ->  edge ->vertex 
motifs = g.find("(v1)-[e1]->(v2); (v2)-[e2]->(v1)") 
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 Find the paths/subgraphs matching the 
pattern  

(v1)- [friend] -> (v2); (v2)- [follow] -> (v3)  

 Store the result in a DataFrame 
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 Find the paths/subgraphs matching the 
pattern  

(v1)- [friend] -> (v2); (v2)- [follow] -> (v3)  

 Store the result in a DataFrame 
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 Find the paths/subgraphs matching the 
pattern  

(v1)- [friend] -> (v2); (v2)- [follow] -> (v3)  

 Store the result in a DataFrame 
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from graphframes import GraphFrame 
 
# Vertex DataFrame 
v = spark.createDataFrame([ ("u1", "Alice", 34),\ 
                              ("u2", "Bob", 36),\ 
                              ("u3", "Charlie", 30),\ 
                              ("u4", "David", 29),\ 
                              ("u5", "Esther", 32),\ 
                              ("u6", "Fanny", 36),\ 
                              ("u7", "Gabby", 60)],\ 
                            ["id", "name", "age"]) 
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# Edge DataFrame 
e = spark.createDataFrame([  ("u1", "u2", "friend"),\ 
                              ("u2", "u3", "follow"),\ 
                              ("u3", "u2", "follow"),\ 
                              ("u6", "u3", "follow"),\ 
                              ("u5", "u6", "follow"),\ 
                              ("u5", "u4", "friend"),\ 
                              ("u4", "u1", "friend"),\ 
                              ("u1", "u5", "friend")],\ 
                           ["src", "dst", "relationship"]) 
 
# Create the graph 
g = GraphFrame(v, e) 
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# Retrieve the motifs associated with the pattern  
# vertex ->  edge -> vertex ->  edge ->vertex 
motifs = g.find("(v1)-[friend]->(v2); (v2)-[follow]->(v3)") 
 
# Filter the motifs (the content of the motifs DataFrame) 
# Select only the ones matching the pattern 
# vertex ->  friend-> vertex ->  follow ->vertex 
motifsFriendFollow = motifs\ 
.filter("friend.relationship='friend' AND follow.relationship='follow' ") 
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# Retrieve the motifs associated with the pattern  
# vertex ->  edge -> vertex ->  edge ->vertex 
motifs = g.find("(v1)-[friend]->(v2); (v2)-[follow]->(v3)") 
 
# Filter the motifs (the content of the motifs DataFrame) 
# Select only the ones matching the pattern 
# vertex ->  friend-> vertex ->  follow ->vertex 
motifsFriendFollow = motifs\ 
.filter("friend.relationship='friend' AND follow.relationship='follow' ") 
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Columns friend and follow are structs with three fields/attributes 
- src 
- dst 
- relationship 



# Retrieve the motifs associated with the pattern  
# vertex ->  edge -> vertex ->  edge ->vertex 
motifs = g.find("(v1)-[friend]->(v2); (v2)-[follow]->(v3)") 
 
# Filter the motifs (the content of the motifs DataFrame) 
# Select only the ones matching the pattern 
# vertex ->  friend-> vertex ->  follow ->vertex 
motifsFriendFollow = motifs\ 
.filter("friend.relationship='friend' AND follow.relationship='follow' ") 

73 

To access a field of a struct column use the 
syntax columnName.field 



 Some specific properties are provided  to 
compute basic statistics on the degrees of the 
vertexes 
 degrees 

 inDegrees 

 outDegrees 
 The returned result of each of this property is a 

DataFrame with 
 id 

 (in/out)Degree value 
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 degrees 

 Returns the degree of each vertex 

▪ i.e., the number of edges associated with each vertex 

 The result is stored in a DataFrame with Columns 
(vertex) “id” and “degree” 

▪ One record per vertex 

▪ Only the vertexes with degree>=1 are stored in the 
returned DataFrame 
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 inDegrees 

 Returns the in-degree of each vertex 

▪ i.e., the number of in-edges associated with each vertex 

 The result is stored in a DataFrame with Columns 
(vertex) “id” and “inDegree” 

▪ One record per vertex 

▪ Only the vertexes with in-degree>=1 are stored in the 
returned DataFrame 
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 outDegrees 

 Returns the out-degree of each vertex 

▪ i.e., the number of out-edges associated with each 
vertex 

 The result is stored in a DataFrame with Columns 
(vertex) “id” and “outDegree” 

▪ One record per vertex 

▪ Only the vertexes with out-degree>=1 are stored in the 
returned DataFrame 
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 Given the input graph, compute 

 Degree of each vertex 

 inDegree of each vertex 

 outDegree of each vertex 
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from graphframes import GraphFrame 
 
# Vertex DataFrame 
v = spark.createDataFrame([ ("u1", "Alice", 34),\ 
                              ("u2", "Bob", 36),\ 
                              ("u3", "Charlie", 30),\ 
                              ("u4", "David", 29),\ 
                              ("u5", "Esther", 32),\ 
                              ("u6", "Fanny", 36),\ 
                              ("u7", "Gabby", 60)],\ 
                            ["id", "name", "age"]) 
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# Edge DataFrame 
e = spark.createDataFrame([  ("u1", "u2", "friend"),\ 
                              ("u2", "u3", "follow"),\ 
                              ("u3", "u2", "follow"),\ 
                              ("u6", "u3", "follow"),\ 
                              ("u5", "u6", "follow"),\ 
                              ("u5", "u4", "friend"),\ 
                              ("u4", "u1", "friend"),\ 
                              ("u1", "u5", "friend")],\ 
                           ["src", "dst", "relationship"]) 
 
# Create the graph 
g = GraphFrame(v, e) 
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# Retrieve the DataFrame with the information about the degree of  
# each vertex 
vertexesDegreesDF = g.degrees 
 
# Retrieve the DataFrame with the information about the in-degree of  
# each vertex 
vertexesInDegreesDF = g.inDegrees 
 
# Retrieve the DataFrame with the information about the out-degree of  
# each vertex 
vertexesOutDegreesDF = g.outDegrees 
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 Given the input graph, select only the ids of 
the vertexes with at least 2 in-edges 
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 Given the input graph, select only the ids of 
the vertexes with at least 2 in-edges 
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 Given the input graph, select only the ids of 
the vertexes with at least 2 in-edges 
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 Given the input graph, select only the ids of 
the vertexes with at least 2 in-edges 
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from graphframes import GraphFrame 
 
# Vertex DataFrame 
v = spark.createDataFrame([ ("u1", "Alice", 34),\ 
                              ("u2", "Bob", 36),\ 
                              ("u3", "Charlie", 30),\ 
                              ("u4", "David", 29),\ 
                              ("u5", "Esther", 32),\ 
                              ("u6", "Fanny", 36),\ 
                              ("u7", "Gabby", 60)],\ 
                            ["id", "name", "age"]) 

86 



# Edge DataFrame 
e = spark.createDataFrame([  ("u1", "u2", "friend"),\ 
                              ("u2", "u3", "follow"),\ 
                              ("u3", "u2", "follow"),\ 
                              ("u6", "u3", "follow"),\ 
                              ("u5", "u6", "follow"),\ 
                              ("u5", "u4", "friend"),\ 
                              ("u4", "u1", "friend"),\ 
                              ("u1", "u5", "friend")],\ 
                           ["src", "dst", "relationship"]) 
 
# Create the graph 
g = GraphFrame(v, e) 
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# Retrieve the DataFrame with the information about the in-degree of  
# each vertex 
vertexesInDegreesDF = g.inDegrees 
 
# Select only the vertexes with and in-degree value >=2 
selectedVertexesDF = vertexesInDegreesDF.filter("inDegree>=2") 
 
# Select only the content of Column id 
selectedVertexesIDsDF = selectedVertexesDF.select("id") 
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