SQL language: advanced constructs

SQL for applications

>~ Introduction

2 Cursors

>~ Updatability

>~ Static and dynamic SQL

>~ Embedded SQL

>~ Call Level Interface (CLI)
>~ Stored Procedures

>~ Comparison of altrernatives

DHG :

7
c
=
L)
S
>
o
=)
=
B
0
o
o
o’
)

Introduction

‘ >~ Banking operations

® withdrawal operation from
an account through an ATM

® withdrawal operation from
an account at a bank
counter

W|thdrawal from an ATM

>~ Operations performed

® check the validity of ATM card
and PIN code

select withdrawal operation
specify the required amount
verify availability

store the operation

update the account balance

dispense the required amount
of money

ol -
>~
- - e’
< PG
2 /

wal from an ATM
> Access to a database is

required to carry out many of
the listed operations

® by executing SQL commands
>~ The operations must be

executed in an appropriate
order

® verify the identity of the
customer

® communicate the intention to
withdraw money

® verify availability
® store the operation
® update the account balance

® dispense the required a mount
of money

required to carry out many of
the listed operations

® By executing SQL commands
>~ The operations must be

executed in an appropriate
order

>~ Banking operations require accessing the
database and modifying its contents

® execution of SQL commands

® customers or the bank employees are not directly
executing the SQL commands

® an application hides the execution of the SQL
commands

>~ Correctly managing banking operations requires
executing a specific sequence of steps

® an application allows specifying the correct order
of execution for the operations

>~ Real problems can hardly ever be solved by
executing single SQL commands

>~ We need applications to
® acquire and handle input data
® user choices, parameters
® managde the application logic
® flow of operation to execute
® Return results to the user using different formats

® on-relational data representation
® XML document

® complex data visualization
B ® graphs, reports

Integrating SQL and applications

>~ Applications are written in traditional high-level
programming languages
® C, C++, Java, C#, ...
® the language is called host language
>~ SQL commands are used in the applications to
access the database
® queries
® updates

Integrating SQL and apphcatlons

>~ It is necessary to integrate the SQL language
with programming languages
® SQL
® declarative language
® programming languages
® usually procedural

>~ Impedance mismatch

® SQL queries operate on one or more tables and
produce a table as a result
® set-oriented approach
® Programming languages access tables by reading
rows one by one
® tuple-oriented approach

> Possible solutions to solve the conflict
® Use cursors

® Use languages that intrinsically provide data
structures storing «set of rows»

2~ Main integration tecniques
® Embedded SQL

® Call Level Interface (CLI)
® SQL/CLI, ODBC, JDBC, OLE DB, ADO.NET, ..

® Stored procedures

> Classified as
® client-side
® embedded SQL, call level interface

® server-side
® stored procedures

Client-side approach

>~ The application
® s outside the DBMS
® contains all of the application logic

® requires that the DBMS execute SQL commands
and return the result

® processes the data returned by the DBMS

Server-side approach

>~ The application (or part of it)
® s inside the DBMS

® all or part of the application logic is moved inside
the DBMS

>~ Client-side approach
® greater indipendence from the DBMS employeed
® |ower efficiency
>~ Server-side approach
® depends on the DBMS employed
® higher efficiency

)
c
K=
i)
S
=
a
o
©
B
S
g
o
7

Cursors

>~ Main problem in the integration between SQL and
programming languages
® SQL queries operate on one or more tables and
produce a table as a result
® set-oriented approach
® programming languages access tables by reading
rows one by one
® tuple-oriented approach

Cursors

>~ If an SQL command returns a single row
® it is sufficient to specify in which host language
variable the result of the command shall be stored
>~ If an SQL command returns a table (i.e., a set of
tuple)
® a method is required to read one tuple at a time
from the query result (and pass it to the program)

® Use of a cursor

Supplier and product DB

=

SP
Pld PName | Color Size Store Sld Pld | Qty
P1 Jumper Red 40 London Sill P1 | 300
P2 Jeans Green 48 Paris S1 P2 | 200
P3 Blouse Blue 48 Rome S1 P3 400
P4 Blouse Blue 44 London S1 P4 200
P5 Skirt Blue 40 Paris S1 P5 | 100
P6 Shorts Red 42 London S1 P6 | 100
S2 P1 | 300
S2 P2 | 400
Sid SName | #Employees City S3 P2 | 200
S1 Smith 2 London S4 P3 |200
S2 Jones 1 Paris S4 P4 | 300
S3 Blake 3 Paris S4 | PS5 [400
S4 Clark 2 London
S5 Adams 3 Athens

21

>~ Show the name and the number of employees for
the supplier with code S1

SELECT SName, #Employees
FROM S
WHERE SId='S1";

>~ The query returns at most one tuple

SName #Employees
Smith 2

> It is sufficient to specify in which host language
variables the selected tuple must be stored

DHG 22

>~ Show the name and the number of employees of
the suppliers based in London

SELECT SName, #Employees
FROM S
WHERE City="London’;

>~ The query returns a set of tuples

SName

#Employees

Smith

2

Clark

2

Cursor

> It is necessary to define a cursorto read each
D“B/\Gtuple from the result separately 23

>~ Definition of a cursor with the Oracle PL/SQL
syntax

CURSOR LondonSuppliers IS
SELECT SName, #Employees
FROM S

WHERE City="London’;

24

p

Cursors

>~ A cursor allows reading the individual tuples from
the result of a query

® [t must be associated with a specific query

>~ Each SQL query that may return a set of tuples
must be associated with a cursor

Cursors

>~ Cursors are not required

® for SQL queries that may return at most one tuple
® selections on the primary key
® aggregation operations without a GROUP BY clause
® for update and DDL commands
® they don't generate any tuple as a result

)
c
K=
i)
S
=
a
o
©
B
S
—
o
7

Updatability

- "/’ .

Updatability

>~ The tuple currently pointed to by the cursor may
be updated or deleted

® more efficient than executing a separate SQL
update command

>~ Updating a tuple with a cursor is possible only if
the view that corresponds to the associated
query may be updated
® there must exist a one-to-one correspondance

between the tuple pointed to by the cursor and the
tuple to update in the database table

>~ Let us consider the SupplierData cursor
associated with the following query:
SELECT DISTINCT SId, SName,
#Employees
FROM S, SP, P
WHERE S.SId=SP.SId

AND P.PId=SP.PId
AND Color="'Red"

>~ The SupplierData cursor is not updatable

>~ By rewording the query, the cursor becomes
updatable

DHG 29

>~ Let us suppose the SupplierData cursor is now
associated with the following query:

SELECT SId, SName, #Employees
FROM S
WHERE SId IN (SELECT SId
FROM SP, P
WHERE SP.PI1d=P.PId
AND Color="'Red");

>~ The two queries are equivalent
® the result of the new query is the same

>~ The SupplierData cursor is updatable
DHG 2

)
c
K=
i)
S
=
a
o
©
B
S
g
o
7

Static and dynamic SQL

Static SQL

2> SQL commands to execute are known during the
application writing
® the definition of each SQL command is known

® commands can contain variables

® The value of the variables is known only during the
execution of the SQL command

Static SQL

>~ The definition of the SQL commands takes place
during the writing of the application
® simplifies the application writing
® The structure of queries and results is known a priori

® makes the a priori optimization of the SQL
commands possible
® during the application compiling phase, the DBMS
optimizer
® compiles the SQL command
® creates the execution plan
® such operations are no longer necessary during the
execution of the application
® more efficient execution 33

>~ The SQL commands to follow are not known
during the writing of the application
® the SQL coomands are dynamically defined by the
application in the execution phase
® they depend on the executed applicative flow

® the SQL commands can be provided by the user as
input

>~ The definiton at execution time of the SQL
commands

® allows to define more complex applications
® offers a major flexibility
® makes the application writing harder

® the format of the query result is not known during
the writing

® makes the execution less efficient

® durante each application execution, it is necessary to
compile and optimize every SQL command

> It is possible to reduce the execution time if the
same dynamic query has to be executed more
than once in /n the same work session

® the compilation and the choice of the execution plan
are carried out only once

® the query is executed more than once (with different
values of the variables)

)
c
K=
i)
S
=
a
o
©
B
S
g
o
7

Embedded SQL

- - -

Embedded SQL

>> SQL commands are «embedded>» in the
application weitten in a traditional programming
language (C, C++, Java, ..)
® the SQL syntax is different from that of the host
language
>~ SQL commands cannot be directly compiled by a
normal compiler
® they must be recognized
® they are preceded by the EXEC SQL keyword

® they must be replaced with appropriate commands
in the host programming language

>~ The precompiler

® identifies SQL commands embedded in the code
® parts preceded by EXEC SQL

® replaces the SQL commands with function calls to
specific APIs of the chosen DBMS

® such functions are written in the host programminh
languafe

® it optionally sends the static SQL commands to the
DBMS for compilation and optimization

>~ the precompiler is tied to a specific DBMS

DG .

% C file + SQL

(1) |

DBMS

N— v

Precompiler

-

/

% C file + function calls
@ l to the DBSM library

C compiler

|
BG % executable file

~ Information on the
% SQL commands
— included in the
@ | program

Optimizer

l Execution plan

a for the static SQL

commands in the
program

Precompiler

>~ The precompiler depends on three elements of
the system architecture

® host language
® DBMS
® operating system
>~ The appropriate compiler for the architecture
choice must be employed

-y -
‘ - ot

Embedded SQL: execution

>~ During the program execution

1. During the program execution
® it calls a DBMS library function

executable file

%%

SQL command .

DBMS

D%

43

>~ During the program execution
1. The program sends an SQL command to the DBMS
® it calls a DBMS library function

2. The DBMS generates the execution plan for the
command

® if one has already been defined, it will be retrieved

executable file

%%

SQL command .

DBMS

D%

execution
plan

45

Embedded SQL: execution

>~ During the program execution
1. The program sends an SQL command to the DBMS
® it calls a DBMS library function

2. The DBMS generates the execution plan for the
command

® if one has already been defined, it will be retrieved
3. The DBMS executes the SQL command

executable file

%%

SQL command .

D%

DBMS

execution
plan

8 data 47

Embedded SQL: execution

>~ During the program execution
1. The program sends an SQL command to the DBMS
® it calls a DBMS library function

2. The DBMS generates the execution plan for the
command

® if one has already been defined, it will be retrieved
3. The DBMS executes the SQL command

4. The DBMS returns the result of the SQL command
® a transit area is used as temporary data storage

executable file

SQL command

result

D%

@

DBMS

execution
plan

8 data 49

Embedded SQL: execution

>~ During the program execution
1. The program sends an SQL command to the DBMS
® it calls a DBMS library function

2. The DBMS generates the execution plan for the
command

® if one has already been defined, it will be retrieved
3. The DBMS executes the SQL command

4. The DBMS returns the result of the SQL command
® a transit area is used as temporary data storage

5. The programm processes the result

EXEC SQL BEGIN DECLARE SECTION
char VarSId[6];

int NumEmployees;

char City[16];

EXEC SQL END DECLARE SECTION

int alpha, beta;

EXEC SQL DECLARE S TABLE (SId CHAR(5) NOT NULL,
SName CHAR(20) NOT NULL,
NumEmployees SMALLINT NOT NULL,
City CHAR(15) NOT NULL);

if (alpha>beta) {

EXEC SQL SELECT NumEmployees, City
INTO :NumEmployees, :City
FROM S
WHERE SId=:VarSId;

printf("%d %s"”, NumEmployees, City);

Declaration of the host

EXEC SQL BEGIN DECLARE SECTION language variables
char VarSId[6]; used in the

int NumEmployees; / SQL commands
char City[16];

EXEC SQL END DECLARE SECTION

int alpha, beta;

EXEC SQL DECLARE S TABLE (SId CHAR(5) NOT NULL,
SName CHAR(20) NOT NULL,
NumEmployees SMALLINT NOT NULL,
City CHAR(15) NOT NULL);

EXEC SQL BEGIN DECLARE SECTION
char VarSId[6];

int NumEmployees;

char City[16];

EXEC SQL END DECLARE SECTION

(Optional)
Declaration of the tables

int alpha, beta; used in the application

EXEC SQL DECLARE S TABLE (SId CHAR(5) NOT NULL,
SName CHAR(20) NOT NULL,
NumEmployees SMALLINT NOT NULL,
City CHAR(15) NOT NULL);

Example of embedded SQL code

«— Declaration of the communication area
EXEC SQL INCLUDE SQLCA;

if (alpha>beta) {

EXEC SQL SELECT NumEmployees, City
INTO :NumEmployees, :City
FROM S
WHERE SId=:VarSId;

printf("%d %s"”, NumEmployees, City);

Example of embedded SQL code

EXEC SQL INCLUDE SQLCA;

if (alpha>beta) {

EXEC SQL SELECT NumEmployees, City
INTO :NumEmployees, :City
FROM S
WHERE SId=:VarSId;

printf("%d %s"”, NumEmployees, City); \

Execution of an SQL command

----- Hostla/nguage variables

if (alpha>beta) {
EXEC SQL SELECT NumEmployegs/City |
INTO :NumEmployees, :Ci

FROM S
WHERE SId=:VarSId;

pd

printf("%d %s"”, NumEmployees, City);

> It is possible to introduce in the SQL commands
references to variables of the host language

® variables in reading
® allow the interactive execution of the commands

® the variables are used as parameters in the selection
predicates instead of the constants

® variables in writing
® variables in which the current tuple is stored

® indicated after the keyword INTO in the commands
SELECT and FETCH

>~ In the programs
® the declaration of the variables is limited by the
couple of commands
® EXEC SQL BEGIN DECLARE SECTION
® EXEC SQL END DECLARE SECTION

® in the SQL commands the variables are preceeded
by the symbol “:” in order to distinguish them from
the names of the columns

Type check

>~ The type of the variables must be compatible
with the type of the corresponding SQL columns

® the names of the variables and of the SQL columns
can be the same

>~ Each SQL DML command must refer to objects
that have already been defined into the database

>~ The precompiler carries out the semantic check
of the SQL commands
® accessing the database in order to find the schema
of the referenced objects in the data dictionary

® It is necessary to be able to connect to the DBMS
during the precompilation of the code
® or considering the definitions of the tables present
in the code

® EXEC SQL DECLARE command

2> A communication area between the DBMS and
the host language must be defined

® some precompilers automatically include the
definition of the communication area

® in other cases it is necessary to use the command
EXEC SQL INCLUDE SQLCA
>~ It is necessary to have apposite variables to store
the status of the last SQL command executed

® variable SQLCA.SQLCODE
® automatically defined

>~ Embedded SQL allow to execute all kinds of SQL
commands

® DML
® DDL

>~ Execution of an SQL command
EXEC SQL SQLCommand,

>~ After the execution it is possible to checkthe
status of the executed command with the
variable SQLCA.SQLCODE

® command correctly executed
SQLCODE=0
® command not executed because of an error

SQLCODE=0
® the value of SQLCODE specifies the type of error

“ - ‘*_.

X q' , igpen - - 4 ——
" ,' = i ‘Q&\ P~ -

.

Update commands and DDL

>~ Command that do not return a set of tuple

® it is necessary to check if the operation ended
properly
SQLCODE=0
® there are no results to analyze
® the use of cursors is not necessary

Queries

>~ It works differently depending on the number of
tuples returned by the query
® a single tuple
® execution of the SELECT command

® indication of the variables where the result must be
stored directly in the SELECT command

® the use of cursors is not necessary
® a set of tuples

® definition and use of a cursor associated to the
SELECT command

® indication of the variables where the single tuples
read in the FETCH command must be stored

>~ Select the number of emplotees and the city of
the supplier whose code value is contained in the
host variable lVarSid

EXEC SQL SELECT #Employees, City INTO
:NumEmployees, :City
FROM S
WHERE SId = :VarSId;

>~ In the SQL query the variables where the results
must be stores are declared after the keyword
INTO

DHG o7

>~ Select the number of emplotees and the city of
the supplier whose code value is contained in the
host variable lVarSid

EXEC SQL SELECT #Employees, City INTO
:NumEmployees, :City
FROM S
WHERE SId = :VarSId;

>~ In the WHERE it is possible to use variables of
the host language insted of constants

DHG 68

>~ The status of the operation must be always
checked after the end of the operation
® SQLCODE =0
® query properly executed

® the selected values have been stored in the variables
indicated in the query (NumEmployees and City)

® SQLCODE = 100
® no tuple satisfies the predicate
® SQLCODE < 0

® execution error
® more than a record satisfies the predicate
® table not available

D“B/\G .. 69

Cursor

>~ The cursor allows to read individually the tuples
that belong to the result of a query

® it must be associated to a specific query

>~ Each SQL query that can return a set of tuples
must be associated to a cursor

- -
‘ - ot

&, o . 2D > -
- i, i ‘Q&\ . - /

.

Operations on the cursors

>~ Basic operations on the cursors
® declaration
® opening
® reading (tipically inside a cycle)
® closing
>~ Similar to the management modes of a file

Declaration

> DECLARE command

® declaration of the cursor structure
® assignement of a name to the cursor
® definition of the query associated to the cursor

EXEC SQL DECLARE CursorName [SCROLL] CURSOR
FOR SQLQuery

[FOR <READ ONLY| UPDATE [OF AttributesList]>];

> READ ONLY option

® the cursor can be used only for the reading of the
result

® default option

EXEC SQL DECLARE CursorName [SCROLL] CURSOR
FOR SQLQuery

[FOR <READ ONLY| UPDATE [OF AttributesList]>];

22 SCROLL option

® the application can move freely on the result
® reading forwards and backwards

EXEC SQL DECLARE CursorName [SCROLL] CURSOR
FOR SQLQuery

[FOR <READ ONLY| UPDATE [OF AttributesList]>];

2 UPDATE option

® the cursor can be used in an update command

® it is possible to specify which attributes shall be
updated

> OPEN command

® opening of the cursor
® execution of the query on the database
® memorization of threresult in a temporary area

EXEC SQL OPEN CursoriName,

>~ After the opening the cursor can be found in the
first tuple of the result

Reading

>> FETCH command

® reading of the next available tuple

® memoriazation of the tuple in a variable of the host
program

® update of the cursor position
® the cursor moves one line forward
® to the next tuple
>~ It is necessary to define a cycle to read all the
tuples of the result
® the host language is used

® cvery call to the FETCH command inside the cycle
B select a single tuple

DN\G

77

EXEC SQL FETCH [Position FROM] CursorName
INTO VariablesList;

>~ If the SCROLL option is present in the definition
of the cursor, the Position parameter can assume
the values

® next, prior, first, last, absolute, relative
>~ Otherwise, it can only assume the value next
® default value

>~ Position values
® next
® reading of the line following the current one
® prior
® reading of the line preceding the current one
® first
® reading of the first line of the result
® |ast
® reading of the last line of the result

® absolute 7ullExpression

® reading of the /-th line of the result
® the / position is the result of the full expression

® relative fullExpression
® |ike absolute but the landmark is the current position

Closing

> CLOSE command

® closing of the cursor

® release of the temporary area containing the result
of the query

® the result of the query is no longer accessible

® update of the database in case of cursors associated
to updatable queries

EXEC SQL CLOSE CursorName;

ol -
-~
- - e
P =~
- o /

Observations

>~ In an application, a cursor
® is defined only once
® can be used more than once
® must be open and closed every time

> > More cursors can be defined in the same
application

>~ Show the code and the number of employees of
the suppliers whose city is contained in the host
variable VarCity

® the value of VarCity is given by the user as a
parameter of the application

b

o

N

o,

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/************************** Errors management *********************************/

void sqgl_error(char *msg)

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
fprintf(stderr,"\n%s\n", msg);
fprintf(stderr,"Internal error code: %lId\n", sglca.sqglcode);
fprintf(stderr,"%s\n",sqlca.sqlerrm.sglerrmc);
EXEC SQL ROLLBACK;
exit(EXIT_FAILURE);

b

o

N

S

int main(int argc,char **argv)
{

EXEC SQL BEGIN DECLARE SECTION;
char username[20]="user123";
char password[20]="pwd123";
char VarCity[16];
char SId[6];
int #Employees;

EXEC SQL END DECLARE SECTION;

/* Direct error management */
EXEC SQL WHENEVER SQLERROR CONTINUE;

/* Connection opening */
EXEC SQL CONNECT TO supplies@127.0.0.1 USER :username IDENTIFIED BY :password;

if (sqlca.sqlcode!=0)
sql_error("Error in the connection phase");

/* Cursor declaration */
EXEC SQL DECLARE selectedSuppliers CURSOR FOR
SELECT SId,#Employees FROM S WHERE City = :VarCity;

/* Setting the value of VarCity */
strepy(VarCity,argv[1]);

/* Cursor opening */
EXEC SQL OPEN selectedSuppliers;

if (sglca.sglcode!=0)
sql_error("Error in the cursor opening phase");

/* Print of the selected data */
printf("Suppliers list\n");

do {

EXEC SQL FETCH selectedSuppliers INTO :SId, :#Employees;
/* Check the status of the last fetch operation */
switch(sqglca.sqlcode) {

case 0: /* New tuple correctly read */

{ /* Print of the tuple */

printf("%s,%d",SId, #Employees);
by

break;

case 100: /* No more data */
break;

default: /* Error */
sql_error("Error in the data reading phase");
break;
by
by

while (sglca.sglcode==0);

) Example: selecting suppliers

|

/* Cursor closing */
EXEC SQL CLOSE selectedSuppliers;

}

b

o

N

o,

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/************************** Errors management *********************************/

void sqgl_error(char *msg)

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
fprintf(stderr,"\n%s\n", msg);
fprintf(stderr,"Internal error code: %lId\n", sglca.sqglcode); 1\
fprintf(stderr,"%s\n",sqlca.sqlerrm.sglerrmc); Errors management
EXEC SQL ROLLBACK;
exit(EXIT_FAILURE);

b

o

N

S

int main(int argc,char **argv)
{

EXEC SQL BEGIN DECLARE SECTION;
char username[20]="user123";
char password[20]="pwd123";

char VarCity[16]; \

char SId[éJ; Definition of the variables
int #Employees;

EXEC SQL END DECLARE SECTION;

/* Direct error management */
EXEC SQL WHENEVER SQLERROR CONTINUE;

/* Connection opening */
EXEC SQL CONNECT TO supplies@127.0.0.1 USER :username IDENTIFIED BY :password;

if (sqlca.sqlcode!=0)
sql_error("Error in the connection phase");

w -

® . Den
-~ P
cey | Waas » S

int main(int argc,char **argv)
{

EXEC SQL BEGIN DECLARE SECTION;
char username[20]="user123";
char password[20]="pwd123";
char VarCity[16];
char SId[6];
int #Employees;

EXEC SQL END DECLARE SECTION;

/* Direct error management */ Connection to the DBMS
EXEC SQL WHENEVER SQLERROR CONTINUE; /

/* Connection opening */
EXEC SQL CONNECT TO supplies@127.0.0.1 USER :username IDENTIFIED BY :password;

if (sqlca.sqlcode!=0)
! sql_error("Error in the connection phase");

/* Cursor declaration */

EXEC SQL DECLARE selectedSuppliers CURSOR FOR
SELECT SId,#Employees FROM S WHERE City = :VarCity;

/* Setting the value of VarCity */
strepy(VarCity,argv[1]);

/* Cursor opening */
EXEC SQL OPEN selectedSuppliers;

if (sglca.sglcode!=0)
sql_error("Error in the cursor opening phase");

/* Print of the selected data */
printf("Suppliers list\n");

Definition of the cursor

/* Cursor declaration */
EXEC SQL DECLARE selectedSuppliers CURSOR FOR
SELECT SId,#Employees FROM S WHERE City = :VarCity;

/* Setting the value of VarCity */
strepy(VarCity,argv[1]);

/* Cursor opening */

EXEC SQL OPEN selectedSuppliers;

if (sqlca.sqlcode!=0) \

sql_error("Error in the cursor opening phase"); Cursor opening

/* Print of the selected data */
printf("Suppliers list\n");

do {

U)

EXEC SQL FETCH selectedSuppliers INTO :SId, : #Employeek;

/* Check the status of the last fetch operation */
switch(sqglca.sqlcode) {
case 0: /* New tuple correctly read */
{ /* Print of the tuple */
printf("%s,%d",SId, #Employees);
by

break;

case 100: /* No more data */ \

break;

default: /* Error */
sql_error("Error in the data reading phase");
break;
by
by

while (sglca.sglcode==0);

Tuples reading
cycle

do {

EXEC SQL FETCH selectedSuppliers INTO :SId, :#Employees;

/* Check the status of the last fetch operation */
switch(sqglca.sqlcode) {
case 0: /* New tuple correctly read */
{ /* Print of the tuple */
printf("%s,%d",SId, #Employees);
by

break;

case 100: /* No more data */
break;

default: /* Error */
sql_error("Error in the data reading phase");
break;
by
by

while (sglca.sglcode==0);

Reading of a tuple

do {

EXEC SQL FETCH selectedSuppliers INTO :SId, :#Employees;

/* Check the status of the last fetch operation */

switch(sqglca.sqlcode) {
case 0: /* New tuple correctly read */
{ /* Print of the tuple */
printf("%s,%d",SId, #Employees);
by

break;

case 100: /* No more data */
break;

default: /* Error */
sql_error("Error in the data reading phase");
break;

}

}

while (sglca.sglcode==0);

"~

Analysis of the
reading outcome

) Example: selecting suppliers

|

[* Cursor closing */
EXEC SQL CLOSE selectedSuppliers; ‘\

s .
Cursor closing

> It is possible to update or delete the tuple
pointed by a cursor

® update

EXEC SQL UPDATE 7ableName
SET ColumnName = Expression
{, ColumnName = Expression}
WHERE CURRENT OF CursorName;

® delete

EXEC SQL DELETE FROM T7ableName
WHERE CURRENT OF CursorName;,

>~ The update and the deletion are possible if and
only if
® the cursor has been defined in an appropriate way
® option FOR UPDATE in the command DECLARE
® there is a one-to-one correspondance between the

tuples of the result and the tuples present in the
DBMS

>~ In an embededd SQL program it is possible to
define the limits of a transaction

® begin of a transaction
EXEC SQL BEGIN TRANSACTION;

® succesful end of a transactiono
EXEC SQL COMMIT;

® failure of a transaction
EXEC SQL ROLLBACK;

DE\G 100

>~ Until the commands COMMIT or ROLLBACK are
not explicitly invoked, the SQL operations of
updating has to be considered “updating
attempts”

DE\G 101

SQL for applications

Call Level Interface (CLI)

>~ Requests are sent to the DBMS by using ad-hoc
functions of the host language

® solution based on predefined interfaces
® API, Application Programming Interface

® the SQL commands are passed to the host
language functions as parameters

® there is no precompiler

>~ The host program directly includes calls to the
functions provided by the API

D“B/\G 103

>~ Different solutions are available using the Call
Level Interface (CLI) paradigm

® standard SQL/CLI

® ODBC (Open DataBase Connectivity)
® proprietary SQL/CLI solution by Microsoft

® JDBC (Java Database Connectivity)
® solution for the Java environment

® OLE DB
® ADO
® ADO.NET

DE\G 104

>~ Regardless of the specific CLI solution adopted,
the interaction with the DBMS has a common
structure

® open a connection to the DBMS
® execute SQL commands
® close the connection

D“B/\G 105

1. Call an API primitive to create a connection to the
DBMS

2. Send an SQL command across the connection

3. Receive a result in response to the command

® j.e, asetof tuples, in the case of a SELECT
command

4. Process the result obtained from the DBMS
® ad-hoc primitives allow reading the result

5. Close the connection at the end of the working
session

D“B/\G 106

> CLI solution for the JAVA environment

>~ The architecture comprises

® 3 set of standard classes and interfaces
® used by the Java programmer
® indipendent of the DBMS

® 3 set of “proprietary”classes (drivers)

® implementing the standard classes and interfaces to
provide communication with a specific DBMS

® dependent on the DBMS

® invoked at runtime

® not required at the time when the application is
compiled

DE\G 107

JDBC: mteractlon W|th the DBMS

>~ Load the specific driver for the DBMS of choice
2~ Create a connection

>~ Execute SQL commands
® create a statement
® submit the command for execution
® process the result (in the case of queries)

> Close the statement
> Close the connection

DE\G 108

- " -

Loading the DBMS driver

>~ The driver is specific to the DBMS employed
>~ It is loaded through dynamic instantiation of the
class associated with the driver
Object Class.forName(String driverName)

® driverName contains the name of the class to be
instantiated

® e.g., “oracle.jdbc.driver.OracleDriver”

D“B/\G 109

> It is the first operation to do

>~ We don’t need to know at compile time which
DBMS we will be using

® the name of the driver may be read at runtime
from a configuration file

DE\G 110

>~ Invoke the getConnection method of the
DriverManager class

Connection DriverManager.getConnection(String url,
String user, String password)

® url

® contains the information required to identify the
DBMS to which we are connecting

® the format depends on the specific driver

® user and password
® credentials for authentication

DE\G 111

>~ The execution of an SQL command requires the
use of a specific interface

® called Statement

>~ Each Statement object
® s associated with a connection

® s created through the createStatement method of
the Connection class

Statement createStatement()

DE\G 112

>~ The execution of the command requires the
following method on a Statement object

int executeUpdate(String SQLCommand)

® SQLCommand
® the SQL command to be executed

® the method returns

® the number of processed (i.e., inserted, modified,
deleted) tuples

® a value of 0 for DDL commands

DE\G 113

Queries

>~ Immediate query execution

® the server compiles and immediately executes the
SQL command received

2> “Prepared” query execution

® useful when the same SQL command must be
executed multiple times in the same working
session

® only the values of parameters may change
® the SQL command

® is compiled (prepared) only once and its execution
plan is stored by the DBMS

® s executed several times throughout the session

DE\G 114

>~ It can be requested by invoking the following
method on a Statement object

ResultSet executeQuery(String SQLCommand)

® SQLCommand
® the SQL command to be executed

® the method always returns a collection of tuples
® an object of the ResultSet type

® it handles in the same way queries that

® return at most a single tuple
® may return multiple tuples

DE\G 115

>~ The ResultSet is analogous to a cursor

® it provides methods to

® move throughout the lines in the result
® next()
® first()
° ..
® extract the values of interest from the current tuple
® getInt(String attributeName)

® getString(String attributeName)
e ...

DE\G 116

>~ A “prepared” SQL command is
® compiled only once
® at the beginning of the program execution

® executed multiple times

® the current values for the parameters must be
specified before each execution

>~ A useful device when the execution of the same
SQL command must be repeated several times

® it reduces execution times
® the compilation is done only once

DE\G 117

>~ An object of the PreparedStatement type is used

® created by means of the following method
PreparedStatement prepareStatement(String SQLCommand)

® SQLCommand
® it contains the SQL command to be executed

® the "?” symbol is used as a placeholder to indicate the
presence of a parameter whose value must be specified

>~ Example
PreparedStatement pstmt;

pstmt=conn.preparStatement("SELECT SId, NEmployees
FROM S WHERE City=?");

DE\G 118

>~ Replace “?” symbols for the current execution

>~ One of the following methods is invoked on a
PreparedStatement object
® void setlnt(int parameterInde, int value)
® void setString(int parameterIndex, String value)

® parameterIndex indicates the position of the
parameter whose value is being assigned

® the same SQL command may include several
parameters

® the index of the first parameter is 1
® value indicates the value to be assigned to the

D“B/\G parameter 119

>~ An appropriate method is invoked on the
PreparedStatement object

® SQL query

ResultSet executeQuery()
® update
ResultSet executeUpdate()
>~ The two methods have no input parameters

® cverything has been defined in advance
® the SQL command to be executed
® its execution parameters

DE\G 120

Example: prepared statements

PreparedStatement pstmt=conn.prepareStatement("UPDATE P
SET Color=? WHERE PId=?");

/* Assign color Crimson to product P1 */
pstmt.setString(1,”Crimson”);
pstmt.setString(2,"P1");
pstmt.executeUpdate();

/* Assign color SteelBlue to product P5 */
pstmt.setString(1,”SteelBlue”);
pstmt.setString(2,”P5");
pstmt.executeUpdate();

Example: prepared statements

PreparedStatement pstmt=conn.prepareStatement("UPDATE P
SET Color=? WHERE PId="?");

/* Assign color Crimson to product P1 */
pstmt.setString(1,”Crimson”);
pstmt.setString(2,"P1");
pstmt.executeUpdate();

/* Assign color Crimson to product P5 */
pstmt.setString(1,”SteelBlue”);
pstmt.setString(2,”P5");
pstmt.executeUpdate();

> As soon as a statement or a connection are
no longer needed
® they must be immediately closed

>~ Resources previously allocated to the statement
or the connection can be released

® by the application
® by the DBMS

DE\G 123

>~ Closing a statement

® is done by invoking the close method on a
Statement object

® void close()

>~ The resources associated with the corresponding
SQL command are released

DE\G 124

>~ Closing a connection

® is necessary when it is no longer required to
interact with the DBMS

® closes communication with the DBMS and releases
the corresponding resources

® also closes all statements associated with the
connection

® s done by invoking the close method on the
Connection object

® void close()

DE\G 125

Exceptions management

>~ Errors are handled through SQLException
exceptions
>~ The SQLException contains
® 3 string that describes the error

® 3 string that identifies the exception

® in @ manner consistent with Open Group SQL
Specification

® an error code specific to the used DBSM

DE\G 126

>~ Print the codes and the number of employees of
the suppliers whose city is stored in host variable
VarCity

® the value of larCity is provided by the user as a
parameter of the application

DE\G 127

import java.io.*;
import java.sql.*;

class CitySuppliers {

static public void main(String argv[]) {
Connection conn;
Statement stmt;
ResultSet rs;
String query;
String VarCity;

/* Driver registration */
try {
Class.forName("oracle.jdbc.driver.OracleDriver");

by
catch(Exception e) {

System.err.printin("Driver unavailable: "+e);

}

=
o, S
e o —Q..

o
B

try {
/* Connection to the database */

conn=DriverManager.getConnection("jdbc:oracle:thin:@127.0.0.1:1521:xe",
“user123”"pwd123");

/* Creation of a statement for immediate commands */
stmt = conn.createStatement();

/* Assembling a query */
VarCity =argv[0];
query="SELECT SId, NEmployees FROM S WHERE City = "'+VarCity+"";

/* Execution of the query */
rs=stmt.executeQuery(query);

}

}

}

System.out.printin("Suppliers based in "+VarCity);

/* Scan tuples in the result */

while (rs.next()) {
/* Print the current tuple */
System.out.printin(rs.getString("SId")+","+rs.getInt("NEmployees"));

by

/* Close resultset, statement and connection */

rs.close();

stmt.close();

conn.close();

catch(Exception e) {

}

System.err.printin("Error: "+e);

import java.io.*;
import java.sql.*;

class CitySuppliers {

static public void main(String argv[]) {
Connection conn;
Statement stmt;
ResultSet rs;
String query;
String VarCity;

/* Driver registration */

try {
Class.forName("oracle.jdbc.driver.OracleDriver");

by
catch(Exception e) {

System.err.printin("Driver unavailable: "+e);

}

Loading the driver

d

try {
/* Connection to the database */

conn=DriverManager.getConnection("jdbc:oracle:thin:@127.0.0.1:1521:xe",
“user123”"pwd123");

/* Creation of a statement for immediate commands */ \
stmt = conn.createStatement();

Connection to the DBMS
/* Assembling a query */
VarCity =argv[0];
query="SELECT SId, NEmployees FROM S WHERE City = "'+VarCity+"";

/* Execution of the query */
rs=stmt.executeQuery(query);

=
o, S
e o —Q..

o
B

try {
/* Connection to the database */

conn=DriverManager.getConnection("jdbc:oracle:thin:@127.0.0.1:1521:xe",
“user123”"pwd123");

/* Creation of a statement for immediate commands ¥/
stmt = conn.createStatement(); € Creation of a statement

/* Assembling a query */
VarCity =argv[0];
query="SELECT SId, NEmployees FROM S WHERE City = "'+VarCity+"";

/* Execution of the query */
rs=stmt.executeQuery(query);

=
o, S
e o —Q..

o
B

try {
/* Connection to the database */

conn=DriverManager.getConnection("jdbc:oracle:thin:@127.0.0.1:1521:xe",

“user123” " pwd123");

/* Creation of a statement for immediate commands */

stmt = conn.createStatement();

/* Assembling a query */

VarCity =argv[0];

query="SELECT SId, NEmployees FROM S WHERE City = "'+VarCity+""

~=

/* Execution of the query */
rs=stmt.executeQuery(query);

\

Composition of an SQL query

=
o, S
e o —Q..

o
B

try {
/* Connection to the database */

conn=DriverManager.getConnection("jdbc:oracle:thin:@127.0.0.1:1521:xe",
“user123”"pwd123");

/* Creation of a statement for immediate commands */
stmt = conn.createStatement();

/* Assembling a query */
VarCity =argv[0];
query="SELECT SId, NEmployees FROM S WHERE City = "'+VarCity+"";

/* Execution of the query */
rs=stmt.executeQuery(query);

\

Immediate query execution

}

}

System.out.printin("Suppliers based in "+VarCity);
/* Scan tuples in the result */

while (rs.next()) {
/* Print the current tuple */

}

System.out.printin(rs.getString("SId")+","+rs.getInt("NEmployees")); \

}

/* Close resultset, statement and connection */
rs.close();

stmt.close();

conn.close();

catch(Exception e) {

}

System.err.printin("Error: "+e);

Looping over
the result tuples

System.out.printin("Suppliers based in "+VarCity);
/* Scan tuples in the result */
while (rs.next()) {
/* Print the current tuple */
System.out.printin(rs.getString("SId")+","+rs.getInt("NEmployees"));
by

/* Close resultset, statement and connection */

.l ;
rs.close(); 4¢——— Closing resultset,

stmt.close(); .
0 statement and connection
conn.close();

}

catch(Exception e) {

}

System.err.printin("Error: "+e);

1 ". , -
ble ResultSet

=

Updata

>~ It is possible to create an updatable ResultSet

® the execution of updates on the database is more
efficient
® it is similar to an updatable cursor

® there must be a one-to-one correspondence
between the tuples in the result set and the tuples
in the database tables

D“B/\G 138

“ - ‘*_.

X q' , igpen - - 4 ——
" ,' = i ‘Q&\ ~ -

.

Defining a transaction

>~ Connections are implicitly created with the guto-
commit mode enabled

® after each successful execution of an SQL
command, a commit is automatically executed

D“B/\G 139

>~ Connections are implicitly created with the guto-
commit mode enabled

® after each successful execution of an SQL
command, a commit is automatically executed

>> When it is necessary to execute a commit only
after a sequence of SQL commands has been
successfully executed

® 5 single commit is executed after the execution of
all commands

® the commit must be managed in a non automatico
fashion

DE\G 140

>~ The commit mode can be managed by invoking
the setAutoCommit() method on the connection
void setAutoCommit(boolean autoCommit);
® parameter autoCommit

® true to enable autocommit (default)
® false to disable autocommit

DE\G 141

> If autocommit is disabled

® commit and rollback operations must be explicitly
requested by the programmer
® commit
void commit();
® rollback
void rollback();
® such methods are invoked on the corresponding
connection

DE\G 142

)
c
=
i)
S
=
a
o
o
o
1=
o
o
)

Stored procedures

>~ A stored procedure is a function or a procedure
defined inside the DBMS

® it is stored in the data dictionary
® it is part of the database schema

>~ It may be used like a predefined SQL command
® it may have execution parameters

>~ It contains both application code and SQL
commands

® application code and SQL commands are tightly
coupled to each other

DE\G 144

>~ The language used to define a stored procedure
® is a procedural extension of the SQL language

® depends on the DBMS
® different products may offer different languages

® the expressiveness of the language may vary
according to the product

DE\G 145

>~ Stored procedures are integrated in the DBMS
® server-side approach

>~ Performance is better compared to embedded
SQL and CLI
® ecach stored procedure is compiled and optimized
only once
® immediately after its definition
® or when it is invoked for the first time

DE\G 146

> Different languages are available to define stored
procedures

® PL/SQL
® Oracle

® SQL/PL
® DB2

® Transact-SQL
® Microsoft SQL Server

® PL/pgSQL
® PostgreSQL

DE\G 147

’i- K\ - /

Connection to the DBMS

>> No connection to the DBMS is needed from
within a stored procedure

® the DBMS executing the SQL commands also
stores and executes the stored procedure

DE\G 148

> It is possible to reference variables or parameters
in the SQL commands used in stored procedures

® the syntax depends on the language used

2~ To read the result of a query that returns a set of
tuples

® a cursor must be defined

® similar to embedded SQL

DE\G 149

>~ Creazione di una stored procedure in Oracle

CREATE [OR REPLACE] PROCEDURE StoredProcedureName
[(ParameterList)]
IS (SQLCommand | PL/SQL code);

>~ A stored procedure may be associated with
® a single SQL command
® a block of code written in PL/SQL

DE\G 150

Parameters

>~ Each parameter in the parametersList list is
specified in the form

parameterName [IN|OUT|IN OUT] [NOCOPY] agataTlype

® parameterName
® name associated to the parameter
® datalype
® type of the parameter
® the SQL are used
® the keywords IN, OUT, IN OUT e NOCOPY specify
that can be executed on the parameter
® default IN

DE\G 151

Parameters

>~ Keyword IN
® only-reading parameter

> Keyword OUT

® only writing parameter

>~ Keyword IN OUT

® the parameter can be both read and written in the
stored procedure

>~ For the OUT and IN OUT parameters the final
value is assigned only when the procedure ends
correctly

® the keyword NOCOPY allows to directly write the
parameter during the execution of the stored procedurg,

DHG

“-: -
K L 2
RS

>~ Each PL/SQL block present in the body of a
stored procedure must have the following
structure

[variablesandCursorDeclaration)]

BEGIN

codeToExecute

[EXCEPTION exceptionsManagementCode]
END;

B G 153

>~ The PL/SQL language is a procedural language

® has some of the classical procedural languages
commands

® TF-THEN-ELSE control structures
® cycles

® has instruments for
® the execution of SQL commands

® scan results
® Cursors

>~ The SQL commands

® are normal commands of the PL/SQL language
® are not preceded by keywords
® are not parameters of functions or procedures

DE\G 154

>~ Update of the city of the supplier identified by the
value present in the supplierCode parameter with
the value present in newCity

CREATE PROCEDURE updateCity(supplierCode VARCHAR(5),
newCity VARCHAR(15))
IS
BEGIN
UPDATE S SET City=newCity
WHERE codS=supplierCode;
END;

B G 155

>~ Declaration

CURSOR cursorName 1S interrogazioneSQL
[FOR UPDATE];

2~ Opening
OPEN cursorName,

>~ Reading of the next tuple
FETCH cursorName INTO VariablesList,

2~ Closing
CLOSE cursorName,

D“B/\G 156

>~ Show the code and the number of employees of
the suppliers whose city is contained in the
VarCity parameter

DE\G 157

CREATE PROCEDURE CitySuppliers(VarCity IN S.City%Type) IS
/>I<
Definition of variables and cursors
*/
codeS S.SId%Type;
NumEmployees S.#Employees%Type;

CURSOR selectedSuppliers IS
SELECT SId,#Employees FROM S WHERE City = VarCity;

BEGIN
DBMS_OUTPUT.PUT_LINE('Suppliers based in '||VarCity);
/*
Cursor opening
*/
OPEN selectedSuppliers;

b

o
e o —Q..

o

N

/*
Analysis of the data selected by the query
*/
LOOP
FETCH selectedSuppliers INTO codeS, NumEmployees;
/*
Exit from the cycle when there are no more tuples to check
*/
EXIT WHEN selectedSuppliers%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(codeS||','| INumEmployees);
END LOOP;
/*
Cursor closing
*/
CLOSE selectedSuppliers;
! END;

CREATE PROCEDURE CitySuppliers(VarCity IN S.City%Type)|IS

/>I<
Definition of variables and cursors
*/
codeS S.SId%Type; Definition of the parameters

NumEmployees S.#Employees%Type;

CURSOR selectedSuppliers IS
SELECT SId,#Employees FROM S WHERE City = VarCity;

BEGIN
DBMS_OUTPUT.PUT_LINE('Suppliers based in '||VarCity);
/*
Cursor opening
*/
OPEN selectedSuppliers;

CREATE PROCEDURE CitySuppliers(VarCity IN|S.City%Type)|IS

/>I<
Definition of variables and cursors \

*/
codeS S.SId%Type;
NumEmployees S.#Employees%Type;

Assign to VarCity the type of S.City

CURSOR selectedSuppliers IS
SELECT SId,#Employees FROM S WHERE City = VarCity;

BEGIN
DBMS_OUTPUT.PUT_LINE('Suppliers based in '||VarCity);
/*
Cursor opening
*/
OPEN selectedSuppliers;

CREATE PROCEDURE CitySuppliers(VarCity IN S.City%Type) IS

/>I<
Definition of variables and cursors
*/

codeS S.SId%Type;
NumEmployees S.#Employees%Type;

CURSOR selectedSuppliers IS
SELECT SId,#Employees FROM S WHERE City = VarCity;

BEGIN
DBMS_OUTPUT.PUT_LINE('Suppliers based in '||VarCity);
/*
Cursor opening
*/
OPEN selectedSuppliers;

~—

Definition of variables and cursors

CREATE PROCEDURE CitySuppliers(VarCity IN S.City%Type) IS
/>I<
Definition of variables and cursors
*/
codeS S.SId%Type;
NumEmployees S.#Employees%Type;

CURSOR selectedSuppliers IS
SELECT SId,#Employees FROM S WHERE City = VarCity;

BEGIN
DBMS_OUTPUT.PUT_LINE('Suppliers based in '||VarCity);
/*
Cursor opening
*

OPEN selectedSuppliers; 1\

Cursor opening

b

o
e o —Q..

o

N

/*
Analysis of the data selected by the query
*/
LOOP
FETCH selectedSuppliers INTO codeS, NumEmployees;
/*
Exit from the cycle when there are no more tuples to check
*/
EXIT WHEN selectedSuppliers%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(codeS||','| INumEmployees);
END LOOP;
/*
Cursor closing
*/
CLOSE selectedSuppliers;

! END;

N

Data reading cycle

b

o
e o —Q..

o

N

/*
Analysis of the data selected by the query
*/

LOOP
FETCH selectedSuppliers INTO codeS, NumEmployees;
/*
Exit from the cycle when there are no more tuples to check
*/
EXIT WHEN selectedSuppliers%NOTFOUND;

DBMS_OUTPUT.PUT_LINE(codeS||','| INumEmployees);
END LOOP;

/*
Cursor closing
*/

CLOSE selectedSuppliers;
! END; — Cursor closing

SQL for applications

Comparison of alternatives

>~ The techniques proposed for the integration of the
SQL language with applications have different
features

>~ There is no winner: no one approach is always
better than the others

® it depends on the type of application

® it depends on the characteristics of the databases
® distributed, heterogeneous

>~ Mixed solutions may be adopted

® invoking a stored procedure through CLI or
embedded SQL

DE\G 167

>~ Embedded SQL

® (+) it precompiles static SQL queries
® more efficient

® (-) it depends on the adopted DBMS and operating
system

® due to the presence of a compiler

® (-) it normally does not allow access to multiple
databases at the same time

® or it is a complex operation

D“B/\G 168

>~ Call Level Interface

® (+) independent of the adopted DBMS

® only at compile time

® the communication library (driver) implements a
standard interface

® the internal mechanism depends on the DBMS

® the driver is loaded and invoked dynamically at
runtime

® (+) it does not require a precompiler

D“B/\G 169

>~ Call Level Interface

® (+) it allows access to multiple databases from
within the same application

® databases may be heterogeneous
® (-) it uses dynamic SQL
® |ower efficiency
® (-) it usually supports a subset of the SQL language

DE\G 170

> Stored procedures
® (+) greater efficiency
® it exploits the tight integration with the DBMS
® it reduces data exchange over the network
® procedures are precompiled

DE\G 171

>~ Stored procedures

® (-) they depend on the DBMS
® use of the DBMS ad-hoc language
® usually not portable from one DBMS to another
® (-) languages offer fewer functionalities than
traditional languages

® no functions available to create complex data
visualizations of results

® graphs and report
® limited input management

D“B/\G 172

> Client-side approaches

® (+) based on traditional programming language
® well known to programmers
® more efficient compilers

® wide range of input and output management
functions

® (+) greater independence from the adopted DBMS
when writing code

® only true of CLI-based approaches
® (+) possibility to access heterogeneous databases

DE\G 173

> Client-side approaches

® (-) lower efficiency
® |ower degree of integration with the DBMS

® compilation of SQL commands at runtime
® especially for CLI-based approaches

DE\G 174

