


 Act of continuously incorporating new data 
to compute a result 

 Input data is unbounded → no beginning 
and no end 

 Series of events that arrive at the stream 
processing system 

 The application will output multiple versions 
of the results as it runs or put them in a 
storage 
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 Many important applications must process 
large streams of live data and provide results 
in near-real-time 

 Social network trends 

 Website statistics 

 Intrusion detection systems 

 … 
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 Vastly higher throughput in data processing  
 Low latency: application respond quickly 

(e.g., in seconds) 

 It can keep states in memory 

 More efficient in updating a result than 
repeated batch jobs, because it automatically 
incrementalizes the computation 
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 Scalable to large clusters  
 Responding to events at low latency 
 Simple programming model 
 Processing each event exactly once despite 

machine failures - Efficient fault-tolerance in 
stateful computations   
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 Processing out-of-order data based on 
application timestamps (also called event 
time) 

 Maintaining large amounts of state 
 Handling load imbalance and stragglers 
 Updating your application’s business logic at 

runtime 
 

6 



 Several frameworks have been proposed to process in 
real-time or in near real-time data streams 
 Apache Spark (Streaming component) 
 Apache Storm 
 Apache Flink 
 Apache Samza 
 Apache Apex 
  Apache Flume 
 Amazon Kinesis Streams 
 …   

 All these frameworks use a cluster of servers to scale 
horizontally with respect to the (big) amount of data to be 
analyzed 
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 Two main “solutions” 

 “Continuous” computation of data streams 

▪ Data are processed as soon as they arrive 
▪ Every time a new record arrives from the input stream, it is 

immediately processed and a result is emitted as soon as possible 

▪ Real-time processing 
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 “Micro-batch” stream processing 

▪ Input data are collected in micro-batches 
▪ Each micro-batch contains all the data received in a time window 

(typically less than a few seconds of data)  

▪ One micro-batch a time is processed 
▪ Every time a micro-batch of data is ready, its entire content is 

processed and a result is emitted 

▪ Near real-time processing 
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 Continuous computation 
 
 
 
 

 Micro-batch computation 
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One micro-batch at a time 

One record at a time 



 At-most-once 
 Every input element of a stream is processed once or 

less 

 It is also called no guarantee  

 The result can be wrong/approximated 
 At-least-once 
 Every input element of a stream is processed once or 

more 

 Input elements are replayed when there are failures 

 The result can be wrong/approximated 
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 Exactly-once 

 Every input element of a stream is processed 
exactly once 

 Input elements are replayed when there are 
failures 

 If elements have been already processed they are 
not reprocessed 

 The result is always correct 

 Slower than the other processing approaches 
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 Spark Streaming is a framework for large 
scale stream processing  
 Scales to 100s of nodes 

 Can achieve second scale latencies 

 Provides a simple batch-like API for implementing 
complex algorithm 

 Micro-batch streaming processing 

 Exactly-once guarantees 

 Can absorb live data streams from Kafka, Flume, 
ZeroMQ, Twitter, … 

 





 Many important applications must process 
large streams of live data and provide results 
in near-real-time 

 Social network trends 

 Website statistics 

 Intrusion detection systems 

 … 



 Scalable to large clusters  
 Second-scale latencies 
 Simple programming model 
 Efficient fault-tolerance in stateful 

computations  
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 Spark streaming runs a streaming 
computation as a series of very small, 
deterministic batch jobs 

 It splits each input stream in “portions” and 
processes one portion at a time (in the 
incoming order) 

 The same computation is applied on each portion 
of the stream 

 Each portion is called batch 
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 Spark streaming  

 Splits the live stream into batches of X seconds  

 Treats each batch of data as RDDs and processes 
them using RDD operations 

 Finally, the processed results of the RDD 
operations are returned in batches 
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 Problem specification 

 Input: a stream of sentences 

 Split the input stream in batches of 10 seconds 
each and print on the standard output, for each 
batch, the occurrences of each word appearing in 
the batch 

▪ i.e., execute the word count application one time for 
each batch of 10 seconds 
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 DStream 

 Sequence of RDDs representing a discretized 
version of the input stream of data 

▪ Twitter, HDFS, Kafka, Flume, ZeroMQ, Akka Actor, TCP 
sockets, .. 

 One RDD for each batch of the input stream 



 Transformations 

 Modify data from one DStream to another 

 “Standard” RDD operations 

▪ map, countByValue, reduce, join, … 

 Window and Stateful operations 

▪ window, countByValueAndWindow, … 

 Output Operations/Actions 

 Send data to external entity 

▪ saveAsHadoopFiles, saveAsTextFile, ... 



 A DStream is represented by a continuous 
series of RDDs. Each RDD in a DStream 
contains data from a certain batch/interval 
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 Any operation applied on a DStream 
translates to operations on the underlying 
RDDs 

 These underlying RDD transformations are 
computed by the Spark engine 
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 DStreams remember the sequence of 
operations that created them from the 
original fault-tolerant input data 

 Batches of input data are replicated in 
memory of multiple worker nodes, therefore 
fault-tolerant 

 Data lost due to worker failure, can be 
recomputed from input data 
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 Define a Spark Streaming Context object 

 Define the size of the batches (in seconds) 
associated with the Streaming context 

 Specify the input stream and define a 
DStream based on it 

 Specify the operations to execute for each 
batch of data 

 Use transformations and actions similar to the 
ones available for “standard” RDDs 



 Invoke the start method 

 To start processing the input stream 

 Wait until the application is killed or the 
timeout specified  in the application expires 

 If the timeout is not set and the application is not 
killed the application will run forever 



 The Spark Streaming Context is defined by using 
the StreamingContext(SparkConf sparkC, 
Duration batchDuration) constructor of the class 
pyspark.streaming.StreamingContext 

  The batchDuration parameter specifies the “size” 
of the batches in seconds 

 Example 
from pyspark.streaming import StreamingContext 

ssc = StreamingContext(sc, 10) 

 The input streams associated with this context will be split 
in batches of 10 seconds      



 After a context is defined, you have to do the 
following 

 Define the input sources by creating input 
Dstreams 

 Define the streaming computations by applying 
transformation and output operations to 
DStreams 



 The input Streams can be generate from 
different sources 

 TCP socket, Kafka, Flume, Kinesis, Twitter 

 Also an HDFS folder can be used as “input stream” 

▪ This option is usually used during the application 
development to perform a set of initial tests 
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 A DStream can be associated with the content 
emitted by a TCP socket 

 socketTextStream(String hostname, int 
port_number) is used to create a DStream 
based on the textual content emitted by a TPC 
socket 

 Example 
 lines = ssc.socketTextStream("localhost", 9999) 
 “Store” the content emitted by localhost:9999 in the 

lines DStream 

41 



 A DStream can be associated with the content 
of an input (HDFS) folder 

 Every time a new file is inserted in the folder, the 
content of the file is “stored” in the associated 
DStream  and processed 

 Pay attention that updating the content of a file does 
not trigger/change the content of the DStream  

 textFileStream(String folder) is used to create a 
DStream based on the content of the input 
folder 
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 Example 

lines = textFileStream(inputFolder) 

 “Store” the content of the files inserted in the 
input folder in the lines Dstream 

 Every time new files are inserted in the folder their 
content is “stored” in the current “batch” of the 
stream 
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 Usually DStream objects are defined on top 
of streams emitted by specific applications 
that emit real-time streaming data 
 E.g., Apache Kafka, Apache Flume, Kinesis, 

Twitter 
 You can also write your own applications for 

generating streams of data 
 However, Kafka, Flume and similar tools are 

usually a more reliable and effective solutions for 
generating streaming data 
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 Analogously to standard RDDs, also DStreams 
are characterized by a set of transformations 
 When applied to DStream objects, transformations 

return a new DStream Object 
 The transformation is applied on one batch (RDD) of 

the input DStream at a time and returns a batch 
(RDD) of the new DStream 
▪ i.e., each batch (RDD) of the input DStream is associated with 

exactly one batch (RDD) of the returned DStream    
 Many of the available transformations are the 

same transformations available for standard 
RDDs 
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 map(func) 
 Returns a new DStream by passing each element 

of the source DStream through a function func 
 flatMap(func) 
 Each input item can be mapped to 0 or more 

output items. Returns a new DStream 
 filter(func)  
 Returns a new DStream by selecting only the 

records of the source DStream on which func 
returns true 
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 reduce(func)  

 Returns a new DStream of single-element RDDs 
by aggregating the elements in each RDD of the 
source DStream using a function func 

▪ The function must be associative and commutative so 
that it can be computed in parallel 

 Note that the reduce method of DStreams is a 
transformation  
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 reduceByKey(func) 

 When called on a DStream of (K, V) pairs, returns a 
new DStream of (K, V) pairs where the values for each 
key are aggregated using the given reduce function 

 combineByKey( createCombiner, mergeValue, 
mergeCombiners) 

 When called on a DStream of (K, V) pairs, returns a 
new DStream of (K, W) pairs where the values for 
each key are aggregated using the given combine 
functions 
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 groupByKey()  

 When called on a DStream of (K, V) pairs, returns 
a new DStream of (K, Iterable<V>) pairs where the 
values for each key is the “concatenation” of all 
the values associated with key K 

▪ I.e., It returns a new DStream by applying groupByKey 
on one batch (one RDD) of the input stream at a time 
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 countByValue() 

 When called on a DStream of elements of type K, 
returns a new DStream of (K, Long) pairs where 
the value of each key is its frequency in each batch 
of the source Dstream 

 Note that the countByValue method of 
DStreams is a transformation  
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 count() 

 Returns a new DStream of single-element RDDs 
by counting the number of elements in each batch 
(RDD) of the source Dstream 

▪ i.e., it counts the number of elements in each input 
batch (RDD) 

 Note that the count method of DStreams is a 
transformation  
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 union(otherStream) 

 Returns a new DStream that contains the union of 
the elements in the source DStream and 
otherDStream 

 join(otherStream) 

 When called on two DStreams of (K, V) and (K, W) 
pairs, return a new DStream of (K, (V, W)) pairs 
with all pairs of elements for each key 

52 



 cogroup(otherStream) 

 When called on a DStream of (K, V) and (K, W) 
pairs, return a new DStream of (K, Seq[V], 
Seq[W]) tuples 

53 



 pprint() 

 Prints the first 10 elements of every batch of data 
in a DStream on the standard output of the driver 
node running the streaming application 

▪ Useful for development and debugging 
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 saveAsTextFiles(prefix, [suffix]) 

 Saves the content of the DStream on which it is 
invoked as text files 

▪ One folder for each batch 

▪ The folder name at each batch interval is generated 
based on prefix, time of the batch (and suffix):  
"prefix-TIME_IN_MS[.suffix]“ 

 Example 

Counts.saveAsTextFiles(outputPathPrefix, "") 
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 The streamingContext.start() method is used 
to start the application on the input stream(s) 

 The awaitTerminationOrTimeout(long 
millisecons) method is used to specify how long 
the application will run 

 The awaitTermination() method is used to run 
the application forever 
 Until the application is explicitly killed 

 The processing can be manually stopped using 
streamingContext.stop()  
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 Points to remember: 
 Once a context has been started, no new streaming 

computations can be set up or added to it 

 Once a context has been stopped, it cannot be 
restarted 

 Only one StreamingContext per application can be 
active at the same time 

 stop() on StreamingContext also stops the 
SparkContext 
▪ To stop only the StreamingContext, set the optional 

parameter of stop() called stopSparkContext to False 
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 Problem specification 
 Input: a stream of sentences retrieved from 

localhost:9999 

 Split the input stream in batches of 5 seconds 
each and print on the standard output, for each 
batch, the occurrences of each word appearing in 
the batch 
▪ i.e., execute the word count problem for each batch of 5 

seconds 

 Store the results also in an HDFS folder 
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from pyspark.streaming import StreamingContext 
 
# Set prefix of the output folders 
outputPathPrefix="resSparkStreamingExamples" 
 
#Create  a configuration  object and#set the name  of the applicationconf 
SparkConf().setAppName("Streaming word count") 
 
# Create  a Spark Context  object 
sc = SparkContext(conf=conf) 
 
# Create a Spark Streaming Context object 
ssc = StreamingContext(sc, 5) 
 
# Create a (Receiver) DStream that will connect to localhost:9999 
lines = ssc.socketTextStream("localhost", 9999) 
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# Apply a chain of  transformations to perform the word count task 
# The returned RDDs are DStream RDDs 
words = lines.flatMap(lambda line: line.split(" ")) 
 
wordsOnes = words.map(lambda word: (word, 1)) 
 
wordsCounts = wordsOnes.reduceByKey(lambda v1, v2: v1+v2) 
 
# Print the result on the standard output 
wordsCounts.pprint() 
 
# Store the result in HDFS 
wordsCounts.saveAsTextFiles(outputPathPrefix, "") 
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#Start the computation 
ssc.start() 
 
# Run this application for 90 seconds 
ssc.awaitTerminationOrTimeout(90) 
 
ssc.stop(stopSparkContext=False) 
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 Spark Streaming also provides windowed 
computations 

 It allows you to apply transformations over a 
sliding window of data 

▪ Each window contains a set of batches of the input 
stream 

▪ Windows can be overlapped 
▪ i.e., the same batch can be included in many consecutive 

windows 
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 Graphical example 
 
 
 
 
 
 
 

 Every time the window slides over a source 
DStream, the source RDDs that fall within the 
window are combined and operated upon to 
produce the RDDs of the windowed DStream 
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 In the graphical example, the operation  

 is applied over the last 3 time units of data (i.e., 
the last 3 batches of the input DStream) 

▪ Each window contains the data of 3 batches 

 slides by 2 time units 
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 Any window operation needs to specify two 
parameters: 

 Window length 

▪ The duration of the window (3 in the example) 

 Sliding interval 

▪ The interval at which the window operation is 
performed (2 in the example) 

 These two parameters must be multiples of 
the batch interval of the source DStream 
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 Problem specification 
 Input: a stream of sentences 

 Split the input stream in batches of 10 seconds  

 Define widows with the following characteristics 
▪ Window length: 20 seconds (i.e., 2 batches) 

▪ Sliding interval: 10 seconds (i.e., 1 batch) 

 Print on the standard output, for each window, 
the occurrences of each word appearing in the 
window 
▪ i.e., execute the word count problem for each window 
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 window(windowLength, slideInterval) 
 Returns a new DStream which is computed based 

on windowed batches of the source DStream 
 countByWindow(windowLength, 

slideInterval) 
 Returns a new single-element stream containing 

the number of elements of each window 
▪ The returned object is a Dstream of Long objects. 

However, it contains only one value for each window 
(the number of elements of the last analyzed window) 

72 



 reduceByWindow(reduceFunc, 
invReduceFunc, windowDuration,  
slideDuration) 

 Returns a new single-element stream, created by 
aggregating elements in the stream over a sliding 
interval using func 

▪ The function must be associative and commutative so that it 
can be computed correctly in parallel 

 If  invReduceFunc is not None, the reduction is done 
incrementally using the old window's reduced value 
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 countByValueAndWindow(windowDuratio
n , slideDuration) 

 When called on a DStream of elements of type K, 
returns a new DStream of (K, Long) pairs where 
the value of each key K is its frequency in each 
window of the source DStream 
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 reduceByKeyAndWindow(func, invFunc,   
windowDuration, slideDuration=None, 
numPartitions=None) 

 When called on a DStream of (K, V) pairs, returns 
a new DStream of (K, V) pairs where the values for 
each key are aggregated using the given reduce 
function func over batches in a sliding window 

 The window duration (length) is specified as a 
parameter of this invocation (windowDuration) 
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 If  slideDuration is None, the batchDuration of 
the StreamingContext object is used 

▪ i.e., 1 batch sliding window 

 If  invFunc is provideved (is not None), the 
reduction is done incrementally using the old 
window's reduced values 

▪ i.e., invFunc is used to apply an inverse reduce operation 
by considering the old values that left the window (e.g., 
subtracting old counts) 
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 A streaming application must operate 24/7 and hence 
must be resilient to failures unrelated to the 
application logic (e.g., system failures, JVM crashes, 
etc.) 

 For this to be possible, Spark Streaming needs to 
checkpoint enough information to a fault- tolerant 
storage system such that it can recover from failures 

 This result is achieved by means of checkpoints 
 Operations that store the data and metadata needed to 

restart the computation if failures happen 
 Checkpointing is necessary even for some window 

transformations and stateful transformations 
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 Checkpointing is enabled by using the 
checkpoint(String folder) method of 
SparkStreamingContext  

 The parameter is the folder that is used to store 
temporary data 

 Similar as for processing graphs with 
GraphFrames library 

 With GraphFrames, the checkpoint was the one of 
SparkContext 
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 Problem specification 
 Input: a stream of sentences retrieved from 

localhost:9999 

 Split the input stream in batches of 5 seconds  

 Define widows with the following characteristics 
▪ Window length: 15 seconds (i.e., 3 batches) 

▪ Sliding interval: 5 seconds (i.e., 1 batch) 

 Print on the standard output, for each window, the 
occurrences of each word appearing in the window 
▪ i.e., execute the word count problem for each window 

 Store the results also in an HDFS folder 
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from pyspark.streaming import StreamingContext 
 
# Set prefix of the output folders 
outputPathPrefix="resSparkStreamingExamples" 
 
#Create  a configuration  object and#set the name  of the applicationconf 
SparkConf().setAppName("Streaming word count") 
 
# Create  a Spark Context  object 
sc = SparkContext(conf=conf) 
 
# Create a Spark Streaming Context object 
ssc = StreamingContext(sc, 5) 
 
# Set the checkpoint folder (it is needed by some window transformations) 
ssc.checkpoint("checkpointfolder") 

80 



# Create a (Receiver) DStream that will connect to localhost:9999 
lines = ssc.socketTextStream("localhost", 9999) 
 
# Apply a chain of  transformations to perform the word count task 
# The returned RDDs are DStream RDDs 
words = lines.flatMap(lambda line: line.split(" ")) 
 
wordsOnes = words.map(lambda word: (word, 1)) 
 
# reduceByKeyAndWindow is used instead of reduceByKey 
# The durantion of the window is also specified 
wordsCounts = wordsOnes\ 
.reduceByKeyAndWindow(lambda v1, v2: v1+v2, None, 15) 
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# Print the num. of occurrences of each word of the current window 
# (only 10 of them) 
wordsCounts.pprint() 
 
# Store the output of the computation in the folders with prefix 
# outputPathPrefix 
wordsCounts.saveAsTextFiles(outputPathPrefix, "") 
 
#Start the computation 
ssc.start() 
 
ssc.awaitTermination () 
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from pyspark.streaming import StreamingContext 
 
# Set prefix of the output folders 
outputPathPrefix="resSparkStreamingExamples" 
 
#Create  a configuration  object and#set the name  of the applicationconf 
SparkConf().setAppName("Streaming word count") 
 
# Create  a Spark Context  object 
sc = SparkContext(conf=conf) 
 
# Create a Spark Streaming Context object 
ssc = StreamingContext(sc, 5) 
 
# Set the checkpoint folder (it is needed by some window transformations) 
ssc.checkpoint("checkpointfolder"); 
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# Create a (Receiver) DStream that will connect to localhost:9999 
lines = ssc.socketTextStream("localhost", 9999) 
 
# Apply a chain of  transformations to perform the word count task 
# The returned RDDs are DStream RDDs 
words = lines.flatMap(lambda line: line.split(" ")) 
 
wordsOnes = words.map(lambda word: (word, 1)) 
 
# reduceByKeyAndWindow is used instead of reduceByKey 
# The durantion of the window is also specified 
wordsCounts = wordsOnes\ 
.reduceByKeyAndWindow(lambda v1, v2: v1+v2, lambda vnow, vold: vnow-vold, 15) 
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# Create a (Receiver) DStream that will connect to localhost:9999 
lines = ssc.socketTextStream("localhost", 9999) 
 
# Apply a chain of  transformations to perform the word count task 
# The returned RDDs are DStream RDDs 
words = lines.flatMap(lambda line: line.split(" ")) 
 
wordsOnes = words.map(lambda word: (word, 1)) 
 
# reduceByKeyAndWindow is used instead of reduceByKey 
# The durantion of the window is also specified 
wordsCounts = wordsOnes\ 
.reduceByKeyAndWindow(lambda v1, v2: v1+v2, lambda vnow, vold: vnow-vold, 15) 
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 in order to compute the result incrementally 



# Print the num. of occurrences of each word of the current window 
# (only 10 of them) 
wordsCounts.pprint() 
 
# Store the output of the computation in the folders with prefix 
# outputPathPrefix 
wordsCounts.saveAsTextFiles(outputPathPrefix, "") 
 
#Start the computation 
ssc.start() 
 
# Run this application for 90 seconds 
ssc.awaitTerminationOrTimeout(90) 
 
ssc.stop(stopSparkContext=False) 
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 The updateStateByKey transformation 
allows maintaining a “state” for each key 

 The value of the state of each key is continuously 
updated every time a new batch is analyzed 
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 The use of updateStateByKey is based on two 
steps 

 Define the state 

▪ The data type of the state associated with the keys can 
be an arbitrary data type 

 Define the state update function 

▪ Specify with a function how to update the state of a key 
using the previous state and the new values from an 
input stream associated with that key 
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 In every batch, Spark will apply the state 
update function for all existing keys 

 For each key, the update function is used to 
update the value associated with a key by 
combining the former value and the new 
values associated with that key 
 For each key, the call method of the “function” is 

invoked on the list of new values and the former 
state value and returns the new aggregated value 
for the considered key 
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 By using the UpdateStateByKey, the 
application can continuously update the 
number of occurrences of each word 

 The number of occurrences stored in the DStream 
returned by this transformation is computed over 
the union of all the batches (from the first one to 
the current one) 

▪ For efficiency reasons, the new value for each key is 
computed by combining the last value for that key with 
the values of the current batch for the same key 
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 Problem specification 
 Input: a stream of sentences retrieved from 

localhost:9999 

 Split the input stream in batches of 5 seconds  

 Print on the standard output, every 5 seconds, the 
occurrences of each word appearing in the stream 
(from time 0 to the current time) 
▪ i.e., execute the word count problem from the 

beginning of the stream to current time 

 Store the results also in an HDFS folder 
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from pyspark.streaming import StreamingContext 
 
# Set prefix of the output folders 
outputPathPrefix="resSparkStreamingExamples" 
 
#Create  a configuration  object and#set the name  of the applicationconf 
SparkConf().setAppName("Streaming word count") 
 
# Create  a Spark Context  object 
sc = SparkContext(conf=conf) 
 
# Create a Spark Streaming Context object 
ssc = StreamingContext(sc, 5) 
 
# Set the checkpoint folder (it is needed by some window transformations) 
ssc.checkpoint("checkpointfolder") 
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# Create a (Receiver) DStream that will connect to localhost:9999 
lines = ssc.socketTextStream("localhost", 9999) 
 
# Apply a chain of  transformations to perform the word count task 
# The returned RDDs are DStream RDDs 
words = lines.flatMap(lambda line: line.split(" ")) 
 
wordsOnes = words.map(lambda word: (word, 1)) 
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# Define the function that is used to update the state of a key at a time 
def updateFunction(newValues, currentCount): 
     if currentCount is None: 
         currentCount = 0 
         
  # Sum the new values to the previous state for the current key 
  return sum(newValues, currentCount)  
 
 
# DStream made of cumulative counts for each key that get updated in every batch 
totalWordsCounts = wordsOnes.updateStateByKey(updateFunction) 
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# Define the function that is used to update the state of a key at a time 
def updateFunction(newValues, currentCount): 
     if currentCount is None: 
         currentCount = 0 
         
  # Sum the new values to the previous state for the current key 
  return sum(newValues, currentCount)  
 
 
# DStream made of cumulative counts for each key that get updated in every batch 
totalWordsCounts = wordsOnes.updateStateByKey(updateFunction) 
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This function is invoked one time for each key 



# Define the function that is used to update the state of a key at a time 
def updateFunction(newValues, currentCount): 
     if currentCount is None: 
         currentCount = 0 
         
  # Sum the new values to the previous state for the current key 
  return sum(newValues, currentCount)  
 
 
# DStream made of cumulative counts for each key that get updated in every batch 
totalWordsCounts = wordsOnes.updateStateByKey(updateFunction) 
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Current state/value for the current key 



# Define the function that is used to update the state of a key at a time 
def updateFunction(newValues, currentCount): 
     if currentCount is None: 
         currentCount = 0 
         
  # Sum the new values to the previous state for the current key 
  return sum(newValues, currentCount)  
 
 
# DStream made of cumulative counts for each key that get updated in every batch 
totalWordsCounts = wordsOnes.updateStateByKey(updateFunction) 
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List of new integer values for the current key 



# Define the function that is used to update the state of a key at a time 
def updateFunction(newValues, currentCount): 
     if currentCount is None: 
         currentCount = 0 
         
  # Sum the new values to the previous state for the current key 
  return sum(newValues, currentCount)  
 
 
# DStream made of cumulative counts for each key that get updated in every batch 
totalWordsCounts = wordsOnes.updateStateByKey(updateFunction) 
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Combine current state and new values 



# Print the num. of occurrences of each word of the current window 
# (only 10 of them) 
totalWordsCounts.pprint() 
 
# Store the output of the computation in the folders with prefix 
# outputPathPrefix 
totalWordsCounts.saveAsTextFiles(outputPathPrefix, "") 
 
#Start the computation 
ssc.start() 
 
# Run this application for 90 seconds 
ssc.awaitTerminationOrTimeout(90) 
 
ssc.stop(stopSparkContext=False) 
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 Some types of transformations are not available 
for DStreams 

 E.g., sortBy, sortByKey, distinct() 

 Moreover, sometimes you need to combine 
DStreams and RDDs 

 For example, the functionality of joining every batch 
in a data stream with another dataset (a “standard” 
RDD) is not directly exposed in the DStream API 

 The transform() transformation can be used in 
these situations 
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 transform(func) 

 It is a specific transformation of DStreams 

 It returns a new DStream by applying an RDD-to-
RDD function to every RDD of the source Dstream 

▪ This can be used to apply arbitrary RDD operations on 
the DStream 

103 



 Problem specification 
 Input: a stream of sentences retrieved from 

localhost:9999 

 Split the input stream in batches of 5 seconds 
each and print on the standard output, for each 
batch, the occurrences of each word appearing in 
the batch 
▪ The pairs must be returned/displayed sorted by 

decreasing number of occurrences (per batch) 

 Store the results also in an HDFS folder 
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from pyspark.streaming import StreamingContext 
 
# Set prefix of the output folders 
outputPathPrefix="resSparkStreamingExamples" 
 
#Create  a configuration  object and#set the name  of the applicationconf 
SparkConf().setAppName("Streaming word count") 
 
# Create  a Spark Context  object 
sc = SparkContext(conf=conf) 
 
# Create a Spark Streaming Context object 
ssc = StreamingContext(sc, 5) 
 
# Create a (Receiver) DStream that will connect to localhost:9999 
lines = ssc.socketTextStream("localhost", 9999) 
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# Apply a chain of  transformations to perform the word count task 
# The returned RDDs are DStream RDDs 
words = lines.flatMap(lambda line: line.split(" ")) 
 
wordsOnes = words.map(lambda word: (word, 1)) 
 
wordsCounts = wordsOnes.reduceByKey(lambda v1, v2: v1+v2) 
 
# Sort the content/the pairs by decreasing value (# of occurrences) 
wordsCountsSortByKey = wordsCounts\ 
.transform(lambda batchRDD: batchRDD.sortBy(lambda pair: -1*pair[1])) 
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# Print the result on the standard output 
wordsCountsSortByKey.pprint() 
 
# Store the result in HDFS 
wordsCountsSortByKey.saveAsTextFiles(outputPathPrefix, "") 
 
 
#Start the computation 
ssc.start() 
 
# Run this application for 90 seconds 
ssc.awaitTerminationOrTimeout(90) 
 
ssc.stop(stopSparkContext=False) 
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