
Data science and database technology

Homework #1 - A.Y. 2022/2023

Draft solution

1-Data warehouse – Conceptual schema

1-Data warehouse – Logical schema

Museum (Id_museum, museum_name, city, province, region, museum_category, guided_tour,

 wifi,.., audioguides)

TimeDim (id_time, date, month, bimester, trimester, semester, year, holiday)

TimeSlot (Id_timeslot, timeslot)

(a) Solution with Junk dimension

TicketInfo (Id_ticket_info, ticket_type, purchase_modality)
MuseumTickets (Id_museum, id_time, d_timeslot, Id_ticket_info, NumberOfTickets, Revenue)

(b) Solution with Push down

MuseumTickets(Id_museum, id_time, d_timeslot, ticket_type, purchase_modality, NumberOfTickets,
 Revenue)

The FOLLOWING query solutions are written considering the push down solution

2. Queries.

(a) Separately for each ticket type and for each month (of the ticket validity), analyze: the average

daily revenue, the cumulative revenue from the beginning of the year, the percentage of tickets

related to the considered ticket type over the total number of tickets of the month.

 SELECT ticket_type, month, year sum(revenue)/count(distinct date),

sum(sum(revenue)) over (partition by ticket_type, year

 order by month

 rows unbounded preceding),

100*sum(numtickets)/sum(sum(numtickets)) over (partition by month)

FROM museums_tickets mt, timedim t

WHERE mt.id_time = t.id_time

GROUP BY ticket_type, month, year;

(b) Considering the ticket of 2021. Separately for each museum and ticket type analyze: the

average revenue for a ticket, the percentage of revenue over the total revenue for the

corresponding museum category and ticket type, assign a rank to the museum, for each ticket

type, according to the total number of tickets in decreasing order.

SELECT museum_name, museum_category, ticket_type,

sum(revenue)/sum(numtickets),

100*sum(revenue)/sum(sum(revenue)) over (partition by ticket_type,

 museum_category),

rank() over (partition by ticket_type

 order by sum(num_tickets) desc)

FROM museums_tickets mt, timedim t, museums m

WHERE mt.id_time = t.id_time and mt.id_museum = m.id_museum and year=2021

GROUP BY museum_name, museum_category, ticket_type;

3. Create and update a materialized view with CREATE MATERIALIZED VIEW and CREATE

MATERIALIZED VIEW LOG in ORACLE

3.1. Analysis of the target queries

Consider the following frequent queries of interest:

1) Separately for each ticket type and for each month analyze the average daily revenue.

aggregated values SUM(Revenue), COUNT(DISTINCT Date)

GROUP BY ticket_type, month

2) Separately for each ticket type and for each month analyze the cumulative revenue from the beginning of the

year.

aggregated values SUM(Revenue)

GROUP BY ticket_type, month, year

3) Separately for each ticket type and for each month analyze the total number of tickets, the total revenue and

the average revenue.

aggregated values SUM(Revenue), SUM(NumberOfTickets)

GROUP BY ticket_type, month

4) Separately for each ticket type and for each month analyze the total number of tickets, the total revenue and

the average revenue for year 2021.

As in (3), but including condition Year = 2021

5) Analyze the percentage of tickets related to each ticket type and month over the total number of tickets of the

month.

aggregated values SUM(NumberOfTickets)

GROUP BY ticket_type, month

3.2. Definition of materialized view VM1

Option (1)

• GROUP BY ticket_type, month, (+ year)

• This solution that does not allow computing query 1 because it is not possible to keep the

aggregated vale COUNT(DISTINCT Data)

Option (2)

• GROUP BY ticket_type, date (+month +year)

• This solution allows computing all queries, but the cardinality of the materialized view table

increases by about 30 times

Option (1) is selected

create materialized view VM1

build immediate refresh FAST ON COMMIT

--enable query rewrite

as

SELECT Month, Year, ticket_type , SUM(NumberOfTickets) as NumTickets,

SUM(Revenue) as TotRevenue

FROM museums_tickets mt, timedim t

WHERE mt.id_time = t.id_time

GROUP BY Month, Year, ticket_type;

3.3. Materialized view identifiers: ticket_type, month

3.4 Materialized view logs

CREATE MATERIALIZED VIEW LOG ON museums_tickets

WITH SEQUENCE, ROWID

(id_time, ticket_type, NumberOfTickets, Revenue)

INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW LOG ON TIMEDIM

WITH SEQUENCE, ROWID

(id_time, Month, Year)

INCLUDING NEW VALUES;

4. Trigger

CREATE TABLE VM1 (

DateMonth DATE CHECK (DateMonth IS NOT NULL),

DateYear INTEGER CHECK (DateYear IS NOT NULL),

Ticket_Type VARCHAR(20) CHECK (phoneRate IS NOT NULL),

TOT_NumberOfTickets INTEGER,

TOT_Revenue INTEGER);

INSERT INTO VM1 (DateMonth, DateYear, Ticket_Type,

TOT_NumberOfTickets, TOT_Revenue)

(SELECT DateMonth, DateYear, Ticket_Type,

SUM(NumberOfTickets), SUM(Revenue)

FROM FACTS F, TIMEDIM T

WHERE F.ID_time = T.ID_time

GROUP BY DateMonth, DateYear, Ticket_Type);

create TRIGGER TriggerForViewVM1

AFTER INSERT ON museums_tickets

FOR EACH ROW

DECLARE

N NUMBER;

VAR_DateMonth DATE;

VAR_DateYear NUMBER;

BEGIN

--- Read values “Month” and “Year” needed to update VM1

SELECT DateMonth, DateYear INTO VAR_DateMonth, VAR_DateYear

FROM TIMEDIM

WHERE ID_time = :NEW.ID_time;

--- Check if the record exists in VM1

SELECT Count(*) INTO N

FROM VM1

WHERE DateMonth=Var_DateMonth AND Ticket_Type=:NEW.ticket_type;

IF (N > 0) THEN

--the record exists in VM1

UPDATE VM1

SET TOT_NumberOfTickets=TOT_NumberOfTickets+:NEW.NumberOfTickets,

 TOT_Revenue = TOT_Revenue +:NEW.Revenue,

WHERE DateMonth= Var_DateMonth AND

 Ticket_Type=:NEW.ticket_type;

ELSE

--the record does not exist in VM1

INSERT into VM1 (DateMonth, DateYear, Ticket_Type,

Tot_NumberOfTickets, Tot_Revenue)

VALUES(Var_DateMonth, Var_DateYear, :NEW.ticket_type,

:NEW.NumberOfTickets, :NEW.Revenue);

END IF;

END;

