Graph Analytics in Spark

Graph analytics: Introduction

Graph analytics

Graphs are data structures composed of
nodes and edges

Nodes/vertexes are denoted asV={v_v,,...,v,} and
edges are denoted as E={e_,e,...,e}

Graph analytics is the process of analyzing
relationships between vertexes and edges

Graph analytics

Edﬂe

Vertex
or hode

Vertexes, edges and weights

Graphs are undirected if edges do not have a
direction

Otherwise they are called directed graphs
Vertexes and edges can have data associated
with them

weight/label

e.g., an edge weight may represent the strength of the
relationship

e.g., a vertex label may be the string associated with the
name of the vertex

Vertexes, edges and weights

User#?2 User#l

likes

reviewed

Directed
Grr'aph

suggested

U 3
serd# User#5

reviewed

User#4

Why graph analytics?

Graphs are natural way of describing

relationships

Practical example of analytics over graphs
Ranking web pages (Google PageRank)
Detecting group of friends

Determine importance of infrastructure in
electrical networks

Graph structure in the web

Importance and rank of web pages

We_m Page _ The vertices of
—_— —— the graph are
/ the web pages

WD/

—— Each web page contains

links to other pages which
can be represented as edges
in the graph.

Graph structure in the web

Social network structure and web usage

Graph structure in the web

Movies watched by users

Sparse matrix

Star Wars

Princess Bride

Pride and Prejudice
I

John 5 J1
Ann 5 5
Richard 5 2

Pat 4 4

5 O Star Wars

Spark GraphX and Spaik
GraphFrames ==GraphX

GraphX

= Spark RDD-based library for performing
graph processing
= Core part of Spark

MLIib

Spark SQL Spark (Machine GraphX

structured Streaming
data real-time

learning (Graph
and Data processing)
mining)

Spark Core

StandaloneSpark YARNScheduler
(The same used by Mesos
Scheduler
Hadoop)

GraphX

Low level interface with RDD
Very powerful
Many application and libraries built on top of it
However, not easy to use or optimize
No Python version of the APIs

GraphFrames

Library DataFrame-based for performing
graph processing

Spark external package built on top of
GraphX

https://graphframes.qgithub.io/graphframes/docs/ site/index.html

https://graphframes.github.io/graphframes/docs/_site/index.html

GraphFrames

N/B Graph Algorithms

GraphFramesAPI

Pattern Query
Optimizer

Spark SQL

Graph Queries Q_

15

Building and querying graphs
with GraphFrames

Building a graph

Define vertexes and edges of the graph

Vertexes and edges are represented by means of
records inside DataFrames with specifically
named columns
One DataFrame for the definition of the vertexes of the
graph
One DataFrame for the definition of the edges of the
graph

17

Building a graph

The DataFrames that are used to represent
nodes/vertexes
Contain one record per vertex

Must contain a column named "id" that stores
unique vertex IDs

Can contain other columns that are used to
characterize vertexes

18

Building a graph

The DataFrames that are used to represent
edges
Contain one record per edge

Must contain two columns "src" and "dst" storing
source vertex IDs and destination vertex IDs of
edges

Can contain other columns that are used to
characterize edges

19

Building a graph

Create a graph of type
graphframes.graphframe.GraphFrame by
invoking the constructor GraphFrame(v,e)
V
The DataFrame containing the definition of the vertexes

e
The DataFrame containing the definition of the edges

Graphs in graphframes are directed graphs

Building a graph: Example

friend follow

U3

Charlie,30

friend
follow follow

U4 us

Esther, 32

David,29

friend follow ”

Building a graph: Example

Vertex DataFrame Edge DataFrame

-t +-——+ ot —— +
| id] name | age | |src|dst|relationship]|
-t +-——+ e —— +
| ul|] Alice| 34| | ul] u2| friend]
u2	Bob	36		uz2	u3	follow
u3	Charlie	30]	u3	u2	follow	
ud	David	29		uoc	u3	follow
uS5	Esther	32		ub	u6	follow]
u6	Fanny	36		uS5	u4d	friend]
u7	Gabbyl	60		ud	ul	friend
fom—t +-—=+ | ull u5| friend|

e A +

Building a graph: Example

from graphframes import GraphFrame

Vertex DataFrame

v = spark.createDataFrame([("u1", "Alice", 34),\
("v2", "Bob, 36),\
("u3", "Charlie", 30),\
("ug", "David", 29),\
("ug", "Esther", 32),\
("u6", "Fanny", 36),\
("u7", "Gabby", 60)],\

["id", "name", "age"])

23

Building a graph: Example

Edge DataFrame
e = spark.createDataFrame([("u1", "u2", "friend"),\
("u2", "uz", "follow"),\
("u3", "u2", "follow"),\
("u6", "uz", "follow"),\
("ug", "u6", "follow"),\
("us", "ug", "friend"),\
("ug", "ua", "friend"),\
("u1", "ug", "friend")],\
["src", "dst", "relationship"])

Create the graph
g = GraphFrame(y, e)

24

Directed vs undirected edges

In undirected graphs the edges indicate a two-
way relationship (each edge can be traversed in
both directions)
In GraphX you could use to_undirected() to
create an undirected copy of the Graph
Unfortunately GraphFrames does not support
it
You can convert your graph by applying a flatMap
function over the edges of the directed graph that

creates symmetric edges and then create a new
GraphFrame

25

Cache graphs

As with RDD and DataFrame, you can cache
graphs in GraphFrame
Convenient if the same (complex) graph result of

(multiple) transformations is used multiple times
in the same application

Simply invoke cache() on the GraphFrame you
want to cache

It persists the DataFrame-based representation of
vertexes and edges of the graph

26

Querying the graph

Some specific methods are provided to

execute queries on graphs
filterVertices(condition)
filterEdges(condition)

droplsolatedVertices()
The returned result is the filtered version of

the input graph

Querying the graph: filterVertices

filterVertices(condition)

condition contains an SQL-like condition on the
values of the attributes of the vertexes

E.g., "age>35”
Selects only the vertexes for which the specified

condition is satisfied and returns a new graph with
only the subset of selected vertexes

Querying the graph: filterEdges

filterEdges(condition)

condition contains an SQL-like condition on the
values of the attributes of the edges

E.g., "relationship="friend""
Selects only the edges for which the specified

condition is satisfied and returns a new graph with
only the subset of selected edges

Querying the graph:
droplsolatedVertices

droplsolatedVertices()

Drops the vertexes that are not connected with
any other node and returns a new graph without
the dropped nodes

Querying the graph: Example 1

Given the input graph, create a new subgraph
including

Only the vertexes associated with users
characterized by age between 29 and 50

Only the edges representing the friend
relationship

Drop isolated vertexes

Querying the graph: Example 1

Input graph

friend follow

friend follow

Querying the graph

: Example 1

Filter vertexes

friend follow

friend follow

33

Querying the graph:

Example 1

Filter edges

friend

friend follow

34

Querying the graph: Example 1

Drop isolated vertexes

friend

0 &
bob,36

friend

0 &

friend

friend

35

Querying the graph: Example 1

Output graph

friend

friend
friend

friend

36

Querying the graph: Example 1

Input graph Output graph

friend follow friend

U3
Charlie
130

friend

follow

friend follow friend

37

Querying the graph: Example 1

from graphframes import GraphFrame

Vertex DataFrame

v = spark.createDataFrame([("u1", "Alice", 34),\
("v2", "Bob, 36),\
("u3", "Charlie", 30),\
("ug", "David", 29),\
("ug", "Esther", 32),\
("u6", "Fanny", 36),\
("u7", "Gabby", 60)],\

["id", "name", "age"])

38

Querying the graph: Example 1

Edge DataFrame
e = spark.createDataFrame([("u1", "u2", "friend"),\
("u2", "uz", "follow"),\
("u3", "u2", "follow"),\
("u6", "uz", "follow"),\
("ug", "u6", "follow"),\
("us", "ug", "friend"),\
("ug", "ua", "friend"),\
("u1", "ug", "friend")],\
["src", "dst", "relationship"])

Create the graph
g = GraphFrame(y, e)

39

Querying the graph: Example 1

selectedUsersandFriendRelGraph = g\
filterVertices("age>=29 AND age<=50")\
filterEdges("relationship='friend™)

. droplsolatedVertices()

40

Querying the graph

Given a GraphFrame, we can easily access its
vertexes and edges

g.vertices returns the DataFrame associated with
the vertexes of the input graph

g.edges returns the DataFrame associated with
the edges of the input graph

Querying the graph

All the standard DataFrame transformations/
actions are available also for the DataFrames
that are used to store vertexes and edges

For example, the number of vertexes and the
number of edges can be computed by invoking
the count() action on the DataFrames vertices and
edges, respectively

Querying the graph: Example 2

Given the input graph
Count how many vertexes and edges has the
graph
Find the smallest value of age (i.e., the age of the
youngest user in the graph)

Count the number of edges of type "follow" in the
graph

43

Querying the graph: Example 2

from graphframes import GraphFrame

Vertex DataFrame

v = spark.createDataFrame([("u1", "Alice", 34),\
("v2", "Bob, 36),\
("u3", "Charlie", 30),\
("ug", "David", 29),\
("ug", "Esther", 32),\
("u6", "Fanny", 36),\
("u7", "Gabby", 60)],\

["id", "name", "age"])

A

Querying the graph: Example 2

Edge DataFrame
e = spark.createDataFrame([("u1", "u2", "friend"),\
("u2", "uz", "follow"),\
("u3", "u2", "follow"),\
("u6", "uz", "follow"),\
("ug", "u6", "follow"),\
("us", "ug", "friend"),\
("ug", "ua", "friend"),\
("u1", "ug", "friend")],\
["src", "dst", "relationship"])

Create the graph
g = GraphFrame(y, e)

45

Querying the graph: Example 2

Count how many vertexes and edges has the graph
print("Number of vertexes: ",g.vertices.count())
print("Number of edges: *,g.edges.count())

Print on the standard output the smallest value of age
(i.e., the age of the youngest user in the graph)
g.vertices.agg({"age":"min"}).show()

Print on the standard output

the number of "follow" edges in the graph.
numFollows = g.edges.filter("relationship = ‘follow

).count()

print(numFollows)

46

Motif finding

Motif finding refers to searching for
structural patterns in graphs

A simple Domain-Specific Language (DSL) is
used to specify the structure of the patterns
we are interested in

The paths/subgraphs in the graph matching the
specified structural pattern are selected

47

DSL for Motif finding

The basic unit of a pattern is a connection
between vertexes

(vi) — [e1] -> (v2) @ @
means

An arbitrary edge [e1] from an arbitrary vertex (v1)
to another arbitrary vertex (v2)

Edges are denoted by square brackets
[e1]

Vertexes are expressed by round brackets
(v1), (v2)

48

DSL for Motif finding

Patterns are chains of basic units
(V1) —[e1] -> (v2); (v2) —[e2] -> (v3)
Mmeans

An arbitrary edge from an arbitrary vertex va to
another arbitrary vertex v2 and another arbitrary
edge from v2 to another arbitrary vertex v3

v3 and vi can be the same vertex

o-o0 &'

49

DSL for Motif finding

The same vertex name is used in a pattern to
have a reference to the same vertex

(v1) —[e1] -> (v2); (v2)—[e2] -> (v1)

means

An arbitrary edge from an arbitrary vertex vito
another arbitrary vertex v2 and vice-versa

Q0

DSL for Motif finding

It is acceptable to omit names for vertices or
edges in patterns when not needed
(va)-[]->(v2)

expresses an arbitrary edge between two arbitrary
vertexesvi,v2 but does not assign a name to the

edge @ @

These are called anonymous vertexes and
edges

DSL for Motif finding

A basic unit (an edge between two vertexes)
can be negated to indicate that the edge
should not be present in the graph

(v1)-[1->(v2); H(v2)-[]->(va)
means
Edges from vito v2 but no edges from v2 to va

-

DSL for Motif finding

The find(motif) method of GraphFrame is
used to select motifs

motif
DSL representation of the structural pattern

53

DSL for Motif finding

find() returns a DataFrame of all the paths
matching the structural motif/pattern

One path per record

The returned DataFrame will have a column for
each of the named elements (vertexes and edges)
in the structural pattern/motif

Each columnis a struct

The fields of each struct are the labels/features of the associated
vertex or edge

It can return duplicate rows/records
If there are many paths connecting the same nodes

54

DSL for Motif finding

More complex queries on the structure and
content of the patterns can be expressed by
applying filters to the result DataFrame

i.e., more complex queries can be applied by
combing find() and filter()

55

Motif finding: Example 1

Find the paths/subgraphs matching the
pattern

(v1) —[e1] -> (v2); (v2) —[e2] -> (v1)

Store the result in a DataFrame

fri

len

friend f5llow

56

Motif finding: Example 1

Find the paths/subgraphs matching the
pattern

(v1) —[e1] -> (v2); (v2) —[e2] -> (v1)

Store the result in a DataFrame

fri

len

friend f5llow

57

Motif finding: Example 1

Find the paths/subgraphs matching the
pattern

(v1) —[e1] -> (v2); (v2) —[e2] -> (v1)

Store the result in a DataFrame

friend follow

Pay attention that two paths are returned:
)) *u2 -> follow -> u3 -> follow ->u2
* u3 -> follow -> u2 -> follow ->u3

friend

friend
follow follow
friend follow

58

Motif finding: Example 1

Find the paths/subgraphs matching the
pattern

(v1) —[e1] -> (v2); (v2) —[e2] -> (v1)

Content of the returned DataFrame

Fomm oo e T LR Fommmmm e Fommm e +
| vi | e1 | V2 | e2 |
R OLGECEEEEEEEEE RECEEEE TP T LGEETEEEEEE e oo +
| [u2, Bob,36] | [u2, u3, follow] | [u3, Charlie, 30]| [u3, u2, follow] |
| [u3, Charlie, 30]]| [u3, u2, follow] | [uz, Bob,36] | [u2, u3, follow] |
oo EaRGE T T o oo +

59

Motif finding: Example 1

Find the paths/subgraphs matching the
pattern

le2] > (v1)

[e1] ->|(v2); (v2) —

| vi | e1 | V2 | e2 |
S BEEELEEEErCEEE R ERELELEEE T B R SSREECEEE TR e SSEECEEC e +
| [u2, Bob,36] | [u2, u3, follow] | [u3, Charlie, 30]| [u3, u2, follow] |
| [u3, Charlie, 30]]| [u3, u2, follow] | [uz, Bob,36] | [u2, u3, follow] |
oo EaRGE T T o oo +

There is one column for each (distinct) named vertex and edge of the
structural pattern

60

Motif finding: Example 1

Find the paths/subgraphs matching the

pattern
(v1) —[e1] -> (v2); (v2) —[e2] -> (v1)

Content of the returned DataFrame

 EEOLCECE TR Hmm e Fom e LGLETTEEEEEEE +

| [u2, Bob,36] | [u2, u3, follow] | [u3, Charlie, 30]| [u3, u2, follow] |

| [u3, Charlie, 30]]| [u3, u2, follow] | [uz, Bob,36] | [u2, u3, follow] |

oo Hmmmmmm e e L +

The records are associated with the vertexes and edges of the selected
paths

61

Motif finding: Example 1

Find the paths/subgraphs matching the
pattern

(v1) —[e1] -> (v2); (v2) —[e2] -> (v1)

Content of the returned DataFrame

|/[u2, Bob,36] || [u2, u3, follow]|||[u3, Charlie, 30]||| [u3, u2, follow] | |
| \[u3, Charlie, 30]| [u3, u2, follow]|| |[u2, Bob, 36] ||| [u2, u3, follow]| |

. Hmmmmmm e Hmmmmm e oo +

All columns are associated with the data type “struct”.
Each struct has the same “schema/features” of the associated vertex or

edge.

62

Motif finding: Example 1

from graphframes import GraphFrame

Vertex DataFrame

v = spark.createDataFrame([("u1", "Alice", 34),\
("v2", "Bob, 36),\
("u3", "Charlie", 30),\
("ug", "David", 29),\
("ug", "Esther", 32),\
("u6", "Fanny", 36),\
("u7", "Gabby", 60)],\

["id", "name", "age"])

63

Motif finding: Example 1

Edge DataFrame
e = spark.createDataFrame([("u1", "u2", "friend"),\
("u2", "uz", "follow"),\
("u3", "u2", "follow"),\
("u6", "uz", "follow"),\
("ug", "u6", "follow"),\
("us", "ug", "friend"),\
("ug", "ua", "friend"),\
("u1", "ug", "friend")],\
["src", "dst", "relationship"])

Create the graph
g = GraphFrame(y, e)

64

Motif finding: Example 1

Retrieve the motifs associated with the pattern
vertex -> edge -> vertex -> edge ->vertex
motifs = g.find("(v1)-[e1]->(v2); (v2)-[e2]->(v1)")

65

Motif finding: Example 2

Find the paths/subgraphs matching the
pattern

(vi1)- [friend] -> (v2); (v2)- [follow] -> (v3)
Store the result in a DataFrame

ffffff

friend
friend % = follow | follow

friend f5llow

66

Motif finding: Example 2

Find the paths/subgraphs matching the
pattern

(vi1)- [friend] -> (v2); (v2)- [follow] -> (v3)
Store the result in a DataFrame

ffffff

follow
@U@ First selected path

friend
friend % = follow | follow

friend f5llow

67

Motif finding: Example 2

Find the paths/subgraphs matching the
pattern

(vi1)- [friend] -> (v2); (v2)- [follow] -> (v3)
Store the resultin a DataFrame

Second selected path

68

Motif finding: Example 2

from graphframes import GraphFrame

Vertex DataFrame

v = spark.createDataFrame([("u1", "Alice", 34),\
("v2", "Bob, 36),\
("u3", "Charlie", 30),\
("ug", "David", 29),\
("ug", "Esther", 32),\
("u6", "Fanny", 36),\
("u7", "Gabby", 60)],\

["id", "name", "age"])

69

Motif finding: Example 2

Edge DataFrame
e = spark.createDataFrame([("u1", "u2", "friend"),\
("u2", "uz", "follow"),\
("u3", "u2", "follow"),\
("u6", "uz", "follow"),\
("ug", "u6", "follow"),\
("us", "ug", "friend"),\
("ug", "ua", "friend"),\
("u1", "ug", "friend")],\
["src", "dst", "relationship"])

Create the graph
g = GraphFrame(y, e)

70

Motif finding: Example 2

Retrieve the motifs associated with the pattern
vertex -> edge -> vertex -> edge ->vertex
motifs = g.find("(v1)-[friend]->(v2); (v2)-[follow]->(v3)")

Filter the motifs (the content of the motifs DataFrame)

Select only the ones matching the pattern

vertex -> friend->vertex -> follow ->vertex

motifsFriendFollow = motifs\

filter("friend.relationship="friend' AND follow.relationship="follow'")

71

Motif finding: Example 2

Retrieve the motifs associated with the pattern
vertex -> edge -> vertex -> edge ->vertex
motifs = g.find("(v1)-[friend]->(v2); (v2)-[follow]->(v3)")

Filter the motifs (the content of the motifs DataFrame)
Select only the ones matching the pattern

vertex -> friend->vertex -> follow ->vertex
motifsFriendFollow = motifs\
filter(" relationship="friend' AND follow,relationship="follow'")

Columns friend and follow are structs with three fields/attributes
- SrC

- dst

- relationship

72

Motif finding: Example 2

Retrieve the motifs associated with the pattern
vertex -> edge -> vertex -> edge ->vertex
motifs = g.find("(v1)-[friend]->(v2); (v2)-[follow]->(v3)")

Filter the motifs (the content of the motifs DataFrame)
Select only the ones matching the pattern

vertex -> friend-> vertex -> follow ->vertex
motifsFriendFollow = motifs\

.filter(""friend.reIationshipN='friend'ANq#foIIow.reIationship

To access a field of a struct column use the
syntax columnName.field

='follow'")

73

Basic statistics

Some specific properties are provided to
compute basic statistics on the degrees of the
vertexes

degrees

InDegrees

outDegrees
The returned result of each of this property is a

DataFrame with
id
(infout)Degree value

74

Basic statistics: degrees

degrees
Returns the degree of each vertex

i.e., the number of edges associated with each vertex
The result is stored in a DataFrame with Columns
(vertex)“id” and “"degree”

One record per vertex

Only the vertexes with degree>=1 are stored in the
returned DataFrame

75

Basic statistics: inDegrees

iInDegrees
Returns the in-degree of each vertex

i.e., the number of in-edges associated with each vertex
The result is stored in a DataFrame with Columns
(vertex) “id” and “inDegree”

One record per vertex

Only the vertexes with in-degree>=1 are stored in the
returned DataFrame

76

Basic statistics: outDegrees

outDegrees

Returns the out-degree of each vertex

i.e., the number of out-edges associated with each
vertex

The result is stored in a DataFrame with Columns
(vertex) “id” and "outDegree”

One record per vertex

Only the vertexes with out-degree>=1 are stored in the
returned DataFrame

77

Basic statistics: Example 1

Given the input graph, compute
Degree of each vertex
inDegree of each vertex
outDegree of each vertex

78

Basic statistics: Example 1

from graphframes import GraphFrame

Vertex DataFrame

v = spark.createDataFrame([("u1", "Alice", 34),\
("v2", "Bob, 36),\
("u3", "Charlie", 30),\
("ug", "David", 29),\
("ug", "Esther", 32),\
("u6", "Fanny", 36),\
("u7", "Gabby", 60)],\

["id", "name", "age"])

79

Basic statistics: Example 1

Edge DataFrame
e = spark.createDataFrame([("u1", "u2", "friend"),\
("u2", "uz", "follow"),\
("u3", "u2", "follow"),\
("u6", "uz", "follow"),\
("ug", "u6", "follow"),\
("us", "ug", "friend"),\
("ug", "ua", "friend"),\
("u1", "ug", "friend")],\
["src", "dst", "relationship"])

Create the graph
g = GraphFrame(y, e)

80

Basic statistics: Example 1

Retrieve the DataFrame with the information about the degree of
each vertex
vertexesDegreesDF = g.degrees

Retrieve the DataFrame with the information about the in-degree of
each vertex
vertexeslnDegreesDF = g.inDegrees

Retrieve the DataFrame with the information about the out-degree of
each vertex
vertexesOutDegreesDF = g.outDegrees

81

Basic statistics: Example 2

Given the input graph, select only the ids of
the vertexes with at least 2 in-edges

friend

friend
friend % = follow | follow

friend f5ollow

Basic statistics: Example 2

Given the input graph, select only the ids of
the vertexes with at least 2 in-edges

friend

friend
friend % = follow = follow

friend f5ollow

83

Basic statistics: Example 2

Given the input graph, select only the ids of
the vertexes with at least 2 in-edges

Input graph

friend

friend
friend % = follow | follow

friend f5ollow

84

Basic statistics: Example 2

Given the input graph, select only the ids of
the vertexes with at least 2 in-edges

Input graph

friend

C) IZ> Selected IDs

friend % = follow = follow

Q0006

friend f5ollow

85

Basic statistics: Example 2

from graphframes import GraphFrame

Vertex DataFrame

v = spark.createDataFrame([("u1", "Alice", 34),\
("v2", "Bob, 36),\
("u3", "Charlie", 30),\
("ug", "David", 29),\
("ug", "Esther", 32),\
("u6", "Fanny", 36),\
("u7", "Gabby", 60)],\

["id", "name", "age"])

86

Basic statistics: Example 2

Edge DataFrame
e = spark.createDataFrame([("u1", "u2", "friend"),\
("u2", "uz", "follow"),\
("u3", "u2", "follow"),\
("u6", "uz", "follow"),\
("ug", "u6", "follow"),\
("us", "ug", "friend"),\
("ug", "ua", "friend"),\
("u1", "ug", "friend")],\
["src", "dst", "relationship"])

Create the graph
g = GraphFrame(y, e)

87

Basic statistics: Example 2

Retrieve the DataFrame with the information about the in-degree of
each vertex
vertexesinDegreesDF = g.inDegrees

Select only the vertexes with and in-degree value >=2
selectedVertexesDF = vertexesinDegreesDF filter("inDegree>=2")

Select only the content of Columniid
selectedVertexesIDsDF = selectedVertexesDF.select("id")

88

