

 Act of continuously incorporating new data
to compute a result

 Input data is unbounded → no beginning
and no end

 Series of events that arrive at the stream
processing system

 The application will output multiple versions
of the results as it runs or put them in a
storage
 2

 Many important applications must process
large streams of live data and provide results
in near-real-time

 Social network trends

 Website statistics

 Intrusion detection systems

 …

3

 Vastly higher throughput in data processing
 Low latency: application respond quickly

(e.g., in seconds)

 It can keep states in memory

 More efficient in updating a result than
repeated batch jobs, because it automatically
incrementalizes the computation

4

 Scalable to large clusters
 Responding to events at low latency
 Simple programming model
 Processing each event exactly once despite

machine failures - Efficient fault-tolerance in
stateful computations

5

 Processing out-of-order data based on
application timestamps (also called event
time)

 Maintaining large amounts of state
 Handling load imbalance and stragglers
 Updating your application’s business logic at

runtime

6

 Several frameworks have been proposed to process in
real-time or in near real-time data streams
 Apache Spark (Streaming component)
 Apache Storm
 Apache Flink
 Apache Samza
 Apache Apex
 Apache Flume
 Amazon Kinesis Streams
 …

 All these frameworks use a cluster of servers to scale
horizontally with respect to the (big) amount of data to be
analyzed

7

 Two main “solutions”

 “Continuous” computation of data streams

▪ Data are processed as soon as they arrive
▪ Every time a new record arrives from the input stream, it is

immediately processed and a result is emitted as soon as possible

▪ Real-time processing

8

 “Micro-batch” stream processing

▪ Input data are collected in micro-batches
▪ Each micro-batch contains all the data received in a time window

(typically less than a few seconds of data)

▪ One micro-batch a time is processed
▪ Every time a micro-batch of data is ready, its entire content is

processed and a result is emitted

▪ Near real-time processing

9

 Continuous computation

 Micro-batch computation

10

One micro-batch at a time

One record at a time

 At-most-once
 Every input element of a stream is processed once or

less

 It is also called no guarantee

 The result can be wrong/approximated
 At-least-once
 Every input element of a stream is processed once or

more

 Input elements are replayed when there are failures

 The result can be wrong/approximated

 11

 Exactly-once

 Every input element of a stream is processed
exactly once

 Input elements are replayed when there are
failures

 If elements have been already processed they are
not reprocessed

 The result is always correct

 Slower than the other processing approaches

12

 Spark Streaming is a framework for large
scale stream processing
 Scales to 100s of nodes

 Can achieve second scale latencies

 Provides a simple batch-like API for implementing
complex algorithm

 Micro-batch streaming processing

 Exactly-once guarantees

 Can absorb live data streams from Kafka, Flume,
ZeroMQ, Twitter, …

 Many important applications must process
large streams of live data and provide results
in near-real-time

 Social network trends

 Website statistics

 Intrusion detection systems

 …

 Scalable to large clusters
 Second-scale latencies
 Simple programming model
 Efficient fault-tolerance in stateful

computations

18

 Spark streaming runs a streaming
computation as a series of very small,
deterministic batch jobs

 It splits each input stream in “portions” and
processes one portion at a time (in the
incoming order)

 The same computation is applied on each portion
of the stream

 Each portion is called batch

19

 Spark streaming

 Splits the live stream into batches of X seconds

 Treats each batch of data as RDDs and processes
them using RDD operations

 Finally, the processed results of the RDD
operations are returned in batches

20

 Problem specification

 Input: a stream of sentences

 Split the input stream in batches of 10 seconds
each and print on the standard output, for each
batch, the occurrences of each word appearing in
the batch

▪ i.e., execute the word count application one time for
each batch of 10 seconds

21

22

0

10

20

30

Time (s)

Stdout

0

10

20

30

Time (s)

Input stream

23

Test Spark streaming
0

10

20

30

Time (s)

Stdout

0

10

20

30

Time (s)

Input stream

24

Test Spark streaming
Second sentence Spark streaming

0

10

20

30

Time (s)

Stdout

0

10

20

30

Time (s)

Input stream

25

Test Spark streaming
Second sentence Spark streaming

0

10

20

30

Time (s)

(test,1), (spark,2), (streaming,2),
(second,1), (sentence,1)

Stdout

0

10

20

30

Time (s)

Input stream

26

Test Spark streaming
Second sentence Spark streaming

Second Spark batch of 10 seconds
Batch size 10 seconds

0

10

20

30

Time (s)

(test,1), (spark,2), (streaming,2),
(second,1), (sentence,1)

Stdout

0

10

20

30

Time (s)

Input stream

27

Test Spark streaming
Second sentence Spark streaming

Second Spark batch of 10 seconds
Batch size 10 seconds

0

10

20

30

Time (s)

(test,1), (spark,2), (streaming,2),
(second,1), (sentence,1)

Stdout

(second, 1), (spark,1), (batch,2),
(of,1), (size,1), (10,2), (seconds,2)

0

10

20

30

Time (s)

Input stream

28

Test Spark streaming
Second sentence Spark streaming

Second Spark batch of 10 seconds
Batch size 10 seconds

Third batch

0

10

20

30

Time (s)

(test,1), (spark,2), (streaming,2),
(second,1), (sentence,1)

Stdout

(second, 1), (spark,1), (batch,2),
(of,1), (size,1), (10,2), (seconds,2)

0

10

20

30

Time (s)

Input stream

29

Test Spark streaming
Second sentence Spark streaming

Second Spark batch of 10 seconds
Batch size 10 seconds

Third batch

0

10

20

30

Time (s)

(test,1), (spark,2), (streaming,2),
(second,1), (sentence,1)

Stdout

(second, 1), (spark,1), (batch,2),
(of,1), (size,1), (10,2), (seconds,2)

0

10

20

30

Time (s)

(third,1), (batch, 1)

Input stream

 DStream

 Sequence of RDDs representing a discretized
version of the input stream of data

▪ Twitter, HDFS, Kafka, Flume, ZeroMQ, Akka Actor, TCP
sockets, ..

 One RDD for each batch of the input stream

 Transformations

 Modify data from one DStream to another

 “Standard” RDD operations

▪ map, countByValue, reduce, join, …

 Window and Stateful operations

▪ window, countByValueAndWindow, …

 Output Operations/Actions

 Send data to external entity

▪ saveAsHadoopFiles, saveAsTextFile, ...

 A DStream is represented by a continuous
series of RDDs. Each RDD in a DStream
contains data from a certain batch/interval

32

 Any operation applied on a DStream
translates to operations on the underlying
RDDs

 These underlying RDD transformations are
computed by the Spark engine

33

 DStreams remember the sequence of
operations that created them from the
original fault-tolerant input data

 Batches of input data are replicated in
memory of multiple worker nodes, therefore
fault-tolerant

 Data lost due to worker failure, can be
recomputed from input data

35

 Define a Spark Streaming Context object

 Define the size of the batches (in seconds)
associated with the Streaming context

 Specify the input stream and define a
DStream based on it

 Specify the operations to execute for each
batch of data

 Use transformations and actions similar to the
ones available for “standard” RDDs

 Invoke the start method

 To start processing the input stream

 Wait until the application is killed or the
timeout specified in the application expires

 If the timeout is not set and the application is not
killed the application will run forever

 The Spark Streaming Context is defined by using
the StreamingContext(SparkConf sparkC,
Duration batchDuration) constructor of the class
pyspark.streaming.StreamingContext

 The batchDuration parameter specifies the “size”
of the batches in seconds

 Example
from pyspark.streaming import StreamingContext

ssc = StreamingContext(sc, 10)

 The input streams associated with this context will be split
in batches of 10 seconds

 After a context is defined, you have to do the
following

 Define the input sources by creating input
Dstreams

 Define the streaming computations by applying
transformation and output operations to
DStreams

 The input Streams can be generate from
different sources

 TCP socket, Kafka, Flume, Kinesis, Twitter

 Also an HDFS folder can be used as “input stream”

▪ This option is usually used during the application
development to perform a set of initial tests

40

 A DStream can be associated with the content
emitted by a TCP socket

 socketTextStream(String hostname, int
port_number) is used to create a DStream
based on the textual content emitted by a TPC
socket

 Example
 lines = ssc.socketTextStream("localhost", 9999)
 “Store” the content emitted by localhost:9999 in the

lines DStream

41

 A DStream can be associated with the content
of an input (HDFS) folder

 Every time a new file is inserted in the folder, the
content of the file is “stored” in the associated
DStream and processed

 Pay attention that updating the content of a file does
not trigger/change the content of the DStream

 textFileStream(String folder) is used to create a
DStream based on the content of the input
folder

42

 Example

lines = textFileStream(inputFolder)

 “Store” the content of the files inserted in the
input folder in the lines Dstream

 Every time new files are inserted in the folder their
content is “stored” in the current “batch” of the
stream

43

 Usually DStream objects are defined on top
of streams emitted by specific applications
that emit real-time streaming data
 E.g., Apache Kafka, Apache Flume, Kinesis,

Twitter
 You can also write your own applications for

generating streams of data
 However, Kafka, Flume and similar tools are

usually a more reliable and effective solutions for
generating streaming data

44

 Analogously to standard RDDs, also DStreams
are characterized by a set of transformations
 When applied to DStream objects, transformations

return a new DStream Object
 The transformation is applied on one batch (RDD) of

the input DStream at a time and returns a batch
(RDD) of the new DStream
▪ i.e., each batch (RDD) of the input DStream is associated with

exactly one batch (RDD) of the returned DStream
 Many of the available transformations are the

same transformations available for standard
RDDs

45

 map(func)
 Returns a new DStream by passing each element

of the source DStream through a function func
 flatMap(func)
 Each input item can be mapped to 0 or more

output items. Returns a new DStream
 filter(func)
 Returns a new DStream by selecting only the

records of the source DStream on which func
returns true

46

 reduce(func)

 Returns a new DStream of single-element RDDs
by aggregating the elements in each RDD of the
source DStream using a function func

▪ The function must be associative and commutative so
that it can be computed in parallel

 Note that the reduce method of DStreams is a
transformation

47

 reduceByKey(func)

 When called on a DStream of (K, V) pairs, returns a
new DStream of (K, V) pairs where the values for each
key are aggregated using the given reduce function

 combineByKey(createCombiner, mergeValue,
mergeCombiners)

 When called on a DStream of (K, V) pairs, returns a
new DStream of (K, W) pairs where the values for
each key are aggregated using the given combine
functions

48

 groupByKey()

 When called on a DStream of (K, V) pairs, returns
a new DStream of (K, Iterable<V>) pairs where the
values for each key is the “concatenation” of all
the values associated with key K

▪ I.e., It returns a new DStream by applying groupByKey
on one batch (one RDD) of the input stream at a time

49

 countByValue()

 When called on a DStream of elements of type K,
returns a new DStream of (K, Long) pairs where
the value of each key is its frequency in each batch
of the source Dstream

 Note that the countByValue method of
DStreams is a transformation

50

 count()

 Returns a new DStream of single-element RDDs
by counting the number of elements in each batch
(RDD) of the source Dstream

▪ i.e., it counts the number of elements in each input
batch (RDD)

 Note that the count method of DStreams is a
transformation

51

 union(otherStream)

 Returns a new DStream that contains the union of
the elements in the source DStream and
otherDStream

 join(otherStream)

 When called on two DStreams of (K, V) and (K, W)
pairs, return a new DStream of (K, (V, W)) pairs
with all pairs of elements for each key

52

 cogroup(otherStream)

 When called on a DStream of (K, V) and (K, W)
pairs, return a new DStream of (K, Seq[V],
Seq[W]) tuples

53

 pprint()

 Prints the first 10 elements of every batch of data
in a DStream on the standard output of the driver
node running the streaming application

▪ Useful for development and debugging

54

 saveAsTextFiles(prefix, [suffix])

 Saves the content of the DStream on which it is
invoked as text files

▪ One folder for each batch

▪ The folder name at each batch interval is generated
based on prefix, time of the batch (and suffix):
"prefix-TIME_IN_MS[.suffix]“

 Example

Counts.saveAsTextFiles(outputPathPrefix, "")

55

 The streamingContext.start() method is used
to start the application on the input stream(s)

 The awaitTerminationOrTimeout(long
millisecons) method is used to specify how long
the application will run

 The awaitTermination() method is used to run
the application forever
 Until the application is explicitly killed

 The processing can be manually stopped using
streamingContext.stop()

56

 Points to remember:
 Once a context has been started, no new streaming

computations can be set up or added to it

 Once a context has been stopped, it cannot be
restarted

 Only one StreamingContext per application can be
active at the same time

 stop() on StreamingContext also stops the
SparkContext
▪ To stop only the StreamingContext, set the optional

parameter of stop() called stopSparkContext to False

57

 Problem specification
 Input: a stream of sentences retrieved from

localhost:9999

 Split the input stream in batches of 5 seconds
each and print on the standard output, for each
batch, the occurrences of each word appearing in
the batch
▪ i.e., execute the word count problem for each batch of 5

seconds

 Store the results also in an HDFS folder

58

from pyspark.streaming import StreamingContext

Set prefix of the output folders
outputPathPrefix="resSparkStreamingExamples"

#Create a configuration object and#set the name of the applicationconf
SparkConf().setAppName("Streaming word count")

Create a Spark Context object
sc = SparkContext(conf=conf)

Create a Spark Streaming Context object
ssc = StreamingContext(sc, 5)

Create a (Receiver) DStream that will connect to localhost:9999
lines = ssc.socketTextStream("localhost", 9999)

59

Apply a chain of transformations to perform the word count task
The returned RDDs are DStream RDDs
words = lines.flatMap(lambda line: line.split(" "))

wordsOnes = words.map(lambda word: (word, 1))

wordsCounts = wordsOnes.reduceByKey(lambda v1, v2: v1+v2)

Print the result on the standard output
wordsCounts.pprint()

Store the result in HDFS
wordsCounts.saveAsTextFiles(outputPathPrefix, "")

60

#Start the computation
ssc.start()

Run this application for 90 seconds
ssc.awaitTerminationOrTimeout(90)

ssc.stop(stopSparkContext=False)

61

62

 Spark Streaming also provides windowed
computations

 It allows you to apply transformations over a
sliding window of data

▪ Each window contains a set of batches of the input
stream

▪ Windows can be overlapped
▪ i.e., the same batch can be included in many consecutive

windows

63

 Graphical example

 Every time the window slides over a source
DStream, the source RDDs that fall within the
window are combined and operated upon to
produce the RDDs of the windowed DStream

64

 In the graphical example, the operation

 is applied over the last 3 time units of data (i.e.,
the last 3 batches of the input DStream)

▪ Each window contains the data of 3 batches

 slides by 2 time units

65

 Any window operation needs to specify two
parameters:

 Window length

▪ The duration of the window (3 in the example)

 Sliding interval

▪ The interval at which the window operation is
performed (2 in the example)

 These two parameters must be multiples of
the batch interval of the source DStream

66

 Problem specification
 Input: a stream of sentences

 Split the input stream in batches of 10 seconds

 Define widows with the following characteristics
▪ Window length: 20 seconds (i.e., 2 batches)

▪ Sliding interval: 10 seconds (i.e., 1 batch)

 Print on the standard output, for each window,
the occurrences of each word appearing in the
window
▪ i.e., execute the word count problem for each window

67

68

Test Spark streaming
Second sentence Spark streaming

0

10

20

30

Time (s)

Stdout

0

10

20

30

Time (s)

Input stream

69

Test Spark streaming
Second sentence Spark streaming

Second Spark batch of 10 seconds
Batch size 10 seconds

0

10

20

30

Time (s)

Stdout

0

10

20

30

Time (s)

Input stream

70

Test Spark streaming
Second sentence Spark streaming

Second Spark batch of 10 seconds
Batch size 10 seconds

0

10

20

30

Time (s)

(test,1), (spark,3), (streaming,2),
(second,2), (sentence,1),
(batch,2), (of,1), (size,1), (10,2),
(seconds,2)

Stdout

0

10

20

30

Time (s)

Input stream

71

Test Spark streaming
Second sentence Spark streaming

Second Spark batch of 10 seconds
Batch size 10 seconds

Third batch

0

10

20

30

Time (s)

Stdout

(second, 1), (spark,1), (batch,3),
(of,1), (size,1), (10,2),
(seconds,2), (third,1)

0

10

20

30

Time (s)

Input stream

 window(windowLength, slideInterval)
 Returns a new DStream which is computed based

on windowed batches of the source DStream
 countByWindow(windowLength,

slideInterval)
 Returns a new single-element stream containing

the number of elements of each window
▪ The returned object is a Dstream of Long objects.

However, it contains only one value for each window
(the number of elements of the last analyzed window)

72

 reduceByWindow(reduceFunc,
invReduceFunc, windowDuration,
slideDuration)

 Returns a new single-element stream, created by
aggregating elements in the stream over a sliding
interval using func

▪ The function must be associative and commutative so that it
can be computed correctly in parallel

 If invReduceFunc is not None, the reduction is done
incrementally using the old window's reduced value

73

 countByValueAndWindow(windowDuratio
n , slideDuration)

 When called on a DStream of elements of type K,
returns a new DStream of (K, Long) pairs where
the value of each key K is its frequency in each
window of the source DStream

74

 reduceByKeyAndWindow(func, invFunc,
windowDuration, slideDuration=None,
numPartitions=None)

 When called on a DStream of (K, V) pairs, returns
a new DStream of (K, V) pairs where the values for
each key are aggregated using the given reduce
function func over batches in a sliding window

 The window duration (length) is specified as a
parameter of this invocation (windowDuration)

75

 If slideDuration is None, the batchDuration of
the StreamingContext object is used

▪ i.e., 1 batch sliding window

 If invFunc is provideved (is not None), the
reduction is done incrementally using the old
window's reduced values

▪ i.e., invFunc is used to apply an inverse reduce operation
by considering the old values that left the window (e.g.,
subtracting old counts)

76

 A streaming application must operate 24/7 and hence
must be resilient to failures unrelated to the
application logic (e.g., system failures, JVM crashes,
etc.)

 For this to be possible, Spark Streaming needs to
checkpoint enough information to a fault- tolerant
storage system such that it can recover from failures

 This result is achieved by means of checkpoints
 Operations that store the data and metadata needed to

restart the computation if failures happen
 Checkpointing is necessary even for some window

transformations and stateful transformations

77

 Checkpointing is enabled by using the
checkpoint(String folder) method of
SparkStreamingContext

 The parameter is the folder that is used to store
temporary data

 Similar as for processing graphs with
GraphFrames library

 With GraphFrames, the checkpoint was the one of
SparkContext

78

 Problem specification
 Input: a stream of sentences retrieved from

localhost:9999

 Split the input stream in batches of 5 seconds

 Define widows with the following characteristics
▪ Window length: 15 seconds (i.e., 3 batches)

▪ Sliding interval: 5 seconds (i.e., 1 batch)

 Print on the standard output, for each window, the
occurrences of each word appearing in the window
▪ i.e., execute the word count problem for each window

 Store the results also in an HDFS folder

79

from pyspark.streaming import StreamingContext

Set prefix of the output folders
outputPathPrefix="resSparkStreamingExamples"

#Create a configuration object and#set the name of the applicationconf
SparkConf().setAppName("Streaming word count")

Create a Spark Context object
sc = SparkContext(conf=conf)

Create a Spark Streaming Context object
ssc = StreamingContext(sc, 5)

Set the checkpoint folder (it is needed by some window transformations)
ssc.checkpoint("checkpointfolder")

80

Create a (Receiver) DStream that will connect to localhost:9999
lines = ssc.socketTextStream("localhost", 9999)

Apply a chain of transformations to perform the word count task
The returned RDDs are DStream RDDs
words = lines.flatMap(lambda line: line.split(" "))

wordsOnes = words.map(lambda word: (word, 1))

reduceByKeyAndWindow is used instead of reduceByKey
The durantion of the window is also specified
wordsCounts = wordsOnes\
.reduceByKeyAndWindow(lambda v1, v2: v1+v2, None, 15)

81

Print the num. of occurrences of each word of the current window
(only 10 of them)
wordsCounts.pprint()

Store the output of the computation in the folders with prefix
outputPathPrefix
wordsCounts.saveAsTextFiles(outputPathPrefix, "")

#Start the computation
ssc.start()

ssc.awaitTermination ()

82

from pyspark.streaming import StreamingContext

Set prefix of the output folders
outputPathPrefix="resSparkStreamingExamples"

#Create a configuration object and#set the name of the applicationconf
SparkConf().setAppName("Streaming word count")

Create a Spark Context object
sc = SparkContext(conf=conf)

Create a Spark Streaming Context object
ssc = StreamingContext(sc, 5)

Set the checkpoint folder (it is needed by some window transformations)
ssc.checkpoint("checkpointfolder");

83

Create a (Receiver) DStream that will connect to localhost:9999
lines = ssc.socketTextStream("localhost", 9999)

Apply a chain of transformations to perform the word count task
The returned RDDs are DStream RDDs
words = lines.flatMap(lambda line: line.split(" "))

wordsOnes = words.map(lambda word: (word, 1))

reduceByKeyAndWindow is used instead of reduceByKey
The durantion of the window is also specified
wordsCounts = wordsOnes\
.reduceByKeyAndWindow(lambda v1, v2: v1+v2, lambda vnow, vold: vnow-vold, 15)

84

Create a (Receiver) DStream that will connect to localhost:9999
lines = ssc.socketTextStream("localhost", 9999)

Apply a chain of transformations to perform the word count task
The returned RDDs are DStream RDDs
words = lines.flatMap(lambda line: line.split(" "))

wordsOnes = words.map(lambda word: (word, 1))

reduceByKeyAndWindow is used instead of reduceByKey
The durantion of the window is also specified
wordsCounts = wordsOnes\
.reduceByKeyAndWindow(lambda v1, v2: v1+v2, lambda vnow, vold: vnow-vold, 15)

85

In this solution the inverse function is also specified
 in order to compute the result incrementally

Print the num. of occurrences of each word of the current window
(only 10 of them)
wordsCounts.pprint()

Store the output of the computation in the folders with prefix
outputPathPrefix
wordsCounts.saveAsTextFiles(outputPathPrefix, "")

#Start the computation
ssc.start()

Run this application for 90 seconds
ssc.awaitTerminationOrTimeout(90)

ssc.stop(stopSparkContext=False)

86

87

 The updateStateByKey transformation
allows maintaining a “state” for each key

 The value of the state of each key is continuously
updated every time a new batch is analyzed

88

 The use of updateStateByKey is based on two
steps

 Define the state

▪ The data type of the state associated with the keys can
be an arbitrary data type

 Define the state update function

▪ Specify with a function how to update the state of a key
using the previous state and the new values from an
input stream associated with that key

89

 In every batch, Spark will apply the state
update function for all existing keys

 For each key, the update function is used to
update the value associated with a key by
combining the former value and the new
values associated with that key
 For each key, the call method of the “function” is

invoked on the list of new values and the former
state value and returns the new aggregated value
for the considered key

90

 By using the UpdateStateByKey, the
application can continuously update the
number of occurrences of each word

 The number of occurrences stored in the DStream
returned by this transformation is computed over
the union of all the batches (from the first one to
the current one)

▪ For efficiency reasons, the new value for each key is
computed by combining the last value for that key with
the values of the current batch for the same key

91

 Problem specification
 Input: a stream of sentences retrieved from

localhost:9999

 Split the input stream in batches of 5 seconds

 Print on the standard output, every 5 seconds, the
occurrences of each word appearing in the stream
(from time 0 to the current time)
▪ i.e., execute the word count problem from the

beginning of the stream to current time

 Store the results also in an HDFS folder

92

from pyspark.streaming import StreamingContext

Set prefix of the output folders
outputPathPrefix="resSparkStreamingExamples"

#Create a configuration object and#set the name of the applicationconf
SparkConf().setAppName("Streaming word count")

Create a Spark Context object
sc = SparkContext(conf=conf)

Create a Spark Streaming Context object
ssc = StreamingContext(sc, 5)

Set the checkpoint folder (it is needed by some window transformations)
ssc.checkpoint("checkpointfolder")

93

Create a (Receiver) DStream that will connect to localhost:9999
lines = ssc.socketTextStream("localhost", 9999)

Apply a chain of transformations to perform the word count task
The returned RDDs are DStream RDDs
words = lines.flatMap(lambda line: line.split(" "))

wordsOnes = words.map(lambda word: (word, 1))

94

Define the function that is used to update the state of a key at a time
def updateFunction(newValues, currentCount):
 if currentCount is None:
 currentCount = 0

 # Sum the new values to the previous state for the current key
 return sum(newValues, currentCount)

DStream made of cumulative counts for each key that get updated in every batch
totalWordsCounts = wordsOnes.updateStateByKey(updateFunction)

95

Define the function that is used to update the state of a key at a time
def updateFunction(newValues, currentCount):
 if currentCount is None:
 currentCount = 0

 # Sum the new values to the previous state for the current key
 return sum(newValues, currentCount)

DStream made of cumulative counts for each key that get updated in every batch
totalWordsCounts = wordsOnes.updateStateByKey(updateFunction)

96

This function is invoked one time for each key

Define the function that is used to update the state of a key at a time
def updateFunction(newValues, currentCount):
 if currentCount is None:
 currentCount = 0

 # Sum the new values to the previous state for the current key
 return sum(newValues, currentCount)

DStream made of cumulative counts for each key that get updated in every batch
totalWordsCounts = wordsOnes.updateStateByKey(updateFunction)

97

Current state/value for the current key

Define the function that is used to update the state of a key at a time
def updateFunction(newValues, currentCount):
 if currentCount is None:
 currentCount = 0

 # Sum the new values to the previous state for the current key
 return sum(newValues, currentCount)

DStream made of cumulative counts for each key that get updated in every batch
totalWordsCounts = wordsOnes.updateStateByKey(updateFunction)

98

List of new integer values for the current key

Define the function that is used to update the state of a key at a time
def updateFunction(newValues, currentCount):
 if currentCount is None:
 currentCount = 0

 # Sum the new values to the previous state for the current key
 return sum(newValues, currentCount)

DStream made of cumulative counts for each key that get updated in every batch
totalWordsCounts = wordsOnes.updateStateByKey(updateFunction)

99

Combine current state and new values

Print the num. of occurrences of each word of the current window
(only 10 of them)
totalWordsCounts.pprint()

Store the output of the computation in the folders with prefix
outputPathPrefix
totalWordsCounts.saveAsTextFiles(outputPathPrefix, "")

#Start the computation
ssc.start()

Run this application for 90 seconds
ssc.awaitTerminationOrTimeout(90)

ssc.stop(stopSparkContext=False)

100

101

 Some types of transformations are not available
for DStreams

 E.g., sortBy, sortByKey, distinct()

 Moreover, sometimes you need to combine
DStreams and RDDs

 For example, the functionality of joining every batch
in a data stream with another dataset (a “standard”
RDD) is not directly exposed in the DStream API

 The transform() transformation can be used in
these situations

102

 transform(func)

 It is a specific transformation of DStreams

 It returns a new DStream by applying an RDD-to-
RDD function to every RDD of the source Dstream

▪ This can be used to apply arbitrary RDD operations on
the DStream

103

 Problem specification
 Input: a stream of sentences retrieved from

localhost:9999

 Split the input stream in batches of 5 seconds
each and print on the standard output, for each
batch, the occurrences of each word appearing in
the batch
▪ The pairs must be returned/displayed sorted by

decreasing number of occurrences (per batch)

 Store the results also in an HDFS folder

104

from pyspark.streaming import StreamingContext

Set prefix of the output folders
outputPathPrefix="resSparkStreamingExamples"

#Create a configuration object and#set the name of the applicationconf
SparkConf().setAppName("Streaming word count")

Create a Spark Context object
sc = SparkContext(conf=conf)

Create a Spark Streaming Context object
ssc = StreamingContext(sc, 5)

Create a (Receiver) DStream that will connect to localhost:9999
lines = ssc.socketTextStream("localhost", 9999)

105

Apply a chain of transformations to perform the word count task
The returned RDDs are DStream RDDs
words = lines.flatMap(lambda line: line.split(" "))

wordsOnes = words.map(lambda word: (word, 1))

wordsCounts = wordsOnes.reduceByKey(lambda v1, v2: v1+v2)

Sort the content/the pairs by decreasing value (# of occurrences)
wordsCountsSortByKey = wordsCounts\
.transform(lambda batchRDD: batchRDD.sortBy(lambda pair: -1*pair[1]))

106

Print the result on the standard output
wordsCountsSortByKey.pprint()

Store the result in HDFS
wordsCountsSortByKey.saveAsTextFiles(outputPathPrefix, "")

#Start the computation
ssc.start()

Run this application for 90 seconds
ssc.awaitTerminationOrTimeout(90)

ssc.stop(stopSparkContext=False)

107

