
Introduction to Databases
Oracle SQLPLUS - Practice n. 3

This practice comprises two parts. Part I is based on Oracle DBMS and proposes some more
queries on an existing database, to be solved using the SQL language with Oracle SQL Developer.
In Part II, based on the MySQL DBMS, the logical schema of a database is provided. You are
requested to write the SQL scripts for creating and populating the database and for updating
and deleting records.

Part I

Write and execute SQL queries
Write the SQL query in the Worksheet and execute it by clicking on the Run script button (see
figure).

1 Description of the Delivery database
The Delivery database gathers information about the activities of a firm delivering and collect-
ing goods for various customer companies.

The DELIVERERS table contains the personal data for the deliverers working at the firm. For
each deliverer, the following information is available: identification code (DELIVERERID), last
name, first name initials, year of birth, sex, year when she/he began working for the firm,
street, house number, city, residence postal code, cellular phone number, and office phone

1



number.

The COMPANIES table reports, for each customer company, the company identification code
(COMPANYID) and the identification code of the deliverer who is the company’s current
reference person. In addition, it reports the number of times (MANDATE) the deliverer held
this position.

The COMPANYDEL table reports the total number of deliveries (NUMDELIVERIES) and col-
lections (NUMCOLLECTIONS) made by each deliverer for each customer company. Note that
the table only reports the deliverer-company pairs such that the deliverer performed at least
one delivery or collection for the company.

The PENALTIES table reports the fines received by each deliverer. For each fine, the fine code
(PENALTYID), the deliverer code, the fine date, and amount to be paid are stored.

The database schema is shown in the subsequent figure. Section 2 reports the details of every
table instance.

2



2 Table instances for the Delivery database
Primary key is underlined. Optional attributes are denoted with *.

3



3 SQL Queries
1. Find the identification code of the deliverer who has received the highest number of

fines.

2. Find the identification codes of the deliverers who have only delivered (or collected)
parcels to (from) firms in which deliverer no. 57 has delivered or collected parcels.

3. Find the identification codes of the deliverers who have delivered (or collected) parcels
to (from) all of the firms in which deliverer no. 57 has delivered or collected parcels, and
only to (from) such firms (i.e., to/from no other firms than those visited by deliverer no.
57).

4. For each deliverer that has received at least two fines, find the identification code (of the
deliverer), the date of the first fine and the date of the last fine.

5. For each deliverer that has been fined, find the identification code, the date of the last
fine he/she received and the amount of this fine.

6. Find the identification codes of companies where more than 30% of the deliverers in the
database have performed at least one delivery or one collection.

4



Part II

4 Purpose
The purpose of this part is to write the scripts for creating and populating a database, given
the logical schema, and to execute update and delete commands on this database, using the
SQL language.
This part is based on MySQL, in particular the version available in XAMPP.

Boot MySQL server on localhost and start Apache
The execution of scripts with SQL commands for the creation and population of the database
will be performed through the Web interface of MySQL. Before opening the Web interface of
MySQL it is necessary to:

• Start the local Apache server;

• Start the local MySQL server.

Specifically, execute the following steps:

1. Start "XAMPP Control Panel".

2. Start Apache clicking the Start button in the row of "Apache" module.

3. Start MySQL clicking the Start button in the row of "MySQL" module.

5



4. Open the MySQL Web interface clicking the Admin button in the row of "MySQL" module
(the browser will automatically open the URL associated to the page of administration
and SQL querying, i.e., phpMyAdmin).

5. To execute a SQL script from the Web interface of MySQL:

• Select the "Import" panel.

• Select the file with the script you want to execute and click on "Go" button.

6. To execute the creation/population script more than once, you need to cancel any existing
instance of the database, either directly from the "Database" panel or by including at the
beginning of the script the commands for deleting the existing tables.

Generation of scripts for the creation and population of DB
1. Scripts are simple text files written with any text editor (e.g., Notepad, Vim, Wordpad).

2. Scripts are usually saved with .sql extension.

3. Scripts contain a sequence of instructions ending with semicolon ";".

4. To create a DB in MySQL the following preliminary instructions are needed (at the
beginning of the script):

• SET storage_engine=InnoDB; (to activate the InnoDB engine for the management of
databases).

• CREATE DATABASE IF NOT EXISTS DatabaseName; (creation of the DB named
’DatabaseName’ if it doesn’t exist).

• USE DatabaseName; (set DatabaseName as current DB).

5. To activate the automatic check of referential integrity the following command is avail-
able:

• SET FOREIGN_KEY_CHECKS=1; (enabled) or 0; (disabled).

6. Preliminary instructions are followed by the sequence of SQL commands for the creation
and population of DB (CREATE TABLE and INSERT=).

7. Check that syntax and data types are compliant with those required by MySQL.

6



8. Unless otherwise stated, MySQL always automatically commits executed instructions.
To manage transactions the following commands are available:

• SET autocommit=0; (disabled) or 1; (enabled)

• START TRANSACTION;

• COMMIT; (to make effective all the instructions of the transaction)

7



5 Description of the Gym database
The database you should implement is about the activities in a gym. It is described by the
following logical schema (primary keys are underlined, foreign keys are in italic, and optional
attributed are denoted with *):

• TRAINER(SSN, Name, Surname, DateOfBirth, Email, PhoneNo*)

• COURSE(CId, Name, Type, Level)

• SCHEDULE (SSN, Day, StartTime, Duration, CId, GymRoom)

For each trainer, the Social Security Number (SSN), the name, the surname, the date of birth,
the email address, and the phone number (if any) are known. For each course, the code, the
name, the type, and the level (1-4) are known. The course schedule lists the day of the week
and the start time for each lesson of a given course taught by each trainer, together with the
duration of the lesson (in minutes) and the gym room in which it is held.

Figure 1: Contents that the Gym database should include after executing the SQL script
designed in this practice.

8



6 Scripts
1. Write an SQL script (createDB.sql) with the commands (i.e., CREATE TABLE) for creating

the database corresponding to the logical schema described in Section 5. In particular:

• Define the three tables, choosing the most appropriate data type for each of the
attributes. Pay special attention to the definition of primary keys and referential
integrity constraints.

• Choose the most appropriate constraint management policy in each context.

Note. Do pay attention to the order in which tables are created. Referenced tables should
appear first in the script, while referencing tables must appear after the table(s) they
reference.

2. Write an SQL script (populateDB.sql) containing the INSERT commands for populating
the database created in the previous point. The script should include the insert commands
required to obtain an instance of the database containing the same data shown in the
tables in Figure 1.
Note. The order in which the insert commands are executed does matter. Make sure you
follow the correct order so as not to violate the referential integrity constraints.

3. Test your createDB.sql and populateDB.sql scripts.
Note. The tables might already exist in the database if some other student has already
created them using the same account. In this case, you should execute the following
commands to delete them, prior to executing your own scripts:

• DROP TABLE SCHEDULE;

• DROP TABLE COURSE;

• DROP TABLE TRAINER;

4. Write and execute the following update instructions in SQL, one by one, and check what
happens in the database.

(a) Update the phone number of trainer identified by SSN ’KHNJHN81E30C455Y’,
setting its value to ’+390112333551’.

(b) Update the database in order to move in room ’R4’ all the lessons scheduled in
room ’R2’.

(c) Remove from table COURSE all the courses scheduled once a week (i.e., appearing
only once in table SCHEDULE). How is table COURSE affected by this command?
And table SCHEDULE? The effect on the two tables is someway related with the
policy of constraints management selected during the creation of tables?

(d) Delete the trainer with SSN ’SMTPLA80N31B791Z’. How are the tables TRAINER
and SCHEDULE affected by this command? How is the result linked to the policy
of constraints management selected during the creation of tables?

9



7 Solutions Part I (SQL queries)
1. Find the identification code of the deliverer who has received the highest number of

fines.

SELECT DELIVERERID

FROM PENALTIES

GROUP BY DELIVERERID

HAVING COUNT (*) = (SELECT MAX(NumPenalties)
FROM (SELECT DELIVERERID , COUNT (*) AS NumPenalties

FROM PENALTIES

GROUP BY DELIVERERID) TOTMULTEDELIVERERS );

or

SELECT DELIVERERID

FROM (SELECT DELIVERERID , COUNT (*) AS NumPenalties

FROM PENALTIES

GROUP BY DELIVERERID) TOTMULTEDELIVERERS1

WHERE NumPenalties = (SELECT MAX(NumPenalties)
FROM (SELECT DELIVERERID , COUNT (*) AS NumPenalties

FROM PENALTIES

GROUP BY DELIVERERID) TOTMULTEDELIVERERS2 );

2. Find the identification codes of the deliverers who have only delivered (or collected)
parcels to (from) firms in which deliverer no. 57 has delivered or collected parcels.

SELECT DISTINCT DELIVERERID

FROM COMPANYDEL

WHERE DELIVERERID <> 57

AND DELIVERERID NOT IN (SELECT DELIVERERID

FROM COMPANYDEL

WHERE COMPANYID NOT IN
(SELECT COMPANYID

FROM COMPANYDEL

WHERE DELIVERERID = 57));

10



3. Find the identification codes of the deliverers who have delivered (or collected) parcels
to (from) all of the firms in which deliverer no. 57 has delivered or collected parcels, and
only to (from) such firms (i.e., to/from no other firms than those visited by deliverer no.
57).

SELECT DELIVERERID

FROM COMPANYDEL

WHERE DELIVERERID <> 57

AND DELIVERERID NOT IN (SELECT DELIVERERID

FROM COMPANYDEL

WHERE COMPANYID NOT IN
(SELECT COMPANYID

FROM COMPANYDEL

WHERE DELIVERERID = 57))

GROUP BY DELIVERERID

HAVING COUNT (*) = (SELECT COUNT (*)
FROM COMPANYDEL

WHERE DELIVERERID = 57);

4. For each deliverer that has received at least two fines, find the identification code (of the
deliverer), the date of the first fine and the date of the last fine.

SELECT DELIVERERID , MIN(DATA), MAX(DATA)
FROM PENALTIES

GROUP BY DELIVERERID

HAVING COUNT (*) >= 2;

11



5. For each deliverer that has been fined, find the identification code, the date of the last
fine he/she received and the amount of this fine.

SELECT P1.DELIVERERID , DATA , AMOUNT

FROM PENALTIES P1

WHERE P1.DATA = (SELECT MAX(DATA)
FROM PENALTIES P2

WHERE P2.DELIVERERID = P1.DELIVERERID );

6. Find the identification codes of companies where more than 30% of the deliverers in the
database have performed at least one delivery or one collection.

SELECT COMPANYID

FROM COMPANYDEL

GROUP BY COMPANYID

HAVING COUNT (*) > (SELECT 0.30 * COUNT (*)
FROM DELIVERERS );

12



8 Solutions Part II
1. Write an SQL script (createDB.sql) with the commands (i.e., CREATE TABLE) for creating

the database corresponding to the logical schema described in Section 5.

-- create an empty database. Name of the database:

SET storage_engine=InnoDB;

SET FOREIGN_KEY_CHECKS =1;

CREATE DATABASE IF NOT EXISTS gym;

-- use gym

use gym;

-- drop tables if they already exist

DROP TABLE IF EXISTS SCHEDULE;

DROP TABLE IF EXISTS COURSE;

DROP TABLE IF EXISTS TRAINER;

-- create tables

CREATE TABLE TRAINER (

SSN CHAR (20) ,

Name CHAR (50) NOT NULL ,

Surname CHAR (50) NOT NULL ,

DateOfBirth DATE NOT NULL ,

Email CHAR (50) NOT NULL ,

PhoneNo CHAR (20) NULL ,

PRIMARY KEY (SSN),

CONSTRAINT email_constr CHECK (Email LIKE '%@%')

);

CREATE TABLE COURSE (

CId CHAR (10) ,

Name CHAR (50) NOT NULL ,

Type CHAR (50) NOT NULL ,

CLevel SMALLINT NOT NULL ,
PRIMARY KEY (CId),

CONSTRAINT lev_constr CHECK (CLevel >=1 AND CLevel <=4)

);

CREATE TABLE SCHEDULE (

SSN CHAR (20) NOT NULL ,

DayOfWeek CHAR (15) NOT NULL ,

StartTime TIME NOT NULL ,

Duration SMALLINT NOT NULL ,

CId CHAR (10) NOT NULL ,
GymRoom CHAR (5) NOT NULL ,
PRIMARY KEY (SSN ,DayOfWeek ,StartTime),

FOREIGN KEY (SSN) REFERENCES TRAINER(SSN) ON DELETE CASCADE
ON UPDATE CASCADE ,
FOREIGN KEY (CId) REFERENCES COURSE(CId) ON DELETE CASCADE
ON UPDATE CASCADE ,
CONSTRAINT dayofweek_constr CHECK (DayOfWeek in ('Monday ', 'Tuesday ',

'Wednesday ', 'Thursday ', 'Friday ', 'Saturday ', 'Sunday '))

);

13



2. Write an SQL script (populateDB.sql) containing the INSERT commands for populating
the database created in the previous point. The script should include the insert commands
required to obtain an instance of the database containing the same data shown in the
tables in Figure 1.

SET storage_engine=InnoDB;

SET FOREIGN_KEY_CHECKS =1;

use gym;

INSERT INTO TRAINER(SSN , Name , Surname , DateOfBirth , Email , PhoneNo)

VALUES('SMTPLA80N31B791Z ', 'Paul', 'Smith ',

TO_DATE('31/12/1980 ', 'dd/mm/yyyy'), 'p.smith@gym.it', null);
INSERT INTO TRAINER(SSN , Name , Surname , DateOfBirth , Email , PhoneNo)

VALUES('KHNJHN81E30C455Y ', 'John', 'Johnson ', TO_DATE('30/05/1981 ',

'dd/mm/yyyy'), 'j.johnson@gym.it', '+2300110303444 ');

INSERT INTO TRAINER(SSN , Name , Surname , DateOfBirth , Email , PhoneNo)

VALUES('AAAGGG83E30C445A ', 'Peter ', 'Johnson ', TO_DATE('30/05/1981 ',

'dd/mm/yyyy'), 'p.johnson@gym.it', '+2300110303444 ');

INSERT INTO COURSE(CId , Name , Type , CLevel) VALUES('CT100 ',
'Spinning␣for␣beginners ', 'Spinning ', 1);

INSERT INTO COURSE(CId , Name , Type , CLevel) VALUES('CT101 ',
'Fitdancing ', 'Music␣activity ', 2);

INSERT INTO COURSE(CId , Name , Type , CLevel) VALUES('CT104 ',
'Advanced␣spinning ', 'Spinning ', 4);

INSERT INTO SCHEDULE(SSN , DayOfWeek , StartTime , Duration , CId , GymRoom)

VALUES('SMTPLA80N31B791Z ', 'Monday ', '10:00 ', 45, 'CT100 ', 'R1');

INSERT INTO SCHEDULE(SSN , DayOfWeek , StartTime , Duration , CId , GymRoom)

VALUES('SMTPLA80N31B791Z ', 'Tuesday ', '11:00 ', 45, 'CT100 ', 'R1');

INSERT INTO SCHEDULE(SSN , DayOfWeek , StartTime , Duration , CId , GymRoom)

VALUES('SMTPLA80N31B791Z ', 'Tuesday ', '15:00 ', 45, 'CT100 ', 'R2');

INSERT INTO SCHEDULE(SSN , DayOfWeek , StartTime , Duration , CId , GymRoom)

VALUES('KHNJHN81E30C455Y ', 'Monday ', '10:00 ', 30, 'CT101 ', 'R2');

INSERT INTO SCHEDULE(SSN , DayOfWeek , StartTime , Duration , CId , GymRoom)

VALUES('KHNJHN81E30C455Y ', 'Monday ', '11:30 ', 30, 'CT101 ', 'R2');

INSERT INTO SCHEDULE(SSN , DayOfWeek , StartTime , Duration , CId , GymRoom)

VALUES('KHNJHN81E30C455Y ', 'Wednesday ', '09:00 ', 30, 'CT101 ', 'R1');

3. Test your createDB.sql and populateDB.sql scripts.

4. Update/delete/insert check.

UPDATE TRAINER

SET PhoneNo = '+390112333551 '

WHERE SSN = 'KHNJHN81E30C455Y ';

UPDATE SCHEDULE

SET GymRoom = 'R4'

WHERE GymRoom = 'R2';

DELETE FROM COURSE

WHERE COURSE.CId IN (SELECT SCHEDULE.CId

FROM SCHEDULE

GROUP BY SCHEDULE.CId

HAVING COUNT (*)=1);

14



The row of table COURSE corresponding to the course with CId CT101 is deleted. Also,
thanks to the DELETE ON CASCADE option, the row corresponding to the same course
in table SCHEDULE is deleted.

DELETE FROM TRAINER

WHERE SSN = 'SMTPLA80N31B791Z ';

Thanks to the DELETE ON CASCADE option, also the rows of the table SCHEDULE
containing the SSN of the deleted trainer are canceled.

15


	Description of the Delivery database
	Table instances for the Delivery database
	SQL Queries
	Purpose
	Description of the Gym database
	Scripts
	Solutions Part I (SQL queries)
	Solutions Part II

