

ETL Process

Elena Baralis Politecnico di Torino

DBG

Extraction, Transformation and Loading (ETL)

- Prepares data to be loaded into the data warehouse
 - data extraction from (OLTP and external) sources
 - data cleaning
 - data transformation
 - data loading
- Eased by exploiting the staging area
- Performed
 - when the DW is first loaded
 - during periodical DW refresh

Extraction

- Data acquisition from sources
- Extraction methods
 - static: snapshot of operational data
 - performed during the first DW population
 - incremental: selection of updates that took place after last extraction
 - exploited for periodical DW refresh
 - immediate or deferred
- The selection of which data to extract is based on their quality

Extraction

- It depends on how operational data is collected
 - historical: all modifications are stored for a given time in the OLTP system
 - bank transactions, insurance data
 - operationally simple
 - partly historical: only a limited number of states is stored in the OLTP system
 - operationally complex
 - transient: the OLTP system only keeps the current data state
 - example: stock inventory
 - operationally complex

Incremental extraction

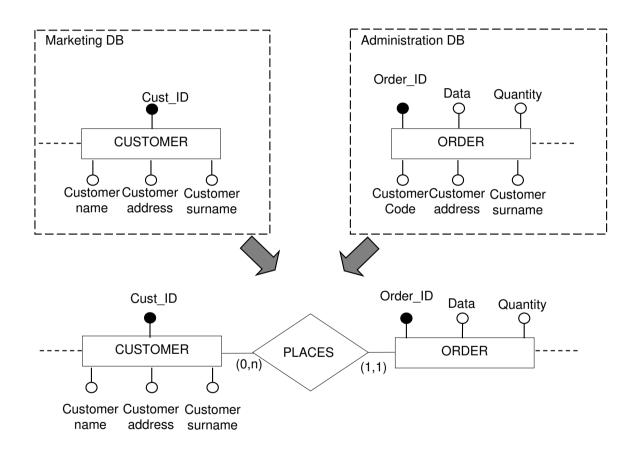
- Application assisted
 - data modifications are captured by ad hoc application functions
 - requires changing OLTP applications (or APIs for database access)
 - increases application load
 - hardly avoidable in legacy systems
- Log based
 - log data is accessed by means of appropriate APIs
 - log data format is usually proprietary
 - efficient, no interference with application load

Incremental extraction

- Trigger based
 - triggers capture interesting data modifications
 - does not require changing OLTP applications
 - increases application load
- Timestamp based
 - modified records are marked by the (last) modification timestamp
 - requires modifying the OLTP database schema (and applications)
 - deferred extraction, may lose intermediate states if data is transient

Data cleaning

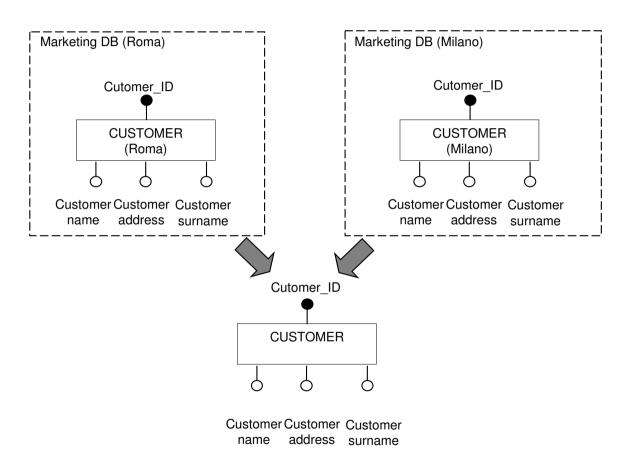
- Techniques for improving data quality (correctness and consistency)
 - duplicate data
 - missing data
 - unexpected use of a field
 - impossible or wrong data values
 - inconsistency between logically connected data
- Problems due to
 - data entry errors
 - different field formats
 - evolving business practices



Data cleaning

- Each problem is solved by an ad hoc technique
 - data dictionary
 - appropriate for data entry errors or format errors
 - can be exploited only for data domains with limited cardinality
 - approximate fusion
 - · appropriate for detecting duplicates/similar data correlations
 - approximate join
 - purge/merge problem
 - outlier identification, deviations from business rules
- Prevention is the best strategy
 - reliable and rigorous OLTP data entry procedures

Approximate join



 The join operation should be executed based on common fields, not representing the customer identifier

From Golfarelli, Rizzi,"Data warehouse design", McGraw Hill

Purge/Merge problem

- Duplicate tuples should be identified and removed
- A criterion is needed to evaluate record similarity

From Golfarelli, Rizzi,"Data warehouse design", McGraw Hill DATA WAREHOUSE: DESIGN - 10

Data cleaning and transformation example

DMC

Elena Baralis C.so Duca degli Abruzzi 24 20129 Torino (I)

Normalization

name: surname: address: ZIP:

address: ZIP: city: country: Elena Baralis

C.so Duca degli Abruzzi 24

20129 Torino

name: Elena surname: Baralis

address: Corso Duca degli Abruzzi 24

ZIP: 20129 city: Torino country: Italia

Standardization

name: Elena surname: Baralis

address: Corso Duca degli Abruzzi 24

ZIP: 10129 city: Torino

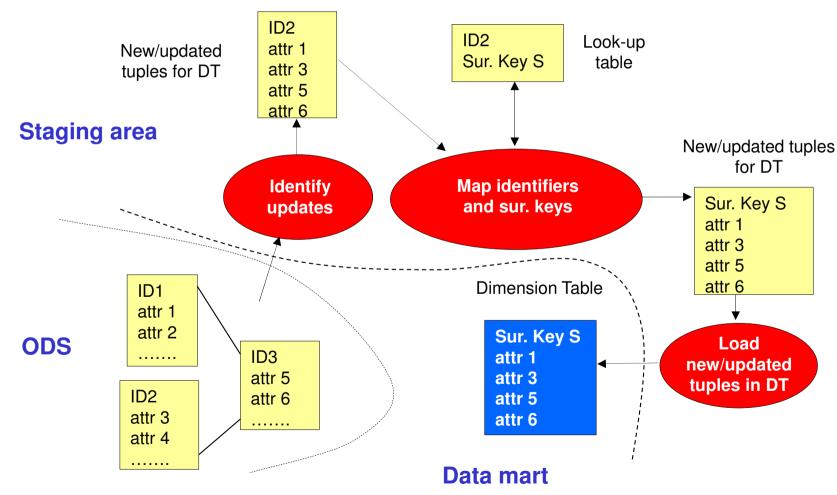
country: Italia

Adapted from Golfarelli, Rizzi,"Data warehouse design", McGraw Hill

DBG

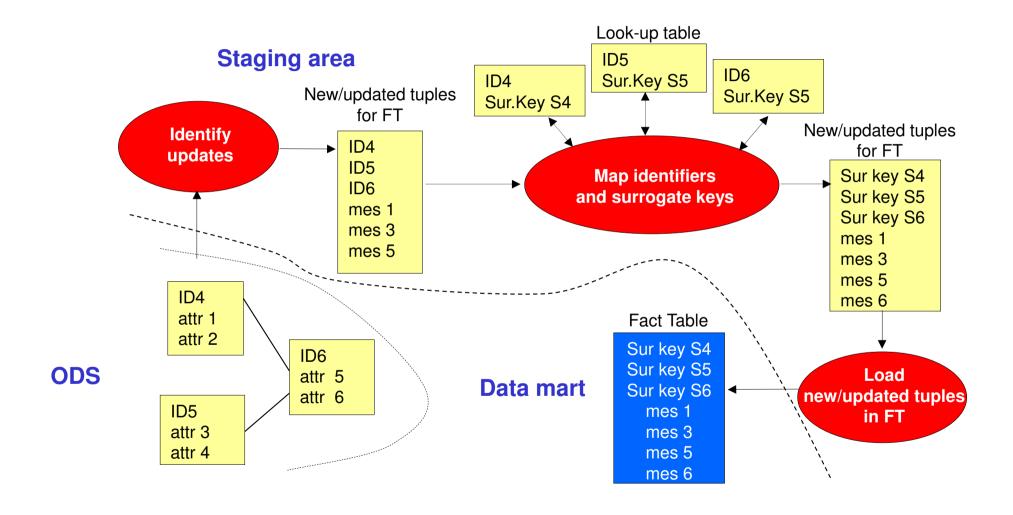
Transformation

- Data conversion from operational format to data warehouse format
 - requires data integration
- A uniform operational data representation (reconciled schema) is needed
- Two steps
 - from operational sources to reconciled data in the staging area
 - conversion and normalization
 - matching
 - (possibly) significant data selection
 - from reconciled data to the data warehouse
 - surrogate keys generation
 - aggregation computation



Data warehouse loading

- Update propagation to the data warehouse
- Update order that preserves data integrity
 - 1. dimensions
 - 2. fact tables
 - 3. materialized views and indices
- Limited time window to perform updates
- Transactional properties are needed
 - reliability
 - atomicity


Dimension table loading

From Golfarelli, Rizzi,"Data warehouse design", McGraw Hill

Fact table loading

From Golfarelli, Rizzi,"Data warehouse design", McGraw Hill