
DB
MG

SQL language: advanced constructs

SQL for applications

DB
MG 2

SQL for applications

Introduction

Cursors

Updatability

Static and dynamic SQL

Embedded SQL

Call Level Interface (CLI)

Stored Procedures

Comparison of altrernatives

DB
MG

SQL per applications

Introduction

DB
MG 4

Example application

Banking operations

withdrawal operation from
an account through an ATM

withdrawal operation from
an account at a bank
counter

DB
MG 5

Withdrawal from an ATM

Operations performed

check the validity of ATM card
and PIN code

select withdrawal operation

specify the required amount

verify availability

store the operation

update the account balance

dispense the required amount
of money

DB
MG 6

Withdrawal from an ATM

Access to a database is
required to carry out many of
the listed operations

by executing SQL commands

The operations must be
executed in an appropriate
order

DB
MG 7

Withdrawal at a bank counter

Operations performed

verify the identity of the
customer

communicate the intention to
withdraw money

verify availability

store the operation

update the account balance

dispense the required a mount
of money

DB
MG 8

Withdrawal at a bank counter

Access to a database is
required to carry out many of
the listed operations

By executing SQL commands

The operations must be
executed in an appropriate
order

DB
MG 9

Example: banking operations

Banking operations require accessing the
database and modifying its contents

execution of SQL commands

customers or the bank employees are not directly
executing the SQL commands

an application hides the execution of the SQL
commands

Correctly managing banking operations requires
executing a specific sequence of steps

an application allows specifying the correct order
of execution for the operations

DB
MG 10

Applications and SQL

Real problems can hardly ever be solved by
executing single SQL commands

We need applications to

acquire and handle input data

user choices, parameters

manage the application logic

flow of operation to execute

Return results to the user using different formats

on-relational data representation

XML document

complex data visualization

graphs, reports

DB
MG 11

Integrating SQL and applications

Applications are written in traditional high-level
programming languages

C, C++, Java, C#, ...

the language is called host language

SQL commands are used in the applications to
access the database

queries

updates

DB
MG 12

Integrating SQL and applications

It is necessary to integrate the SQL language
with programming languages

SQL

declarative language

programming languages

usually procedural

DB
MG 13

Impedance mismatch

Impedance mismatch

SQL queries operate on one or more tables and
produce a table as a result

set-oriented approach

Programming languages access tables by reading
rows one by one

tuple-oriented approach

Possible solutions to solve the conflict

use cursors

Use languages that intrinsically provide data
structures storing «set of rows»

DB
MG 14

SQL and programming languages

Main integration tecniques

Embedded SQL

Call Level Interface (CLI)

SQL/CLI, ODBC, JDBC, OLE DB, ADO.NET, ..

Stored procedures

Classified as

client-side

embedded SQL, call level interface

server-side

stored procedures

DB
MG 15

Client-side approach

The application

is outside the DBMS

contains all of the application logic

requires that the DBMS execute SQL commands
and return the result

processes the data returned by the DBMS

DB
MG 16

Server-side approach

The application (or part of it)

is inside the DBMS

all or part of the application logic is moved inside
the DBMS

DB
MG 17

Client-side approach vs. server-side approach

Client-side approach

greater indipendence from the DBMS employeed

lower efficiency

Server-side approach

depends on the DBMS employed

higher efficiency

DB
MG

SQL for applications

Cursors

DB
MG 19

Impedance mismatch

Main problem in the integration between SQL and
programming languages

SQL queries operate on one or more tables and
produce a table as a result

set-oriented approach

programming languages access tables by reading
rows one by one

tuple-oriented approach

DB
MG 20

Cursors

If an SQL command returns a single row

it is sufficient to specify in which host language
variable the result of the command shall be stored

If an SQL command returns a table (i.e., a set of
tuple)

a method is required to read one tuple at a time
from the query result (and pass it to the program)

Use of a cursor

DB
MG 21

Supplier and product DB

SId SName #Employees City

S1 Smith 2 London

S2 Jones 1 Paris

S3 Blake 3 Paris

S4 Clark 2 London

S5 Adams 3 Athens

S

SP
SId PId Qty

S1 P1 300

S1 P2 200

S1 P3 400

S1 P4 200

S1 P5 100

S1 P6 100

S2 P1 300

S2 P2 400

S3 P2 200

S4 P3 200

S4 P4 300

S4 P5 400

PId PName Color Size Store

P1 Jumper Red 40 London

P2 Jeans Green 48 Paris

P3 Blouse Blue 48 Rome

P4 Blouse Blue 44 London

P5 Skirt Blue 40 Paris

P6 Shorts Red 42 London

P

DB
MG 22

Example no.1

Show the name and the number of employees for
the supplier with code S1

The query returns at most one tuple

It is sufficient to specify in which host language
variables the selected tuple must be stored

SELECT SName, #Employees
FROM S
WHERE SId=‘S1’;

SName #Employees

Smith 2

DB
MG 23

Example no.2

Show the name and the number of employees of
the suppliers based in London

The query returns a set of tuples

It is necessary to define a cursor to read each
tuple from the result separately

SELECT SName, #Employees
FROM S
WHERE City=‘London’;

SName #Employees

Smith 2

Clark 2
Cursor

DB
MG 24

Example no. 2

Definition of a cursor with the Oracle PL/SQL
syntax

CURSOR LondonSuppliers IS
SELECT SName, #Employees
FROM S
WHERE City=‘London’;

DB
MG 25

Cursors

A cursor allows reading the individual tuples from
the result of a query

It must be associated with a specific query

Each SQL query that may return a set of tuples
must be associated with a cursor

DB
MG 26

Cursors

Cursors are not required

for SQL queries that may return at most one tuple

selections on the primary key

aggregation operations without a GROUP BY clause

for update and DDL commands

they don’t generate any tuple as a result

DB
MG

SQL for applications

Updatability

DB
MG 28

Updatability

The tuple currently pointed to by the cursor may
be updated or deleted

more efficient than executing a separate SQL
update command

Updating a tuple with a cursor is possible only if
the view that corresponds to the associated
query may be updated

there must exist a one-to-one correspondance
between the tuple pointed to by the cursor and the
tuple to update in the database table

DB
MG 29

Example: non-updatable cursor

Let us consider the SupplierData cursor
associated with the following query:

The SupplierData cursor is not updatable

By rewording the query, the cursor becomes
updatable

SELECT DISTINCT SId, SName,
#Employees
FROM S, SP, P
WHERE S.SId=SP.SId

AND P.PId=SP.PId
AND Color=‘Red’;

DB
MG 30

Example: updatable cursor

Let us suppose the SupplierData cursor is now
associated with the following query:

The two queries are equivalent

the result of the new query is the same

The SupplierData cursor is updatable

SELECT SId, SName, #Employees
FROM S
WHERE SId IN (SELECT SId

FROM SP, P
WHERE SP.PId=P.PId
AND Color=‘Red’);

DB
MG

SQL for applications

Static and dynamic SQL

DB
MG 32

Static SQL

SQL commands to execute are known during the
application writing

the definition of each SQL command is known

commands can contain variables

The value of the variables is known only during the
execution of the SQL command

DB
MG 33

Static SQL

The definition of the SQL commands takes place
during the writing of the application

simplifies the application writing

The structure of queries and results is known a priori

makes the a priori optimization of the SQL
commands possible

during the application compiling phase, the DBMS
optimizer

compiles the SQL command

creates the execution plan

such operations are no longer necessary during the
execution of the application

more efficient execution

DB
MG 34

Dynamic SQL

The SQL commands to follow are not known
during the writing of the application

the SQL coomands are dynamically defined by the
application in the execution phase

they depend on the executed applicative flow

the SQL commands can be provided by the user as
input

DB
MG 35

Dynamic SQL

The definiton at execution time of the SQL
commands

allows to define more complex applications

offers a major flexibility

makes the application writing harder

the format of the query result is not known during
the writing

makes the execution less efficient

durante each application execution, it is necessary to
compile and optimize every SQL command

DB
MG 36

Dynamic SQL

It is possible to reduce the execution time if the
same dynamic query has to be executed more
than once in in the same work session

the compilation and the choice of the execution plan
are carried out only once

the query is executed more than once (with different
values of the variables)

DB
MG

SQL for applications

Embedded SQL

DB
MG 38

Embedded SQL

SQL commands are «embedded» in the
application weitten in a traditional programming
language (C, C++, Java, ..)

the SQL syntax is different from that of the host
language

SQL commands cannot be directly compiled by a
normal compiler

they must be recognized

they are preceded by the EXEC SQL keyword

they must be replaced with appropriate commands
in the host programming language

DB
MG 39

Precompilation

The precompiler

identifies SQL commands embedded in the code

parts preceded by EXEC SQL

replaces the SQL commands with function calls to
specific APIs of the chosen DBMS

such functions are written in the host programminh
languafe

it optionally sends the static SQL commands to the
DBMS for compilation and optimization

the precompiler is tied to a specific DBMS

DB
MG

Embedded SQL: compilation

C file + SQL

Precompiler

C file + function calls
to the DBSM library

C compiler

executable file

DBMS

Information on the
SQL commands
included in the
program

Optimizer

Execution plan
for the static SQL
commands in the
program

32

1

DB
MG 41

Precompiler

The precompiler depends on three elements of
the system architecture

host language

DBMS

operating system

The appropriate compiler for the architecture
choice must be employed

DB
MG 42

Embedded SQL: execution

During the program execution

1. During the program execution

it calls a DBMS library function

DB
MG 43

Embedded SQL: execution

executable file DBMS

SQL command

1

DB
MG 44

Embedded SQL: execution

During the program execution

1. The program sends an SQL command to the DBMS

it calls a DBMS library function

2. The DBMS generates the execution plan for the
command

if one has already been defined, it will be retrieved

DB
MG 45

Embedded SQL: execution

executable file DBMS

SQL command

execution
plan

1
2

DB
MG 46

Embedded SQL: execution

During the program execution

1. The program sends an SQL command to the DBMS

it calls a DBMS library function

2. The DBMS generates the execution plan for the
command

if one has already been defined, it will be retrieved

3. The DBMS executes the SQL command

DB
MG 47

Embedded SQL: execution

executable file

data

DBMS

SQL command

execution
plan

1
2

3

DB
MG 48

Embedded SQL: execution

During the program execution

1. The program sends an SQL command to the DBMS

it calls a DBMS library function

2. The DBMS generates the execution plan for the
command

if one has already been defined, it will be retrieved

3. The DBMS executes the SQL command

4. The DBMS returns the result of the SQL command

a transit area is used as temporary data storage

DB
MG 49

Embedded SQL: execution

executable file

data

DBMS

SQL command

result

execution
plan

1
2

3

4

DB
MG 50

Embedded SQL: execution

During the program execution

1. The program sends an SQL command to the DBMS

it calls a DBMS library function

2. The DBMS generates the execution plan for the
command

if one has already been defined, it will be retrieved

3. The DBMS executes the SQL command

4. The DBMS returns the result of the SQL command

a transit area is used as temporary data storage

5. The programm processes the result

DB
MG 51

Example of embedded SQL code

#include <stdlib.h>

.....

EXEC SQL BEGIN DECLARE SECTION

char VarSId[6];

int NumEmployees;

char City[16];

EXEC SQL END DECLARE SECTION

int alpha, beta;

....

EXEC SQL DECLARE S TABLE (SId CHAR(5) NOT NULL,

SName CHAR(20) NOT NULL,

NumEmployees SMALLINT NOT NULL,

City CHAR(15) NOT NULL);

.....

DB
MG 52

Example of embedded SQL code

EXEC SQL INCLUDE SQLCA;

.....

if (alpha>beta) {

EXEC SQL SELECT NumEmployees, City
INTO :NumEmployees, :City
FROM S
WHERE SId=:VarSId;

printf(“%d %s”, NumEmployees, City);

......

}

.....

DB
MG 53

Example of embedded SQL code

#include <stdlib.h>

.....

EXEC SQL BEGIN DECLARE SECTION

char VarSId[6];

int NumEmployees;

char City[16];

EXEC SQL END DECLARE SECTION

int alpha, beta;

....

EXEC SQL DECLARE S TABLE (SId CHAR(5) NOT NULL,

SName CHAR(20) NOT NULL,

NumEmployees SMALLINT NOT NULL,

City CHAR(15) NOT NULL);

.....

Declaration of the host
language variables
used in the
SQL commands

DB
MG 54

Example of embedded SQL code

#include <stdlib.h>

.....

EXEC SQL BEGIN DECLARE SECTION

char VarSId[6];

int NumEmployees;

char City[16];

EXEC SQL END DECLARE SECTION

int alpha, beta;

....

EXEC SQL DECLARE S TABLE (SId CHAR(5) NOT NULL,

SName CHAR(20) NOT NULL,

NumEmployees SMALLINT NOT NULL,

City CHAR(15) NOT NULL);

.....

(Optional)
Declaration of the tables
used in the application

DB
MG 55

Example of embedded SQL code

EXEC SQL INCLUDE SQLCA;

.....

if (alpha>beta) {

EXEC SQL SELECT NumEmployees, City
INTO :NumEmployees, :City
FROM S
WHERE SId=:VarSId;

printf(“%d %s”, NumEmployees, City);

......

}

.....

Declaration of the communication area

DB
MG 56

Example of embedded SQL code

EXEC SQL INCLUDE SQLCA;

.....

if (alpha>beta) {

EXEC SQL SELECT NumEmployees, City
INTO :NumEmployees, :City
FROM S
WHERE SId=:VarSId;

printf(“%d %s”, NumEmployees, City);

......

}

.....

Execution of an SQL command

DB
MG 57

Example of embedded SQL code

EXEC SQL INCLUDE SQLCA;

.....

if (alpha>beta) {

EXEC SQL SELECT NumEmployees, City
INTO :NumEmployees, :City
FROM S
WHERE SId=:VarSId;

printf(“%d %s”, NumEmployees, City);

......

}

.....

Host language variables

DB
MG 58

Variables of the host language

It is possible to introduce in the SQL commands
references to variables of the host language

variables in reading

allow the interactive execution of the commands

the variables are used as parameters in the selection
predicates instead of the constants

variables in writing

variables in which the current tuple is stored

indicated after the keyword INTO in the commands
SELECT and FETCH

DB
MG 59

Variables of the host language

In the programs

the declaration of the variables is limited by the
couple of commands

EXEC SQL BEGIN DECLARE SECTION

EXEC SQL END DECLARE SECTION

in the SQL commands the variables are preceeded
by the symbol “:” in order to distinguish them from
the names of the columns

DB
MG 60

Type check

The type of the variables must be compatible
with the type of the corresponding SQL columns

the names of the variables and of the SQL columns
can be the same

DB
MG 61

Semantic check

Each SQL DML command must refer to objects
that have already been defined into the database

The precompiler carries out the semantic check
of the SQL commands

accessing the database in order to find the schema
of the referenced objects in the data dictionary

It is necessary to be able to connect to the DBMS
during the precompilation of the code

or considering the definitions of the tables present
in the code

EXEC SQL DECLARE command

DB
MG 62

Transit area

A communication area between the DBMS and
the host language must be defined

some precompilers automatically include the
definition of the communication area

in other cases it is necessary to use the command

EXEC SQL INCLUDE SQLCA

It is necessary to have apposite variables to store
the status of the last SQL command executed

variable SQLCA.SQLCODE

automatically defined

DB
MG 63

Execution of SQL commands

Embedded SQL allow to execute all kinds of SQL
commands

DML

DDL

Execution of an SQL command

EXEC SQL SQLCommand;

DB
MG 64

Execution of SQL commands

After the execution it is possible to checkthe
status of the executed command with the
variable SQLCA.SQLCODE

command correctly executed

SQLCODE=0

command not executed because of an error

SQLCODE≠0

the value of SQLCODE specifies the type of error

DB
MG 65

Update commands and DDL

Command that do not return a set of tuple

it is necessary to check if the operation ended
properly

SQLCODE=0

there are no results to analyze

the use of cursors is not necessary

DB
MG 66

Queries

It works differently depending on the number of
tuples returned by the query

a single tuple

execution of the SELECT command

indication of the variables where the result must be
stored directly in the SELECT command

the use of cursors is not necessary

a set of tuples

definition and use of a cursor associated to the
SELECT command

indication of the variables where the single tuples
read in the FETCH command must be stored

DB
MG 67

Example: selection of a single tuple

Select the number of emplotees and the city of
the supplier whose code value is contained in the
host variable VarSId

In the SQL query the variables where the results
must be stores are declared after the keyword
INTO

EXEC SQL SELECT #Employees, City INTO
:NumEmployees, :City

FROM S
WHERE SId = :VarSId;

DB
MG 68

Example: selection of a single tuple

Select the number of emplotees and the city of
the supplier whose code value is contained in the
host variable VarSId

In the WHERE it is possible to use variables of
the host language insted of constants

EXEC SQL SELECT #Employees, City INTO
:NumEmployees, :City

FROM S
WHERE SId = :VarSId;

DB
MG 69

Example: selection of a single tuple

The status of the operation must be always
checked after the end of the operation

SQLCODE = 0

query properly executed

the selected values have been stored in the variables
indicated in the query (NumEmployees and City)

SQLCODE = 100

no tuple satisfies the predicate

SQLCODE < 0

execution error

more than a record satisfies the predicate

table not available

...

DB
MG 70

Cursor

The cursor allows to read individually the tuples
that belong to the result of a query

it must be associated to a specific query

Each SQL query that can return a set of tuples
must be associated to a cursor

DB
MG 71

Operations on the cursors

Basic operations on the cursors

declaration

opening

reading (tipically inside a cycle)

closing

Similar to the management modes of a file

DB
MG 72

Declaration

DECLARE command

declaration of the cursor structure

assignement of a name to the cursor

definition of the query associated to the cursor

DB
MG 73

DECLARE command

READ ONLY option

the cursor can be used only for the reading of the
result

default option

EXEC SQL DECLARE CursorName [SCROLL] CURSOR
FOR SQLQuery

[FOR <READ ONLY| UPDATE [OF AttributesList]>];

DB
MG 74

DECLARE command

SCROLL option

the application can move freely on the result

reading forwards and backwards

EXEC SQL DECLARE CursorName [SCROLL] CURSOR
FOR SQLQuery

[FOR <READ ONLY| UPDATE [OF AttributesList]>];

DB
MG 75

DECLARE command

UPDATE option

the cursor can be used in an update command

it is possible to specify which attributes shall be
updated

EXEC SQL DECLARE CursorName [SCROLL] CURSOR
FOR SQLQuery

[FOR <READ ONLY| UPDATE [OF AttributesList]>];

DB
MG 76

Opening

OPEN command

opening of the cursor

execution of the query on the database

memorization of threresult in a temporary area

After the opening the cursor can be found in the
first tuple of the result

EXEC SQL OPEN CursorName;

DB
MG 77

Reading

FETCH command

reading of the next available tuple

memoriazation of the tuple in a variable of the host
program

update of the cursor position

the cursor moves one line forward

to the next tuple

It is necessary to define a cycle to read all the
tuples of the result

the host language is used

every call to the FETCH command inside the cycle
select a single tuple

DB
MG 78

FETCH command

If the SCROLL option is present in the definition
of the cursor, the Position parameter can assume
the values

next, prior, first, last, absolute, relative

Otherwise, it can only assume the value next

default value

EXEC SQL FETCH [Position FROM] CursorName
INTO VariablesList;

DB
MG 79

Position of the cursor (1/2)

Position values

next

reading of the line following the current one

prior

reading of the line preceding the current one

first

reading of the first line of the result

last

reading of the last line of the result

DB
MG 80

Position of the cursor (2/2)

absolute fullExpression

reading of the i -th line of the result

the i position is the result of the full expression

relative fullExpression

like absolute but the landmark is the current position

DB
MG 81

Closing

CLOSE command

closing of the cursor

release of the temporary area containing the result
of the query

the result of the query is no longer accessible

update of the database in case of cursors associated
to updatable queries

EXEC SQL CLOSE CursorName;

DB
MG 82

Observations

In an application, a cursor

is defined only once

can be used more than once

must be open and closed every time

More cursors can be defined in the same
application

DB
MG 83

Example: selecting suppliers

Show the code and the number of employees of
the suppliers whose city is contained in the host
variable VarCity

the value ofVarCity is given by the user as a
parameter of the application

DB
MG 84

Example: selecting suppliers

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

/************************** Errors management *********************************/

void sql_error(char *msg)

{

EXEC SQL WHENEVER SQLERROR CONTINUE;

fprintf(stderr,"\n%s\n", msg);

fprintf(stderr,"Internal error code: %ld\n", sqlca.sqlcode);

fprintf(stderr,"%s\n",sqlca.sqlerrm.sqlerrmc);

EXEC SQL ROLLBACK;

exit(EXIT_FAILURE);

}

DB
MG 85

Example: selecting suppliers

/******************************** MAIN ***********************************/

int main(int argc,char **argv)

{

EXEC SQL BEGIN DECLARE SECTION;

char username[20]="user123";

char password[20]=“pwd123";

char VarCity[16];

char SId[6];

int #Employees;

EXEC SQL END DECLARE SECTION;

/* Direct error management */

EXEC SQL WHENEVER SQLERROR CONTINUE;

/* Connection opening */

EXEC SQL CONNECT TO supplies@127.0.0.1 USER :username IDENTIFIED BY :password;

if (sqlca.sqlcode!=0)

sql_error("Error in the connection phase");

DB
MG 86

Example: selecting suppliers

/* Cursor declaration */

EXEC SQL DECLARE selectedSuppliers CURSOR FOR

SELECT SId,#Employees FROM S WHERE City = :VarCity;

/* Setting the value of VarCity */

strcpy(VarCity,argv[1]);

/* Cursor opening */

EXEC SQL OPEN selectedSuppliers;

if (sqlca.sqlcode!=0)

sql_error("Error in the cursor opening phase");

/* Print of the selected data */

printf("Suppliers list\n");

DB
MG 87

Example: selecting suppliers

do {

EXEC SQL FETCH selectedSuppliers INTO :SId, :#Employees;

/* Check the status of the last fetch operation */

switch(sqlca.sqlcode) {

case 0: /* New tuple correctly read */

{ /* Print of the tuple */

printf("%s,%d",SId, #Employees);

}

break;

case 100: /* No more data */

break;

default: /* Error */

sql_error("Error in the data reading phase");

break;

}

}

while (sqlca.sqlcode==0);

DB
MG 88

Example: selecting suppliers

/* Cursor closing */

EXEC SQL CLOSE selectedSuppliers;

}

DB
MG 89

Example: selecting suppliers

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

/************************** Errors management *********************************/

void sql_error(char *msg)

{

EXEC SQL WHENEVER SQLERROR CONTINUE;

fprintf(stderr,"\n%s\n", msg);

fprintf(stderr,"Internal error code: %ld\n", sqlca.sqlcode);

fprintf(stderr,"%s\n",sqlca.sqlerrm.sqlerrmc);

EXEC SQL ROLLBACK;

exit(EXIT_FAILURE);

}

Errors management

DB
MG 90

Example: selecting suppliers

/******************************** MAIN ***********************************/

int main(int argc,char **argv)

{

EXEC SQL BEGIN DECLARE SECTION;

char username[20]="user123";

char password[20]=“pwd123";

char VarCity[16];

char SId[6];

int #Employees;

EXEC SQL END DECLARE SECTION;

/* Direct error management */

EXEC SQL WHENEVER SQLERROR CONTINUE;

/* Connection opening */

EXEC SQL CONNECT TO supplies@127.0.0.1 USER :username IDENTIFIED BY :password;

if (sqlca.sqlcode!=0)

sql_error("Error in the connection phase");

Definition of the variables

DB
MG 91

Example: selecting suppliers

/******************************** MAIN ***********************************/

int main(int argc,char **argv)

{

EXEC SQL BEGIN DECLARE SECTION;

char username[20]="user123";

char password[20]=“pwd123";

char VarCity[16];

char SId[6];

int #Employees;

EXEC SQL END DECLARE SECTION;

/* Direct error management */

EXEC SQL WHENEVER SQLERROR CONTINUE;

/* Connection opening */

EXEC SQL CONNECT TO supplies@127.0.0.1 USER :username IDENTIFIED BY :password;

if (sqlca.sqlcode!=0)

sql_error("Error in the connection phase");

Connection to the DBMS

DB
MG 92

Example: selecting suppliers

/* Cursor declaration */

EXEC SQL DECLARE selectedSuppliers CURSOR FOR

SELECT SId,#Employees FROM S WHERE City = :VarCity;

/* Setting the value of VarCity */

strcpy(VarCity,argv[1]);

/* Cursor opening */

EXEC SQL OPEN selectedSuppliers;

if (sqlca.sqlcode!=0)

sql_error("Error in the cursor opening phase");

/* Print of the selected data */

printf("Suppliers list\n");

Definition of the cursor

DB
MG 93

Example: selecting suppliers

/* Cursor declaration */

EXEC SQL DECLARE selectedSuppliers CURSOR FOR

SELECT SId,#Employees FROM S WHERE City = :VarCity;

/* Setting the value of VarCity */

strcpy(VarCity,argv[1]);

/* Cursor opening */

EXEC SQL OPEN selectedSuppliers;

if (sqlca.sqlcode!=0)

sql_error("Error in the cursor opening phase");

/* Print of the selected data */

printf("Suppliers list\n");

Cursor opening

DB
MG 94

Example: selecting suppliers

do {

EXEC SQL FETCH selectedSuppliers INTO :SId, :#Employees;

/* Check the status of the last fetch operation */

switch(sqlca.sqlcode) {

case 0: /* New tuple correctly read */

{ /* Print of the tuple */

printf("%s,%d",SId, #Employees);

}

break;

case 100: /* No more data */

break;

default: /* Error */

sql_error("Error in the data reading phase");

break;

}

}

while (sqlca.sqlcode==0);

Tuples reading
cycle

DB
MG 95

Example: selecting suppliers

do {

EXEC SQL FETCH selectedSuppliers INTO :SId, :#Employees;

/* Check the status of the last fetch operation */

switch(sqlca.sqlcode) {

case 0: /* New tuple correctly read */

{ /* Print of the tuple */

printf("%s,%d",SId, #Employees);

}

break;

case 100: /* No more data */

break;

default: /* Error */

sql_error("Error in the data reading phase");

break;

}

}

while (sqlca.sqlcode==0);

Reading of a tuple

DB
MG 96

Example: selecting suppliers

do {

EXEC SQL FETCH selectedSuppliers INTO :SId, :#Employees;

/* Check the status of the last fetch operation */

switch(sqlca.sqlcode) {

case 0: /* New tuple correctly read */

{ /* Print of the tuple */

printf("%s,%d",SId, #Employees);

}

break;

case 100: /* No more data */

break;

default: /* Error */

sql_error("Error in the data reading phase");

break;

}

}

while (sqlca.sqlcode==0);

Analysis of the
reading outcome

DB
MG 97

Example: selecting suppliers

/* Cursor closing */

EXEC SQL CLOSE selectedSuppliers;

}
Cursor closing

DB
MG 98

Update with the cursors

It is possible to update or delete the tuple
pointed by a cursor

update

delete

EXEC SQL UPDATE TableName
SET ColumnName = Expression

{, ColumnName = Expression}
WHERE CURRENT OF CursorName;

EXEC SQL DELETE FROM TableName
WHERE CURRENT OF CursorName;

DB
MG 99

Update with the cursors

The update and the deletion are possible if and
only if

the cursor has been defined in an appropriate way

option FOR UPDATE in the command DECLARE

there is a one-to-one correspondance between the
tuples of the result and the tuples present in the
DBMS

DB
MG 100

Transaction management

In an embededd SQL program it is possible to
define the limits of a transaction

begin of a transaction

succesful end of a transactiono

failure of a transaction

EXEC SQL COMMIT;

EXEC SQL ROLLBACK;

EXEC SQL BEGIN TRANSACTION;

DB
MG 101

Transaction management

Until the commands COMMIT or ROLLBACK are
not explicitly invoked, the SQL operations of
updating has to be considered “updating
attempts”

DB
MG

SQL for applications

DB
MG 103

Call Level Interface

Requests are sent to the DBMS by using ad-hoc
functions of the host language

solution based on predefined interfaces

API, Application Programming Interface

the SQL commands are passed to the host
language functions as parameters

there is no precompiler

The host program directly includes calls to the
functions provided by the API

DB
MG 104

Call Level Interface

Different solutions are available using the Call
Level Interface (CLI) paradigm

standard SQL/CLI

ODBC (Open DataBase Connectivity)

proprietary SQL/CLI solution by Microsoft

JDBC (Java Database Connectivity)

solution for the Java environment

OLE DB

ADO

ADO.NET

DB
MG 105

Usage pattern

Regardless of the specific CLI solution adopted,
the interaction with the DBMS has a common
structure

open a connection to the DBMS

execute SQL commands

close the connection

DB
MG 106

Interaction with the DBMS

1. Call an API primitive to create a connection to the
DBMS

2. Send an SQL command across the connection

3. Receive a result in response to the command

i.e., a set of tuples, in the case of a SELECT
command

4. Process the result obtained from the DBMS

ad-hoc primitives allow reading the result

5. Close the connection at the end of the working

session

DB
MG 107

JDBC (Java Database Connectivity)

CLI solution for the JAVA environment

The architecture comprises

a set of standard classes and interfaces

used by the Java programmer

indipendent of the DBMS

a set of “proprietary”classes (drivers)

implementing the standard classes and interfaces to
provide communication with a specific DBMS

dependent on the DBMS

invoked at runtime

not required at the time when the application is
compiled

DB
MG 108

JDBC: interaction with the DBMS

Load the specific driver for the DBMS of choice

Create a connection

Execute SQL commands

create a statement

submit the command for execution

process the result (in the case of queries)

Close the statement

Close the connection

DB
MG 109

Loading the DBMS driver

The driver is specific to the DBMS employed

It is loaded through dynamic instantiation of the
class associated with the driver

Object Class.forName(String driverName)

driverName contains the name of the class to be
instantiated

e.g., “oracle.jdbc.driver.OracleDriver”

DB
MG 110

Loading the DBMS driver

It is the first operation to do

We don’t need to know at compile time which
DBMS we will be using

the name of the driver may be read at runtime
from a configuration file

DB
MG 111

Creating a connection

Invoke the getConnection method of the
DriverManager class

Connection DriverManager.getConnection(String url,
String user, String password)

url

contains the information required to identify the
DBMS to which we are connecting

the format depends on the specific driver

user and password

credentials for authentication

DB
MG 112

Executing SQL commands

The execution of an SQL command requires the
use of a specific interface

called Statement

Each Statement object

is associated with a connection

is created through the createStatement method of
the Connection class

Statement createStatement()

DB
MG 113

Update and DDL commands

The execution of the command requires the
following method on a Statement object

int executeUpdate(String SQLCommand)

SQLCommand

the SQL command to be executed

the method returns

the number of processed (i.e., inserted, modified,
deleted) tuples

a value of 0 for DDL commands

DB
MG 114

Queries

Immediate query execution

the server compiles and immediately executes the
SQL command received

“Prepared” query execution

useful when the same SQL command must be
executed multiple times in the same working
session

only the values of parameters may change

the SQL command

is compiled (prepared) only once and its execution
plan is stored by the DBMS

is executed several times throughout the session

DB
MG 115

Immediate execution

It can be requested by invoking the following
method on a Statement object

ResultSet executeQuery(String SQLCommand)

SQLCommand

the SQL command to be executed

the method always returns a collection of tuples

an object of the ResultSet type

it handles in the same way queries that

return at most a single tuple

may return multiple tuples

DB
MG 116

Reading the result

The ResultSet is analogous to a cursor

it provides methods to

move throughout the lines in the result

next()

first()

...

extract the values of interest from the current tuple

getInt(String attributeName)

getString(String attributeName)

....

DB
MG 117

Prepared statements

A “prepared” SQL command is

compiled only once

at the beginning of the program execution

executed multiple times

the current values for the parameters must be
specified before each execution

A useful device when the execution of the same
SQL command must be repeated several times

it reduces execution times

the compilation is done only once

DB
MG 118

Preparing the Statement

An object of the PreparedStatement type is used

created by means of the following method

PreparedStatement prepareStatement(String SQLCommand)

SQLCommand

it contains the SQL command to be executed

the “?” symbol is used as a placeholder to indicate the
presence of a parameter whose value must be specified

Example

PreparedStatement pstmt;

pstmt=conn.preparStatement(“SELECT SId, NEmployees
FROM S WHERE City=?”);

DB
MG 119

Setting parameters

Replace “?” symbols for the current execution

One of the following methods is invoked on a
PreparedStatement object

void setInt(int parameterIndex, int value)

void setString(int parameterIndex, String value)

...

parameterIndex indicates the position of the
parameter whose value is being assigned

the same SQL command may include several
parameters

the index of the first parameter is 1

value indicates the value to be assigned to the
parameter

DB
MG 120

Execution of the prepared command

An appropriate method is invoked on the
PreparedStatement object

SQL query

ResultSet executeQuery()

update

ResultSet executeUpdate()

The two methods have no input parameters

everything has been defined in advance

the SQL command to be executed

its execution parameters

DB
MG 121

Example: prepared statements

.....

PreparedStatement pstmt=conn.prepareStatement(“UPDATE P
SET Color=? WHERE PId=?”);

/* Assign color Crimson to product P1 */

pstmt.setString(1,”Crimson”);

pstmt.setString(2,”P1”);

pstmt.executeUpdate();

/* Assign color SteelBlue to product P5 */

pstmt.setString(1,”SteelBlue”);

pstmt.setString(2,”P5”);

pstmt.executeUpdate();

DB
MG 122

Example: prepared statements

.....

PreparedStatement pstmt=conn.prepareStatement(“UPDATE P
SET Color=? WHERE PId=?”);

/* Assign color Crimson to product P1 */

pstmt.setString(1,”Crimson”);

pstmt.setString(2,”P1”);

pstmt.executeUpdate();

/* Assign color Crimson to product P5 */

pstmt.setString(1,”SteelBlue”);

pstmt.setString(2,”P5”);

pstmt.executeUpdate();

DB
MG 123

Closing statement and connection

As soon as a statement or a connection are
no longer needed

they must be immediately closed

Resources previously allocated to the statement
or the connection can be released

by the application

by the DBMS

DB
MG 124

Closing a statement

Closing a statement

is done by invoking the close method on a
Statement object

void close()

The resources associated with the corresponding
SQL command are released

DB
MG 125

Closing a connection

Closing a connection

is necessary when it is no longer required to
interact with the DBMS

closes communication with the DBMS and releases
the corresponding resources

also closes all statements associated with the
connection

is done by invoking the close method on the
Connection object

void close()

DB
MG 126

Exceptions management

Errors are handled through SQLException
exceptions

The SQLException contains

a string that describes the error

a string that identifies the exception

in a manner consistent with Open Group SQL
Specification

an error code specific to the used DBSM

DB
MG 127

Example: selecting suppliers

Print the codes and the number of employees of
the suppliers whose city is stored in host variable
VarCity

the value of VarCity is provided by the user as a
parameter of the application

DB
MG 128

Example: selecting suppliers

import java.io.*;

import java.sql.*;

class CitySuppliers {

static public void main(String argv[]) {

Connection conn;

Statement stmt;

ResultSet rs;

String query;

String VarCity;

/* Driver registration */

try {

Class.forName("oracle.jdbc.driver.OracleDriver");

}

catch(Exception e) {

System.err.println("Driver unavailable: "+e);

}

DB
MG 129

Example: selecting suppliers

try {

/* Connection to the database */

conn=DriverManager.getConnection("jdbc:oracle:thin:@127.0.0.1:1521:xe",
“user123”,“pwd123");

/* Creation of a statement for immediate commands */

stmt = conn.createStatement();

/* Assembling a query */

VarCity =argv[0];

query="SELECT SId, NEmployees FROM S WHERE City = '"+VarCity+"'";

/* Execution of the query */

rs=stmt.executeQuery(query);

DB
MG 130

Example: selecting suppliers

System.out.println("Suppliers based in "+VarCity);

/* Scan tuples in the result */

while (rs.next()) {

/* Print the current tuple */

System.out.println(rs.getString("SId")+","+rs.getInt("NEmployees"));

}

/* Close resultset, statement and connection */

rs.close();

stmt.close();

conn.close();

}

catch(Exception e) {

System.err.println("Error: "+e);

}

}

}

DB
MG 131

Example: selecting suppliers

import java.io.*;

import java.sql.*;

class CitySuppliers {

static public void main(String argv[]) {

Connection conn;

Statement stmt;

ResultSet rs;

String query;

String VarCity;

/* Driver registration */

try {

Class.forName("oracle.jdbc.driver.OracleDriver");

}

catch(Exception e) {

System.err.println("Driver unavailable: "+e);

}

Loading the driver

DB
MG 132

Example: selecting suppliers

try {

/* Connection to the database */

conn=DriverManager.getConnection("jdbc:oracle:thin:@127.0.0.1:1521:xe",
“user123”,“pwd123");

/* Creation of a statement for immediate commands */

stmt = conn.createStatement();

/* Assembling a query */

VarCity =argv[0];

query="SELECT SId, NEmployees FROM S WHERE City = '"+VarCity+"'";

/* Execution of the query */

rs=stmt.executeQuery(query);

Connection to the DBMS

DB
MG 133

Example: selecting suppliers

try {

/* Connection to the database */

conn=DriverManager.getConnection("jdbc:oracle:thin:@127.0.0.1:1521:xe",
“user123”,“pwd123");

/* Creation of a statement for immediate commands */

stmt = conn.createStatement();

/* Assembling a query */

VarCity =argv[0];

query="SELECT SId, NEmployees FROM S WHERE City = '"+VarCity+"'";

/* Execution of the query */

rs=stmt.executeQuery(query);

Creation of a statement

DB
MG 134

Example: selecting suppliers

try {

/* Connection to the database */

conn=DriverManager.getConnection("jdbc:oracle:thin:@127.0.0.1:1521:xe",
“user123”,“pwd123");

/* Creation of a statement for immediate commands */

stmt = conn.createStatement();

/* Assembling a query */

VarCity =argv[0];

query="SELECT SId, NEmployees FROM S WHERE City = '"+VarCity+"'";

/* Execution of the query */

rs=stmt.executeQuery(query);

Composition of an SQL query

DB
MG 135

Example: selecting suppliers

try {

/* Connection to the database */

conn=DriverManager.getConnection("jdbc:oracle:thin:@127.0.0.1:1521:xe",
“user123”,“pwd123");

/* Creation of a statement for immediate commands */

stmt = conn.createStatement();

/* Assembling a query */

VarCity =argv[0];

query="SELECT SId, NEmployees FROM S WHERE City = '"+VarCity+"'";

/* Execution of the query */

rs=stmt.executeQuery(query);

Immediate query execution

DB
MG 136

Example: selecting suppliers

System.out.println("Suppliers based in "+VarCity);

/* Scan tuples in the result */

while (rs.next()) {

/* Print the current tuple */

System.out.println(rs.getString("SId")+","+rs.getInt("NEmployees"));

}

/* Close resultset, statement and connection */

rs.close();

stmt.close();

conn.close();

}

catch(Exception e) {

System.err.println("Error: "+e);

}

}

}

Looping over
the result tuples

DB
MG 137

Example: selecting suppliers

System.out.println("Suppliers based in "+VarCity);

/* Scan tuples in the result */

while (rs.next()) {

/* Print the current tuple */

System.out.println(rs.getString("SId")+","+rs.getInt("NEmployees"));

}

/* Close resultset, statement and connection */

rs.close();

stmt.close();

conn.close();

}

catch(Exception e) {

System.err.println("Error: "+e);

}

}

}

Closing resultset,
statement and connection

DB
MG 138

Updatable ResultSet

It is possible to create an updatable ResultSet

the execution of updates on the database is more
efficient

it is similar to an updatable cursor

there must be a one-to-one correspondence
between the tuples in the result set and the tuples
in the database tables

DB
MG 139

Defining a transaction

Connections are implicitly created with the auto-
commit mode enabled

after each successful execution of an SQL
command, a commit is automatically executed

DB
MG 140

Defining a transaction

Connections are implicitly created with the auto-
commit mode enabled

after each successful execution of an SQL
command, a commit is automatically executed

When it is necessary to execute a commit only
after a sequence of SQL commands has been
successfully executed

a single commit is executed after the execution of
all commands

the commit must be managed in a non automatico
fashion

DB
MG 141

Managing transactions

The commit mode can be managed by invoking
the setAutoCommit() method on the connection

void setAutoCommit(boolean autoCommit);

parameter autoCommit

true to enable autocommit (default)

false to disable autocommit

DB
MG 142

Managing transactions

If autocommit is disabled

commit and rollback operations must be explicitly
requested by the programmer

commit

void commit();

rollback

void rollback();

such methods are invoked on the corresponding
connection

DB
MG

SQL for applications

Stored procedures

DB
MG 144

Stored procedures

A stored procedure is a function or a procedure
defined inside the DBMS

it is stored in the data dictionary

it is part of the database schema

It may be used like a predefined SQL command

it may have execution parameters

It contains both application code and SQL
commands

application code and SQL commands are tightly
coupled to each other

DB
MG 145

Stored procedures: language

The language used to define a stored procedure

is a procedural extension of the SQL language

depends on the DBMS

different products may offer different languages

the expressiveness of the language may vary
according to the product

DB
MG 146

Stored procedures: execution

Stored procedures are integrated in the DBMS

server-side approach

Performance is better compared to embedded
SQL and CLI

each stored procedure is compiled and optimized
only once

immediately after its definition

or when it is invoked for the first time

DB
MG 147

Languages for stored procedures

Different languages are available to define stored
procedures

PL/SQL

Oracle

SQL/PL

DB2

Transact-SQL

Microsoft SQL Server

PL/pgSQL

PostgreSQL

DB
MG 148

Connection to the DBMS

No connection to the DBMS is needed from
within a stored procedure

the DBMS executing the SQL commands also
stores and executes the stored procedure

DB
MG 149

Managing SQL commands

It is possible to reference variables or parameters
in the SQL commands used in stored procedures

the syntax depends on the language used

To read the result of a query that returns a set of
tuples

a cursor must be defined

similar to embedded SQL

DB
MG 150

Stored procedures in Oracle

Creazione di una stored procedure in Oracle

A stored procedure may be associated with

a single SQL command

a block of code written in PL/SQL

CREATE [OR REPLACE] PROCEDURE StoredProcedureName
[(ParameterList)]
IS (SQLCommand |PL/SQL code);

DB
MG 151

Parameters

Each parameter in the parametersList list is
specified in the form

parameterName [IN|OUT|IN OUT] [NOCOPY] dataType

parameterName

name associated to the parameter

dataType

type of the parameter

the SQL are used

the keywords IN, OUT, IN OUT e NOCOPY specify
that can be executed on the parameter

default IN

DB
MG 152

Parameters

Keyword IN

only-reading parameter

Keyword OUT

only writing parameter

Keyword IN OUT

the parameter can be both read and written in the
stored procedure

For the OUT and IN OUT parameters the final
value is assigned only when the procedure ends
correctly

the keyword NOCOPY allows to directly write the
parameter during the execution of the stored procedure

DB
MG 153

Basic structure of a PL/SQL procedure

Each PL/SQL block present in the body of a
stored procedure must have the following
structure

[variablesandCursorDeclaration]
BEGIN
codeToExecute
[EXCEPTION exceptionsManagementCode]
END;

DB
MG 154

PL/SQL Language

The PL/SQL language is a procedural language

has some of the classical procedural languages
commands

IF-THEN-ELSE control structures

cycles

has instruments for

the execution of SQL commands

scan results

cursors

The SQL commands

are normal commands of the PL/SQL language

are not preceded by keywords

are not parameters of functions or procedures

DB
MG 155

Example: update command

Update of the city of the supplier identified by the
value present in the supplierCode parameter with
the value present in newCity

CREATE PROCEDURE updateCity(supplierCode VARCHAR(5),
newCity VARCHAR(15))
IS
BEGIN

UPDATE S SET City=newCity
WHERE codS=supplierCode;

END;

DB
MG 156

Cursors in PL/SQL

Declaration

Opening

Reading of the next tuple

Closing

CURSOR cursorName IS interrogazioneSQL
[FOR UPDATE];

OPEN cursorName;

FETCH cursorName INTO VariablesList;

CLOSE cursorName;

DB
MG 157

Example: selecting suppliers

Show the code and the number of employees of
the suppliers whose city is contained in the
VarCity parameter

DB
MG 158

Example: selecting suppliers

CREATE PROCEDURE CitySuppliers(VarCity IN S.City%Type) IS

/*

Definition of variables and cursors

*/

codeS S.SId%Type;

NumEmployees S.#Employees%Type;

CURSOR selectedSuppliers IS

SELECT SId,#Employees FROM S WHERE City = VarCity;

BEGIN

DBMS_OUTPUT.PUT_LINE('Suppliers based in '||VarCity);

/*

Cursor opening

*/

OPEN selectedSuppliers;

DB
MG 159

Example: selecting suppliers

/*

Analysis of the data selected by the query

*/

LOOP

FETCH selectedSuppliers INTO codeS, NumEmployees;

/*

Exit from the cycle when there are no more tuples to check

*/

EXIT WHEN selectedSuppliers%NOTFOUND;

DBMS_OUTPUT.PUT_LINE(codeS||','||NumEmployees);

END LOOP;

/*

Cursor closing

*/

CLOSE selectedSuppliers;

END;

DB
MG 160

Example: selecting suppliers

CREATE PROCEDURE CitySuppliers(VarCity IN S.City%Type) IS

/*

Definition of variables and cursors

*/

codeS S.SId%Type;

NumEmployees S.#Employees%Type;

CURSOR selectedSuppliers IS

SELECT SId,#Employees FROM S WHERE City = VarCity;

BEGIN

DBMS_OUTPUT.PUT_LINE('Suppliers based in '||VarCity);

/*

Cursor opening

*/

OPEN selectedSuppliers;

Definition of the parameters

DB
MG 161

Example: selecting suppliers

CREATE PROCEDURE CitySuppliers(VarCity IN S.City%Type) IS

/*

Definition of variables and cursors

*/

codeS S.SId%Type;

NumEmployees S.#Employees%Type;

CURSOR selectedSuppliers IS

SELECT SId,#Employees FROM S WHERE City = VarCity;

BEGIN

DBMS_OUTPUT.PUT_LINE('Suppliers based in '||VarCity);

/*

Cursor opening

*/

OPEN selectedSuppliers;

Assign to VarCity the type of S.City

DB
MG 162

Example: selecting suppliers

CREATE PROCEDURE CitySuppliers(VarCity IN S.City%Type) IS

/*

Definition of variables and cursors

*/

codeS S.SId%Type;

NumEmployees S.#Employees%Type;

CURSOR selectedSuppliers IS

SELECT SId,#Employees FROM S WHERE City = VarCity;

BEGIN

DBMS_OUTPUT.PUT_LINE('Suppliers based in '||VarCity);

/*

Cursor opening

*/

OPEN selectedSuppliers;

Definition of variables and cursors

DB
MG 163

Example: selecting suppliers

CREATE PROCEDURE CitySuppliers(VarCity IN S.City%Type) IS

/*

Definition of variables and cursors

*/

codeS S.SId%Type;

NumEmployees S.#Employees%Type;

CURSOR selectedSuppliers IS

SELECT SId,#Employees FROM S WHERE City = VarCity;

BEGIN

DBMS_OUTPUT.PUT_LINE('Suppliers based in '||VarCity);

/*

Cursor opening

*/

OPEN selectedSuppliers;

Cursor opening

DB
MG 164

Example: selecting suppliers

/*

Analysis of the data selected by the query

*/

LOOP

FETCH selectedSuppliers INTO codeS, NumEmployees;

/*

Exit from the cycle when there are no more tuples to check

*/

EXIT WHEN selectedSuppliers%NOTFOUND;

DBMS_OUTPUT.PUT_LINE(codeS||','||NumEmployees);

END LOOP;

/*

Cursor closing

*/

CLOSE selectedSuppliers;

END;

Data reading cycle

DB
MG 165

Example: selecting suppliers

/*

Analysis of the data selected by the query

*/

LOOP

FETCH selectedSuppliers INTO codeS, NumEmployees;

/*

Exit from the cycle when there are no more tuples to check

*/

EXIT WHEN selectedSuppliers%NOTFOUND;

DBMS_OUTPUT.PUT_LINE(codeS||','||NumEmployees);

END LOOP;

/*

Cursor closing

*/

CLOSE selectedSuppliers;

END; Cursor closing

DB
MG

SQL for applications

Comparison of alternatives

DB
MG 167

Embedded SQL, CLI and Stored procedures

The techniques proposed for the integration of the
SQL language with applications have different
features

There is no winner: no one approach is always
better than the others

it depends on the type of application

it depends on the characteristics of the databases

distributed, heterogeneous

Mixed solutions may be adopted

invoking a stored procedure through CLI or
embedded SQL

DB
MG 168

Embedded SQL vs. Call Level Interface

Embedded SQL

(+) it precompiles static SQL queries

more efficient

(-) it depends on the adopted DBMS and operating
system

due to the presence of a compiler

(-) it normally does not allow access to multiple
databases at the same time

or it is a complex operation

DB
MG 169

Embedded SQL vs. Call Level Interface

Call Level Interface

(+) independent of the adopted DBMS

only at compile time

the communication library (driver) implements a
standard interface

the internal mechanism depends on the DBMS

the driver is loaded and invoked dynamically at
runtime

(+) it does not require a precompiler

DB
MG 170

Embedded SQL vs. Call Level Interface

Call Level Interface

(+) it allows access to multiple databases from
within the same application

databases may be heterogeneous

(-) it uses dynamic SQL

lower efficiency

(-) it usually supports a subset of the SQL language

DB
MG 171

Stored procedures vs. client-side approaches

Stored procedures

(+) greater efficiency

it exploits the tight integration with the DBMS

it reduces data exchange over the network

procedures are precompiled

DB
MG 172

Stored procedures vs. client-side approaches

Stored procedures

(-) they depend on the DBMS

use of the DBMS ad-hoc language

usually not portable from one DBMS to another

(-) languages offer fewer functionalities than
traditional languages

no functions available to create complex data
visualizations of results

graphs and report

limited input management

DB
MG 173

Stored procedures vs. client-side approaches

Client-side approaches

(+) based on traditional programming language

well known to programmers

more efficient compilers

wide range of input and output management
functions

(+) greater independence from the adopted DBMS
when writing code

only true of CLI-based approaches

(+) possibility to access heterogeneous databases

DB
MG 174

Stored procedures vs. client-side approaches

Client-side approaches

(-) lower efficiency

lower degree of integration with the DBMS

compilation of SQL commands at runtime

especially for CLI-based approaches

