
Introduction to Databases
Web applications in Python to query a database

Practice n. 5

The goal of this practice is to develop a simple web application based on Python, capable of
inserting and modifying the content of a database.

Preliminary steps
This practice makes use of the Flask web server and the MySQL database, offered respectively
by Python and XAMPP. In order to carry out this practice, both services must be started.

Boot MySQL server on localhost and start Apache
The execution of scripts with SQL commands for the creation and population of the database
will be performed through the Web interface of MySQL. Before opening the Web interface of
MySQL it is necessary to:

• Start the local Apache server;

• Start the local MySQL server.

Specifically, execute the following steps:

1. Start "XAMPP Control Panel".

1



2. Start Apache clicking the Start button in the row of "Apache" module.

3. Start MySQL clicking the Start button in the row of "MySQL" module.

4. Open the MySQL Web interface clicking the Admin button in the row of "MySQL" module
(the browser will automatically open the URL associated to the page of administration
and SQL querying, i.e., phpMyAdmin).

5. To execute a SQL script from the Web interface of MySQL:

• Select the "Import" panel.

• Select the file with the script you want to execute and click on "Go" button.

6. To execute the creation/population script more than once, you need to cancel any existing
instance of the database, either directly from the "Database" panel or by including at the
beginning of the script the commands for deleting the existing tables.

Creation and population of the database
The database used during this practice is the same as the one you created during the previous
practice. The database is named GYM and it is about the activities in a gym. It is described
by the following logical schema (primary keys are underlined, foreign keys are in italic, and
optional attributed are denoted with *):

• TRAINER(SSN, Name, Surname, DateOfBirth, Email, PhoneNo*)

• COURSE(CId, Name, Type, Level)

• SCHEDULE (SSN, Day, StartTime, Duration, CId, GymRoom)

Create the GYM database and populate it using the createDB.sql and populateDB.sql scripts
found on the course’s website.

2



After the execution of the scripts, the tables will contain the following data:

Publishing/loading a dynamic web page

In order to publish a dynamic web page connected to a database through Python, it’s necessary
to install Flask, SQLAlchemy and the necessary dependencies.

• install flask

• install sqlalchemy

• install mysqlclient

Provided you have pip installed and working (please verify how to use it on your specific
operative system), you can install everything with the following command:

pip install Flask SQLAlchemy mysqlclient

3



Exercises
Develop a web application in Python capable of updating the GYM database through the web.

1. Inserting new courses. Create a web page containing a form which requires all the
necessary data to insert a new course in the database (CId, Name, Type, Level).

• The application must verify that all fields have been inserted, and the Level field is
an integer number between 1 and 4.

If a field is missing, or a key is duplicated, or the value of the Level field is outside the
acceptable range, an error message must be displayed. Else, if all the fields are correct
and the insert operation succeeds, a success message must be displayed.

Figure 1 and Figure 2 show an example of the usage of the current functionality to insert
new courses.

2. Inserting a new weekly lesson in the schedule. Create a dynamic web page in Python
containing a form that allows to insert a new weekly lesson in the SCHEDULE table.
The form must allow to insert all the necessary fields (SSN, Day, StartTime, Duration,
CId, GymRoom) regarding the scheduling of a new lesson.

• The selection of the trainer must happen using a dropdown menu containing
Surname, Name, and SSN of the various instructors contained in the database.

• Similarly, the selection of the course also has to happen using a dropdown menu
populated with data contained in the database.

• The other fields instead are simple textual field populated manually by the user.

• The application must verify that the user isn’t trying to insert a lesson longer than
60 minutes, and that the inserted day is between Monday and Friday (no weekend).

• The insertion of a new lesson in the schedule has to be allowed and executed if, and
only if, there are no other lessons of the same course in the same day of the week.

If the request respects all constraints and the insert operation succeeds, a success message
must be displayed, else an error message must be displayed (the error message must
include the type of problem that caused the error)

Warning: the SQL query that verifies if a lesson of a course isn’t already scheduled for
the same day has to be part of the same transaction as the insert operation (otherwise,
problems might arise if different users try to insert multiple lessons for the same course
on the same day concurrently).

Figure 3 and Figure 4 show an example of the usage of the current functionality to insert
new weekly lessons.

4



Figure 1: Form example for ex. 1 Figure 2: Outcome example for ex. 1

Figure 3: Form example for ex. 2 Figure 4: Outcome example for ex. 2

5


