

Distributed architectures for big data processing and analytics

June 27, 2022

Student ID __

First Name __

Last Name __

The exam lasts 90 minutes

Part I

Answer to the following questions. There is only one right answer for each question.

 1. (2 points) Consider the following Spark application.

Read input file

inputRDD = sc.textFile("TemperatureReadings.txt")

Select the content of the field temperature

tempsRDD = inputRDD.map(lambda line: float(line.split(",")[1]))

Print on the standard output of the driver the total number of input lines

print("Total number of lines: " + str(inputRDD.count()))

Print on the standard output of minimum temperature

print("Min. temperature: " + str(tempsRDD.reduce(lambda t1,t2: min(t1,t2))))

Print on the standard output of maximum temperature

print("Max. temperature: " + str(tempsRDD.reduce(lambda t1,t2: max(t1,t2))))

Select high temperatures

highTempsRDD = tempsRDD.filter(lambda temp: temp>35)

Store the content of highTempsRDD

highTempsRDD.saveAsTextFile("outputFolderHigh/")

Select low temperatures

lowTempsRDD = tempsRDD.filter(lambda temp: temp<-15)

Store the content of lowTempsRDD

lowTempsRDD.saveAsTextFile("outputFolderLow/")

Suppose the input file TemperatureReadings.txt is read from HDFS. Suppose you

execute this Spark application only 1 time. Which one of the following statements is

true?

 a) This application reads the content of TemperatureReadings.txt 1 time

 b) This application reads the content of TemperatureReadings.txt 3 times

 c) This application reads the content of TemperatureReadings.txt 5 times

 d) This application reads the content of TemperatureReadings.txt 8 times

 2. (2 points) Consider the following Spark Streaming applications.

from pyspark.streaming import StreamingContext

Create a Spark Streaming Context object

ssc = StreamingContext(sc, 10)

Create a (Receiver) DStream that will connect to localhost:9999

inputDStream = ssc.socketTextStream("localhost", 9999)

Part A

Define windows and map input strings to integers

inputAWindowDStream = inputDStream\

.window(30, 10)\

.map(lambda value: int(value))

#Apply a filter

filteredADStream = inputAWindowDStream.filter(lambda value: value>5)

Compute the maximum value and then a filter

resADStream = filteredADStream.reduce(lambda v1,v2:max(v1,v2))\

.filter(lambda value: value<10)

Print the result on standard output

resADStream.pprint()

Part B

Map input strings to integers

inputBDStream = inputDStream\

.map(lambda value: int(value))

#Apply a filter, compute max, define windows

filteredBDStream = inputBDStream.filter(lambda value: value>5)\

.reduce(lambda v1,v2:max(v1,v2))\

.window(30, 10)

Compute the maximum value again and finally apply another filter

resBDStream = filteredBDStream.reduce(lambda v1,v2:max(v1,v2))\

.filter(lambda value: value<10)

Print the result

resBDStream.pprint()

Part C

Map input strings to integers and define windows

inputCWindowDStream = ssc.socketTextStream("localhost", 9999)\

.map(lambda value: int(value))\

.window(30, 10)

Apply a filter and then compute the maximum value

maxCWindowDStream = inputCWindowDStream.filter(lambda value: value>5)\

.reduce(lambda v1,v2:max(v1,v2))

#Apply a filter

resCDStream = maxCWindowDStream.filter(lambda value: value<10)

Print the result

resCDStream.pprint()

ssc.start()

ssc.awaitTerminationOrTimeout(360)

ssc.stop(stopSparkContext=False)

d

 Which one of the following statements is true?

 a) Independently of the content of inputDStream, resADStream, resBDStream, and

resCDStream contain always the same integer values.

 b) Independently of the content of inputDStream, resADStream and resBDStream

contain always the same integer values, while resCDStream may contain different

integer values with respect to resADStream and resBDStream.

 c) Independently of the content of inputDStream, resADStream and resCDStream

contain always the same integer values, while resBDStream may contain different

integer values with respect to resADStream and resCDStream.

 d) Independently of the content of inputDStream, resBDStream and resCDStream

contain always the same integer values, while resADStream may contain different

integer values with respect to resBDStream and resCDStream.

Part II
PoliDataCenters is a company that manages several data centers located around the

world. The staff of PoliDataCenters logs data about the managed servers, the available

patches for each operating system, and the applied patches. The analyses of interest are

based on the following input data sets/files.

 Servers.txt

o Servers.txt is a text file containing the list of servers managed by

PoliDataCenters. Each line of Servers.txt is associated with one server.

PoliDataCenters manages millions of servers.

o Each line of Servers.txt has the following format

 SID,OperatingSystem,Model

where SID is the unique identifier of the server while OperatingSystem

is its operating system and Model is its model.

 For example, the following line

S10,Ubuntu6,SunUltraServer1

means that the server identified by the SID S10 has the operating

system Ubuntu6 and is a SunUltraServer1 server.

 Patches.txt

o Patches.txt is a textual file containing the information about the patches of

more than 100 operating systems. There are millions of patches in this file.

o Each line of Patches.txt has the following format

 PID,ReleaseDate,OperatingSystem

where PID is the patch identifier, ReleaseDate is the date on which

the patch was released, and OperatingSystem is the operating system

for which the patch was released.

 For example, the following line

PIDW10_22,2022/01/18,Ubuntu6

means that the patch with id PIDW10_22, which is a patch for Ubuntu6,

was released on January 18, 2022.

 AppliedPatches.txt

o AppliedPatches.txt is a textual file containing the information about which

patches were applied on each server in the last 30 years.

o Each line of AppliedPatches.txt has the following format

 PID,SID, Date

where PID is the identifier of the applied patch, SID is the identifier of

the server on which the patch PID was applied, and Date is the date

associated with the application of PID on SID.

Each line of AppliedPatches.txt is uniquely identified by the primary

key (PID,SID). Each patch can be applied to many servers and each

server can be associated with many patches but the same

combination (PID,SID) occurs at most one time in AppliedPatches.txt.

Moreover, the data are correct and hence each server was patched

only with patches associated with its operating system.

 For example, the following line

PIDW10_22,S10,2022/02/21

means that the patch with id PIDW10_22 was applied on the server with

SID S10 on February 21, 2022.

Exercise 1 – MapReduce and Hadoop (8 points)

Exercise 1.1

The managers of PoliDataCenters are interested in performing some analyses about the

applied patches.

Design a single application, based on MapReduce and Hadoop, and write the

corresponding Java code, to address the following point:

1. Last applied patch in the year 2022 for each server. The application considers only

the servers to which it was already applied at least one patch in the year 2022, and
selects for each of those servers the PID of the last applied patch in the year 2022
(the last one in terms of application Date). Store in the output HDFS folder for each

server its SID and the PID of the last applied patch (one pair (SID,PID) per output
line).

Suppose that the input is AppliedPatches.txt and has been already set. Suppose that also

the name of the output folder has been already set.

 Write your code on your papers.

 Write only the content of the Mapper and Reducer classes (map and reduce

methods. setup and cleanup if needed). The content of the Driver must not be
reported.

 Use the following two specific multiple-choice questions (Exercises 1.2 and 1.3) to

specify the number of instances of the reducer class for each job.

 If your application is based on two jobs, specify which methods are associated with

the first job and which are associated with the second job.

 If you need personalized classes, report for each of them:

o the name of the class
o attributes/fields of the class (data type and name)
o personalized methods (if any), e.g., the content of the toString() method if

you override it

Answer the following two questions to specify the number of jobs (one or two) and

the number of instances of the reducer classes.

Exercise 1.2 - Number of instances of the reducer - Job 1

Select the number of instances of the reducer class of the first Job

 (a) 0

 (b) exactly 1

 (c) any number >=1 (i.e., the reduce phase can be parallelized)

Exercise 1.3 - Number of instances of the reducer - Job 2

Select the number of instances of the reducer class of the second Job

 (a) One single job is needed

 (b) 0

 (c) exactly 1

 (d) any number >=1 (i.e., the reduce phase can be parallelized)

Exercise 2 – Spark and RDDs (19 points)

The managers of PoliDataCenters asked you to develop one single application to address

all the analyses they are interested in. The application has five arguments: the input files
Servers.txt, Patches.txt, and AppliedPatches.txt, and two output folders “outPart1/” and
“outPart2/”, which are associated with the outputs of the following Points 1 and 2,

respectively. Specifically, design a single application, based on Spark RDDs or Spark
DataFrames, and write the corresponding Python code, to address the following points:

1. Server(s) with the maximum number of applied patches in the year 2022. This first part

of the application considers only the servers to which it was applied at least one patch
in the year 2022, and selects the server(s) with the maximum number of applied

patches in the year 2022. For the selected server(s), store in the first HDFS output
folder its identifier (SID) and its operating system.
Pay attention that many servers can be associated with the maximum number of

applied patches in the year 2022. Store SID and the operating system of all the
selected servers (one combination (SID, operating system) per output line).

2. Up-to-date servers. This second part of the application selects up-to-date servers. A

server is up-to-date if all the patches available for its operating system were applied to
it. The identifiers (SIDs) of the selected servers are stored in the second HDFS output

folder (one SID per output line).
Pay attention. Also the servers with an operating system for which there are no
patches are considered up-to-date and must be selected and stored in the second

output folder. For instance, suppose that server SID10 has the operating system
Ubuntu30 and suppose that there are no patches for Ubuntu30 in Patches.txt. SID10 is
stored in the second output folder because it is up-to-date.

Examples Point 2

 First example. Suppose that there are three servers: SID53, SID4, and SID20.

Suppose that Windows10 is installed on SID53 and SID4 and Ubuntu10 is
installed on SID20. Suppose that the total number of available patches for

Windows10 is 20 and for Ubuntu10 is 34. Suppose the number of patches
applied on SID53 is 20, the number of patches applied on SID4 is 15, and the
number of patches applied on SID20 is 20. Only server SID53 is selected

because it has all the patches of its operating system.

 Second example. Suppose that there are three servers: SID10, SID50, and

SID100. Suppose that Windows9 is installed on SID10 and SID50 and Ubuntu12

is installed on SID100. Suppose that the total number of available patches for
Windows9 is 20 and for Ubuntu12 is 0 (no patches available). Suppose the
number of patches applied on SID10 is 20, the number of patches applied on

SID50 is 20, and the number of patches applied on SID100 is 0. All these three
servers are up-to-date and their SIDs (SID10, SID50, and SID100) are stored in
the second output folder.

 Write your code on your papers.

 You do not need to write imports. Focus on the content of the main method.

 Suppose both SparkContext sc and SparkSession ss have been already set.

 Suppose the following variables have been already set:
o serversPath='Servers.txt', patchesPath='Patches.txt',

appPatches='AppliedPatches.txt', output1='outPart1/', output2='outPart2/'

