SQL for applications

Call Level Interface (CLI)

>~ Requests are sent to the DBMS by means of
functions offered by the guest language

® solution based on predefined interfaces
® API, Application Programming Interface

® SQL instructions are passed as parameters of the
functions of the guest language

® there is no concept of precompilation

>~ The guest program directly contains the calls
made to the functions offered by the API

>~ There exist many different solutions of type Call
Level Interface (CLI)

® standard SQL/CLI

® ODBC (Open DataBase Connectivity)
® proprietary Microsoft solution for SQL/CLI

® JDBC (Java Database Connectivity)
® Solution for the Java environment

® OLE DB
® ADO
® ADO.NET

> Regardless of the CLI solution adopted, there is a
common structure in the way they interact with
the DBMS

® opening the connection to the DBMS
® executing SQL instructions
® closing the connection

a == -
= ~
- o e

MS interaction

1. Call an API primitive to create a connection to
the DBMS

1. Call an API primitive to create a connection to
the DBMS

2. Send an SQL instruction on the connection

. Call an API primitive to create a connection to
the DBMS

. Send an SQL instruction on the connection

. Receive a result in response of the sent
instruction

® when using SELECT, result is a set ot tuples

. Call an API primitive to create a connection to
the DBMS

. Send an SQL instruction on the connection

. Receive a result in response of the sent
instruction

® when using SELECT, result is a set ot tuples

. Process the obtained result

® there are specific functions to read the result

. Call an API primitive to create a connection to
the DBMS

. Send an SQL instruction on the connection

. Receive a result in response of the sent
instruction

® when using SELECT, result is a set ot tuples

. Process the obtained result

® there are specific functions to read the result

. Close the connection once the working session is
over

>~ ODBC (Open DataBase Connectivity)
® Standard method to access a database

® Goal: make the access protocol independent of the
kind of database used

® Python offers the developer a library to access a
database through ODBC

>~ Access methods tailored for a specific DBMS
® MySQL, Postgres, Microsoft SQL server, ...

® Python offers the developer specific libraries for
most DBMS

SQLAlchemy functions for Flask

)
c
=
whd
s
=
[
o
©
o
S
i
o
7!

>~ SQLAIchemy is a Python library that allows to
interact with databases in an efficient way

>~ Supported functionalities
® DB connection

® Data reading and acquisition

® Support for stored procedures, multiple queries
and transactions

> Call the create_engine() function

® Starting point of applications using SQLAlchemy, it allows to specify the
connection details

> It requires five parameters

dialect: name of the language that will be used in the connection
username: name of the user in the database

password: password of the user

host: name of the machine that hosts the DBMS

dbname: name of the DB

> It returns a connection identifier

(from sqlalchemy import create engine

dialect "mysql"

username="root"

password=""

host="127.0.0.1"

dbname = "Opere"

#Connection object creation

\engine = create_engine("%s://%s:%s@%s/%s"%(dialect,username,password,host,dbname)) |

>~ Call the connect() function
® \When invoked, SQLAlchemy creates the connection to the DB
® It uses the connection identifier returned by create_engine()

>> It returns a connection identifier
® [f successful, it returns an active connection
® If unsuccessful, it raises an exception

#Connection object creation
con = engine.connect()

>> Example including the handling of possible connection errors
® Try: instructions to be always executed

® Except: instructions to be executed only in case of exceptions raised
during the execution of instructions inside the try

® SQLAlchemyError: allows to obtain a string containing the error to be
visualized

@rom sqlalchemy import create_engine £ 2883
from sqlalchemy.exc import SQLAlchemyError '

., "Can't connect to MySOL server on '

dialect "mysql”
username="root"
password=""
host="127.0.0.3"]
dbname = "Opere" host="127.0.0.1"
#Connection object creation dbname = "Opere2"
engine = create_engine("%s://%s:%s@%s/%s"%(dialect,username,password,host,dbname))

try:
con = engine.connect()
except SQLAlchemyError as e:
_ error = str(e.__dict_ ["orig"])

DHG

host = "127.0.0.1" {1849, "Unknown datobase "Opered"")
dbname = "Opere2"

> > Must be executed when it's not needed to
interact with the DBMS anymore

® It closes the connection to the DBMS and releases
the corresponding resources

>~ Call the close() function

® [t uses the connection identifier returned by the
connect() function

##Close the DB connection
con.close()

> Immediate execution

® The server compiles and immediately execute the
received SQL instruction

>~ “"Prepared” execution — [Not easy with SQLAIchemy]

® The SQL instruction

® Is compiled (prepared) once, and its execution plan
is memorized by the DBMS

® Is executed many times during the session
® Useful when the same SQL instruction has to be
executed many times in the same working session
® only the value of some parameters changes

h

,'_fﬁf:’axi1.3E:ﬂiiE!§==E!!.}!!!E..-;‘&~;\ ;‘ ;%ﬁyf.‘%;fj

Immediate execution

>~ Call the execute() function

® [t uses the connection identifier returned by the
connect() function

® [t requires as parameter the SQL query to be
executed, in string format

® If successful, it returns the result of the query,
else it raises an exception

>~ Example: [#QUERY SQL

query = "SELECT autore.cognome, opera.nome\
FROM autore, opera\
WHERE autore.coda = opera.autore”

result = con.execute(query)

>~ The result of the execute() function is stored in a
variable of type “cursor”
® A special variable, that contain the result of the
query
® [t's possible to retrieve the header of a table using
the keys() function on the result

>~ Reading the result is done row by row by means
of the cursor

NomeF | NSoci |+ Header
Andrea 2 «—— Cursor

Gabriele 2 Crereres

. taben. . — { ’ - ==
e S

Reading the result, Jinja2

>~ The result is passed to Jinja2 for visualization as an
array made of rows

® [t's possible to iterate on rows as if they were arrays

>~ Each row is coded as a tuple of values
representing the attributes requested in the SELECT

® [t's possible to read tuple as

{% for opera in values %}

<tr>
. arrays {%r‘for‘ field in opera %}
<td> {{ field }} </td>
{% endfor %}

</tr>
{% endfor %}

. dictiona ries {% for opera in values %}

<tr>
<td> {{ opera["cognome"] }} </td>
<td> {{ opera["nome"] }} </td>

D B G {%<2E;;or‘ %} 20

> It's possible to pass to Jinja2 different arrays to
specify the header of the table and its content

-
try:
con = engine.connect()
query = "SELECT autore.cognome, opera.nome\
FROM autore, opera\
WHERE autore.coda = opera.autore”

result = con.execute(query)
[header = result.keys()]

return render_template("opere.html”, annoDa=annoDa, annoA=annoA,citta=citta, |header= header]lvalues=result)|

except SQLAlchemyError as e:
error = str(e.__dict_ ["orig"])
return render_template("errore.html”, error_message=error)

o
<ti$rl,f> cognome nome
{% for field in header %} ..
<td> {{ field }} </td> Bernini Apollo e Dafne
% endfor % .))
< /‘Er‘> : Bernini Baldacchino S.Pietro
{% for opera in values %} . . .
<tr> Bernini Fontana dei fiumi
{% for field in opera %} o)
<td> {{ field }} </td> Borromini S.Ivo la Sapienza
B {% endfor %}
</tr>
</table>

21

Transactions

>~ Connections are implicitly created in auto-commit
mode

® After the successful execution of each SQL
instruction, a commit is automaticaly executed

> Whenever it's necessary to commit exclusively
after having succesfully executed a sequence of
SQL instructions

® The commit has to be managed in a non-
automated way

® A single commit is executed once every instruction
has been performed

-y -
‘ . ot

X q' , igpen - - 4 ——
i, i ‘Q&\ ~ -

.

Managing transactions

>~ Call the begin() function

® \When invoked, SQLAIchemy initializes a
transaction and disables the auto-commit

® If successful, it returns an active transaction
® If unsuccessful, it raises an exception

® [t uses the connection identifier returned by the
connect() function

#Initialize a new transaction
trans = con.begin()

> If the auto-commit is disabled, commit and rollback
operations must be explicitly requested

® They use the transaction identifier returned by the

begin() function : :
i #Commits the operations
2> commit () trans.commit()

® Executes the commit of the current transaction
® If unsuccessful, it raises an exception

#Rollback the operations
2~ rollback () trans.rollback()

® Executes the rollback of the current transaction
® If unsuccessful, it raises an exception

DHG 24

> If the auto-commit is disabled, commit and rollback
operations must be explicitly requested

® They use the transaction identifier returned by the
begin() function

>~ Using the with construct, SQLAlIchemy automatically
handles the commit and rollback

® Executes the commit if successful

® Executes the rollback if unsuccessful, and raises an
exception

##Initialize a transaction and Commit or Rollback
with con.begin() as trans:
#... SQL and SQLAlchemy code ...

