
Version #1

Distributed architectures for big data processing and analytics

February 10, 2022

Student ID __

First Name __

Last Name __

The exam lasts 90 minutes

Part I

Answer to the following questions. There is only one right answer for each question.

 1. (2 points) Consider the following Spark Streaming applications.

from pyspark.streaming import StreamingContext

Create a Spark Streaming Context object

ssc = StreamingContext(sc, 10)

Create a (Receiver) DStream that will connect to localhost:9999

inputDStream = ssc.socketTextStream("localhost", 9999)

Part A

Define windows and map input strings to integers

inputAWindowDStream = inputDStream\

.window(20, 10)\

.map(lambda value: int(value))

#Apply a filter

filteredADStream = inputAWindowDStream.filter(lambda value : value>5)

Compute the maximum value

resADStream = filteredADStream.reduce(lambda v1,v2:max(v1,v2))

Print the result on standard output

resADStream.pprint()

Part B

Map input strings to integers

inputBDStream = inputDStream\

.map(lambda value: int(value))

#Apply a filter, compute max, and define windows

filteredBDStream = inputBDStream.filter(lambda value : value>5)\

.reduce(lambda v1,v2:max(v1,v2))

.window(20, 10)

Compute the maximum value again

resBDStream = filteredBDStream.reduce(lambda v1,v2:max(v1,v2))

Print the result

resBDStream.pprint()

Version #1

Part C

Map input strings to integers and define windows

inputCWindowDStream = ssc.socketTextStream("localhost", 9999)\

.map(lambda value: int(value))\

.window(20, 10)

Compute the maximum value

maxCWindowDStream = inputCWindowDStream.reduce(lambda v1,v2:max(v1,v2))

#Apply a filter

resCDStream = maxCWindowDStream.filter(lambda value : value>5)

Print the result

resCDStream.pprint()

ssc.start()

ssc.awaitTerminationOrTimeout(360)

ssc.stop(stopSparkContext=False)

d

 Which one of the following statements is true?

 a) Independently of the content of inputDStream, resADStream, resBDStream, and

resCDStream contain always the same integer values.

 b) Independently of the content of inputDStream, resADStream and resBDStream

contain always the same integer values, while resCDStream may contain different

integer values with respect to resADStream and resBDStream.

 c) Independently of the content of inputDStream, resADStream and resCDStream

contain always the same integer values, while resBDStream may contain different

integer values with respect to resADStream and resCDStream.

 d) Independently of the content of inputDStream, resBDStream and resCDStream

contain always the same integer values, while resADStream may contain different

integer values with respect to resBDStream and resCDStream.

 2. (2 points) Consider the following Spark application.

inputRDD = sc.textFile("HumidityValues.txt")

Compute the total number of lines

totLines=inputRDD.count()

Print on the standard output the total number of input lines

print("Total number of lines: " + str(totLines) + "\n")

Select the content of the field humidity

humiditiesRDD = inputRDD.map(lambda line: float(line.split(",")[1]))

Compute the minimum humidity

minHum = humiditiesRDD.reduce(lambda hum1, hum2: min(hum1, hum2))

Print on the standard output the minimum humidity

print("Min. humidity: " + str(minHum) +"\n")

Version #1

Select the occurrences of the minimum humidity

minOccurrrences = humiditiesRDD.filter(lambda value: value== minHum)

Compute the number of occurrences of the minimum humidity

numOccs = minOccurrrences.count()

Print on the standard output the number of occurrences of the minimum humidity

print("Num occurrences min. humidity: " + str(numOccs) +"\n")

 Suppose the input file HumidityValues.txt is read from HDFS. Suppose you execute

this Spark application only 1 time. Which one of the following statements is true?

 a) This application reads the content of HumidityValues.txt 1 time

 b) This application reads the content of HumidityValues.txt 3 times

 c) This application reads the content of HumidityValues.txt 4 times

 d) This application reads the content of HumidityValues.txt 5 times

Part II
PoliMarketplace is a marketplace that is used to sell mobile apps. PoliMarketplace

manages millions of apps and is used by millions of users. PoliMarketplace computes

statistics about the usage of its apps and the characteristics of its users. The analyses are

based on the following input data sets/files.

 Apps.txt

o Apps.txt is a text file containing the list of mobile apps available on

PoliMarketplace. Each line of Apps.txt is associated with one app.

PoliMarketplace manages millions of apps.

o Each line of Apps.txt has the following format

 AppId,AppName,Price,Category,Company

where AppId is the unique identifier of the app while AppName is its

name, Price is its price, Category is its category (game, office,

finance, etc.), and Company is the company that developed the app.

 For example, the following line

App10,PolitoApp,0,Education,Polito

means that the app identified by the AppId App10 is called PolitoApp,

it costs 0 euros, it belongs to the Education category, and it is

developed by Polito.

 Users.txt

o Users.txt is a text file containing the profiles of the users of PoliMarketplace.

Each line is associated with one user. PoliMarketplace has millions of users.

o Each line of Users.txt has the following format

 UserId,Name,Surname,Nationality

where UserId is the unique identifier of the user while Name and

Surname are his/her name and surname, respectively. Nationality is

his/her nationality.

Version #1

 For example, the following line

User15,Paolo,Garza,Italian

means that the name and surname of the user identified by the id

User15 are Paolo and Garza, respectively, and User15 is Italian.

 Actions.txt

o Actions.txt is a text file that is used to track installations and removals of

apps. A new line is appended at the end of Actions.txt every time a user

installs or removes an app. Actions.txt stores more than 20 years of data.

o Each line of Actions.txt has the following format

 UserId,AppId,Timestamp,Action

where UserID is the identifier of the user who performed the action

specified in the field Action on the app with id AppId at time

Timestamp. Action can assume one of the following three values:

“Install” or “Remove”. Pay attention that the same user can perform

the same action on the same app multiple times, in different

timestamps (i.e., a user can install or remove the same app multiple

times). The field Timestamp is a string and its format is

“YYYY/MM/DD-HH:MM:SS”.

 For example, the following line

User15,App10,2019/01/01-23:01:15,Install

means that User15 installed (Action is equal to Install) the app

App10 on January 1, 2019, at 23:01:15.

Exercise 1 – MapReduce and Hadoop (8 points)

Exercise 1.1

The managers of PoliMarketplace are interested in performing some analyses about their
apps.

Design a single application, based on MapReduce and Hadoop, and write the
corresponding Java code, to address the following point:

1. Companies with only free apps considering the category Education. The application

considers only the apps of the category Education and selects the companies that
developed only free apps (considering only the category Education). An app is free

if its price is equal to 0. Store the selected companies and the number of apps of
the category Education developed by each of the selected companies in the output
HDFS folder (one pair (company, number of developed apps of the category

Education) per output line).

Suppose that the input is Apps.txt and has been already set. Suppose that also the name

of the output folder has been already set.

 Write your code on your papers.

Version #1

 Write only the content of the Mapper and Reducer classes (map and reduce
methods. setup and cleanup if needed). The content of the Driver must not be

reported.

 Use the following two specific multiple-choice questions (Exercises 1.2 and 1.3) to

specify the number of instances of the reducer class for each job.

 If your application is based on two jobs, specify which methods are associated with

the first job and which are associated with the second job.

 If you need personalized classes, report for each of them:
o the name of the class

o attributes/fields of the class (data type and name)
o personalized methods (if any), e.g., the content of the toString() method if

you override it

o do not report the get and set methods. Suppose they are "automatically
defined"

Answer the following two questions to specify the number of jobs (one or two) and

the number of instances of the reducer classes.

Exercise 1.2 - Number of instances of the reducer - Job 1

Select the number of instances of the reducer class of the first Job

 (a) 0

 (b) exactly 1

 (c) any number >=1 (i.e., the reduce phase can be parallelized)

Exercise 1.3 - Number of instances of the reducer - Job 2

Select the number of instances of the reducer class of the second Job

 (a) One single job is needed

 (b) 0

 (c) exactly 1

 (d) any number >=1 (i.e., the reduce phase can be parallelized)

Exercise 2 – Spark and RDDs (19 points)

The managers of PoliMarketplace asked you to develop one single application to address
all the analyses they are interested in. The application has five arguments: the input files

Apps.txt, Users.txt, and Actions.txt, and two output folders “outPart1/” and “outPart2/”,
which are associated with the outputs of the following points 1 and 2, respectively.
Specifically, design a single application, based on Spark RDDs or Spark DataFrames, and

write the corresponding Python code, to address the following points:

1. Users who installed a number of non-free apps greater than the number of free apps in

the year 2022. This first part of the application considers only the data related to the

year 2022 and selects the users who installed a number of distinct non-free apps
greater than the number of distinct installed free apps. A user installed a specific app in

the year 2022 if there is at least one line in Actions.txt (considering only the lines
related to the year 2022) associated with that pair (user, app) for which Action is equal
to ‘Install’. For each of the selected users, store in the first HDFS output folder (one

user per line) his/her userId and the number of distinct installed non-free apps in the
year 2022.

Version #1

2. Italian users with the maximum number of currently installed apps. This second part of

the application considers only Italian users and selects the Italian users with the
maximum number of currently installed apps. An app is currently installed on the

smartphone of a user if the last action executed by that user associated with that app is
the action ‘Install’ (Action=’Install’). The UserIds of the selected Italian users are stored
in the second HDFS output folder (one UserId per output line).

Pay attention. All the users associated with the maximum number of currently installed
apps are stored in the output folder (one UserId per output line).

Examples Point 2

 First example. For the sake of clarity, suppose that there are only three Italian

users: User1, User 2, and User 3. Suppose that (i) the number of currently
installed apps for User1 is 10, (ii) the number of currently installed apps for

User2 is 35, and the number of currently installed apps for User3 is 29. In this
first example, the userId User2 is stored in the second output folder.

 Second example. For the sake of clarity, suppose that there are only three

Italian users: User1, User 2, and User 3. Suppose that (i) the number of
currently installed apps for User1 is 43, (ii) the number of currently installed apps

for User2 is 10, and the number of currently installed apps for User3 is 43. In
this second example, the userIds User2 and User3 are stored in the second
output folder.

 Pay attention that the actual input file contains millions of users.

 Write your code on your papers.

 You do not need to report imports. Focus on the content of the main method.

 Suppose both JavaSparkContext sc and SparkSession ss have been already
set.

 Suppose the following variables have been already set:
o usersPath= 'Users.txt'

appsPath= 'Apps.txt'

actionPath= 'Actions.txt'
output1 = outPart1/'
output2 = outPart2/'

 If you need personalized classes, report for each of them:
o the name of the class

o attributes/fields of the class (data type and name)
o personalized methods (if any), e.g., the content of the toString() method if

you override it

o do not report the get and set methods. Suppose they are "automatically
defined"

