
DB
MG

SQL for applications

DB
MG 2

Call Level Interface

Requests are sent to the DBMS by means of
functions offered by the guest language

solution based on predefined interfaces

API, Application Programming Interface

SQL instructions are passed as parameters of the
functions of the guest language

there is no concept of precompilation

The guest program directly contains the calls
made to the functions offered by the API

DB
MG 3

Call Level Interface

There exist many different solutions of type Call
Level Interface (CLI)

standard SQL/CLI

ODBC (Open DataBase Connectivity)

proprietary Microsoft solution for SQL/CLI

JDBC (Java Database Connectivity)

Solution for the Java environment

OLE DB

ADO

ADO.NET

DB
MG 4

Usage

Regardless of the CLI solution adopted, there is a
common structure in the way they interact with
the DBMS

opening the connection to the DBMS

executing SQL instructions

closing the connection

DB
MG 5

DBMS interaction

1. Call an API primitive to create a connection to
the DBMS

DB
MG 6

DBMS interaction

1. Call an API primitive to create a connection to
the DBMS

2. Send an SQL instruction on the connection

DB
MG 7

DBMS interaction

1. Call an API primitive to create a connection to
the DBMS

2. Send an SQL instruction on the connection

3. Receive a result in response of the sent
instruction

when using SELECT, result is a set ot tuples

DB
MG 8

DBMS interaction

1. Call an API primitive to create a connection to
the DBMS

2. Send an SQL instruction on the connection

3. Receive a result in response of the sent
instruction

when using SELECT, result is a set ot tuples

4. Process the obtained result

there are specific functions to read the result

DB
MG 9

DBMS interaction

1. Call an API primitive to create a connection to
the DBMS

2. Send an SQL instruction on the connection

3. Receive a result in response of the sent
instruction

when using SELECT, result is a set ot tuples

4. Process the obtained result

there are specific functions to read the result

5. Close the connection once the working session is
over

DB
MG

ODBC (Open DataBase Connectivity)

Standard method to access a database

Goal: make the access protocol independent of the
kind of database used

Python offers the developer a library to access a
database through ODBC

Access methods tailored for a specific DBMS

MySQL, Postgres, Microsoft SQL server, …

Python offers the developer specific libraries for
most DBMS

10

DBMS interaction

DB
MG

SQL for applications

SQLAlchemy functions for Flask

DB
MG

MySQLi extension

SQLAlchemy is a Python library that allows to
interact with databases in an efficient way

Supported functionalities

DB connection

Data reading and acquisition

Support for stored procedures, multiple queries
and transactions

12

DB
MG

Creating a connection

Call the create_engine() function

Starting point of applications using SQLAlchemy, it allows to specify the
connection details

It requires five parameters

dialect: name of the language that will be used in the connection

username: name of the user in the database

password: password of the user

host: name of the machine that hosts the DBMS

dbname: name of the DB

It returns a connection identifier

13

from sqlalchemy import create_engine

dialect = "mysql"
username="root"
password=""
host="127.0.0.1"
dbname = "Opere"
#Connection object creation
engine = create_engine("%s://%s:%s@%s/%s"%(dialect,username,password,host,dbname))

DB
MG

Connection to the DB

Call the connect() function

When invoked, SQLAlchemy creates the connection to the DB

It uses the connection identifier returned by create_engine()

It returns a connection identifier

If successful, it returns an active connection

If unsuccessful, it raises an exception

14

#Connection object creation
con = engine.connect()

DB
MG

Errors handling

Example including the handling of possible connection errors

Try: instructions to be always executed

Except: instructions to be executed only in case of exceptions raised
during the execution of instructions inside the try

SQLAlchemyError: allows to obtain a string containing the error to be
visualized

15

host = "127.0.0.1"
dbname = "Opere2"

from sqlalchemy import create_engine
from sqlalchemy.exc import SQLAlchemyError

dialect = "mysql"
username="root"
password=""
host="127.0.0.3"
dbname = "Opere"
#Connection object creation
engine = create_engine("%s://%s:%s@%s/%s"%(dialect,username,password,host,dbname))

try:
con = engine.connect()

except SQLAlchemyError as e:
error = str(e.__dict__["orig"])

DB
MG

Closing a connection

Must be executed when it’s not needed to
interact with the DBMS anymore

It closes the connection to the DBMS and releases
the corresponding resources

Call the close() function

It uses the connection identifier returned by the
connect() function

16

#Close the DB connection
con.close()

DB
MG

Execution of SQL instructions

Immediate execution

The server compiles and immediately execute the
received SQL instruction

“Prepared” execution – [Not easy with SQLAlchemy]

The SQL instruction

Is compiled (prepared) once, and its execution plan
is memorized by the DBMS

Is executed many times during the session

Useful when the same SQL instruction has to be
executed many times in the same working session

only the value of some parameters changes

17

DB
MG

Immediate execution

Call the execute() function

It uses the connection identifier returned by the
connect() function

It requires as parameter the SQL query to be
executed, in string format

If successful, it returns the result of the query,
else it raises an exception

Example:

18

#QUERY SQL
query = "SELECT autore.cognome, opera.nome\

FROM autore, opera\
WHERE autore.coda = opera.autore"

result = con.execute(query)

DB
MG

Reading the result, SQLAlchemy

The result of the execute() function is stored in a
variable of type “cursor”

A special variable, that contain the result of the
query

It’s possible to retrieve the header of a table using
the keys() function on the result

Reading the result is done row by row by means
of the cursor

19

NomeF NSoci

Andrea 2

Gabriele 2

Cursor

Header

DB
MG

Reading the result, Jinja2

The result is passed to Jinja2 for visualization as an
array made of rows

It’s possible to iterate on rows as if they were arrays

Each row is coded as a tuple of values
representing the attributes requested in the SELECT

It’s possible to read tuple as

arrays

dictionaries

20

{% for opera in values %}
<tr>
{% for field in opera %}

<td> {{ field }} </td>
{% endfor %}

</tr>
{% endfor %}

{% for opera in values %}
<tr>

<td> {{ opera["cognome"] }} </td>
<td> {{ opera["nome"] }} </td>

</tr>
{% endfor %}

DB
MG

Visualizing the result

21

It’s possible to pass to Jinja2 different arrays to
specify the header of the table and its content

<table>
<tr>
{% for field in header %}

<td> {{ field }} </td>
{% endfor %}

</tr>
{% for opera in values %}
<tr>
{% for field in opera %}

<td> {{ field }} </td>
{% endfor %}

</tr>
</table>

try:
con = engine.connect()
query = "SELECT autore.cognome, opera.nome\

FROM autore, opera\
WHERE autore.coda = opera.autore"

result = con.execute(query)
header = result.keys()

return render_template("opere.html", annoDa=annoDa, annoA=annoA,citta=citta, header= header, values=result)
except SQLAlchemyError as e:

error = str(e.__dict__["orig"])
return render_template("errore.html", error_message=error)

DB
MG

Transactions

Connections are implicitly created in auto-commit
mode

After the successful execution of each SQL
instruction, a commit is automaticaly executed

Whenever it’s necessary to commit exclusively
after having succesfully executed a sequence of
SQL instructions

The commit has to be managed in a non-
automated way

A single commit is executed once every instruction
has been performed

22

DB
MG

Managing transactions

Call the begin() function

When invoked, SQLAlchemy initializes a
transaction and disables the auto-commit

If successful, it returns an active transaction

If unsuccessful, it raises an exception

It uses the connection identifier returned by the
connect() function

23

#Initialize a new transaction
trans = con.begin()

DB
MG

Managing transactions

If the auto-commit is disabled, commit and rollback
operations must be explicitly requested

They use the transaction identifier returned by the
begin() function

commit ()

Executes the commit of the current transaction

If unsuccessful, it raises an exception

rollback ()

Executes the rollback of the current transaction

If unsuccessful, it raises an exception

24

#Commits the operations
trans.commit()

#Rollback the operations
trans.rollback()

DB
MG

Managing transactions

If the auto-commit is disabled, commit and rollback
operations must be explicitly requested

They use the transaction identifier returned by the
begin() function

Using the with construct, SQLAlchemy automatically
handles the commit and rollback

Executes the commit if successful

Executes the rollback if unsuccessful, and raises an
exception

25

#Initialize a transaction and Commit or Rollback
with con.begin() as trans:

#... SQL and SQLAlchemy code ...

