

Introduction to Databases

Introduction

Introduction to databases

- \sum Information management
- \supset Databases
- \supset Data model
- \supset Data independence
- \supset Data access
- \sum Advantages and disadvantages of DBMS

Introduction to databases

Information management

Information management

\sum Information is recorded and exchanged in different forms



Information management

${\ensuremath{\unrhd}}$ Information is recorded and exchanged in different forms

 Forms of information organization and codification have been introduced over time
BNCLCU79M44A488D

Computer systems

 \sum In computer systems information is represented by means of data

- the data are raw symbols which have to be interpreted and correlated to provide information
- example
 - data: "Mario Rossi" and 424242
 - information: result of looking up a telephone number in your personal telephone directory (e.g., list of contacts)

Data characteristics

 \sum Data are far more stable over time than the processes that manage them

- Example
 - there have been no variations in the structure of bank applications data for decades
 - the procedures that manage the data vary from year to year

 \sum Data are an important resource of the organization that manages them

Introduction to the databases

Databases

Database

\sum (General definition)

- a database is a collection of data that represents information interesting for a computer system
- \sum ("Technical" definition)
 - a database is a collection of data managed by a DBMS

Data Base Management System - DBMS

- > A DBMS (DataBase Management System) is a software system able to manage collections of data that are
 - large
 - shared
 - persistent

ensuring their reliability and privacy

DBMS characteristics

 ${\ensuremath{\unrhd}}$ Far greater dimensions than the central memory available

- data management in secondary memory
- Data sharing between applications and users: a database is an *integrated* resource, shared by several company sectors
 - reduction of data redundancy
 - reduction of data inconsistency
 - competing access control mechanism

DBMS characteristics

\sum Data persistence

- lifetime not limited to execution of programmes that use them
- \sum Data reliability in the case of hardware and software malfunction/failure
 - backup and recovery functionality
- \sum Data privacy
 - authorization mechanisms to enable users

DBMS characteristics

\sum Efficiency

• capacity to carry out operations using a set of resources (time and space) acceptable for users

- Adequately sized computer system
- \sum Efficacy
 - capacity to render user activities productive

DBMS or file system?

- ∑ "Simplified" approach to data: data stored in the persistent mode in the mass/secondary memory inside the file
 - it is possible to memorize and look for data
 - simple access mechanisms (sequential reading)
 - simple sharing mechanisms (read only sharing with writing options blocked)
- \sum DBMS extends the functionalities of the file systems, providing more integrated services

Introduction to databases

Data model

Data model

- A data model is a set of concepts utilized for organizing data of interest and describing its structure in a way that is understood by a computer
 - elementary data types (integer, character...)
 - structuring mechanism for defining more complex structures (record builder, array,...)

Relational model

- \sum Most widespread data model
- \sum Defines the relationships builder, which organizes the data into sets of homogeneous (fixed structure) records
 - The relationships are represented as tables

Relational model

Courses

Code	Name	TeacherID
M2170	Information systems	D101
M4880	Computer Networks	D102
F0410	Databases	D321

Teacher

ID	Name	Department	Phone#
D101	Green	Computer Engeneering	123456
D102	White	Telecommunications	636363
D321	Black	Computer Engeneering	414243

Other data models

 \sum Before the relational model, other models closer to the physical (not very abstract) structures of storing were used

- hierarchical model
- network model
- \sum Since the relational model
 - Object model
 - XML
 - ..

Schema and instances

\supset Defined in the database are

- the *schema*, which describes the structure of the data. The schema
 - is practically unvarying over time
 - is represented by the heading of each table (table name and column names)

\sum Example

schema of the database

Courses	Code	Name	Теас	cherID	
Teacher	ID	Name	Departmer	nt Phone#	

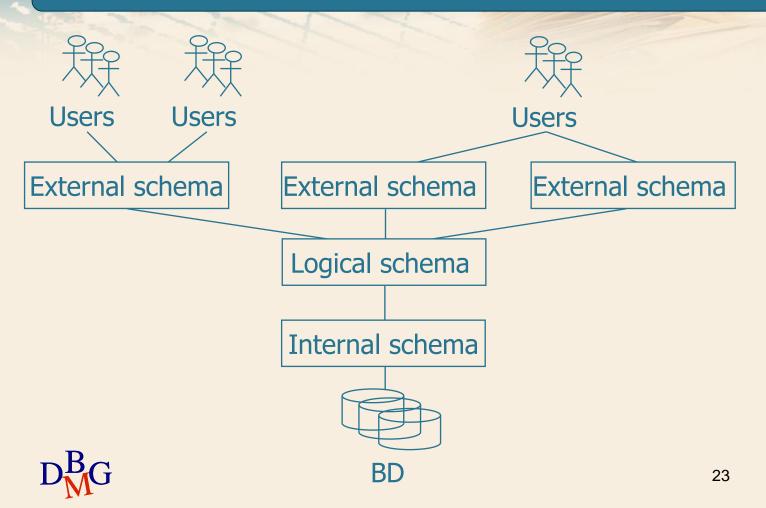
Schema and instances

\supset Defined in a database are

- the *instance*, composed of the content of each table, i.e. of the data effective values which are
 - variable over time, also very rapidly
 - represented by the rows in the tables
- \sum Example
 - Instance of the Teacher table

D101	Green	Computer Engeneering	123456
D102	White	Telecommunications	636363
D321	Black	Computer Engeneering	414243

Model types


\Box Conceptual model

- It is possible to represent data independently from the logical
 - describes real world concepts
 - used in the designing phase
- example: entity-relationship model

imes Logical model

- Describes the data structure in the DBMS
 - used by the programmes accessing the data
 - independent from the physical structures
- Example: relational model

Abstraction levels in a DBMS

Standard three-level ANSI/SPARC architecture for DBMS

\sum Logical schema

- description of the database using the logical model of the DBMS
- \supset Internal schema
 - representation of the logical schema using physical storing structures
- \sum External schema
 - description of parts of the database, called "views", which reflect the point of view of particular users
 - defined on the logical model

Introduction to databases

Data independence

Data independence

- \supset Data independence guarantees that users and application programmes which utilize a database can ignore the designing details used in the construction of the database
- ${\ensuremath{\unrhd}}$ It is a consequence of the subdivision into levels of abstraction

Data independence

\sum Physical independence

- enables interaction with the DBMS independently from the physical structure of the data
- access to a (logical or external level) relationship always takes place in the same way, independently from the means of memorization
- it is possible to change the way the data is physically memorized without affecting the programmes utilizing the data

Data independence

\sum Logical independence

- enables interaction with the external level independently from the logical level
- it is possible to change the logical level maintaining the external structures unaltered (as long as the correspondences are unaltered)
- it is possible to add new views or alter existing views without changing the logical schema

Introduction to databases

Data access

Data access languages

- \sum User-friendly interfaces that enable specific queries without using a textual language
- \sum Interactive languages (SQL)
- Commands similar to interactive commands introduced into traditional programming languages (C, C++, COBOL, Java, ...), so-called host languages
- Commands similar to interactive commands introduced into ad hoc development languages, often with specific functionalities (generation of graphics, complex prints, screens)

Data access languages

 \sum Languages are divided into two categories

- Data Definition Languages (DDL) used to define the logical, external and physical schemas, and access authorizations
- *Data Manipulation Languages* (DML) used for querying and updating database instances

Users

- \sum Database administrator: in charge of (centralized) control and management of the database
 - guarantees sufficient performance
 - ensures system reliability
 - manages authorizations and access to data

Users

- \sum Designers and programmers: they define and realize
 - the structure of the database
 - the programmes accessing the database
- \sum Users: utilize the database for their activities
 - end users: they use transactions, i.e. programmes that carry out predefined activities
 - casual users: they formulate queries (or updates) which are not predefined by the interactive access languages of the database

Transactions

- Programmes that carry out frequent predefined activities
- \sum Examples
 - flight bookings
 - bank transfers
- ${\ensuremath{\unrhd}}$ Generally realized by introducing SQL into a host language

Introduction to databases

Advantages and disadvantages of DBMS

DBMS advantages

- \sum Data as a common resource of the whole organization
 - reduction of redundancies and inconsistencies
- \sum Unified and precise data model of facts of interest to the organization
- \sum Possible centralized control of data
 - standardization, economies of scale
- \sum Data independence

DBMS disadvantages

37

 \sum These are expensive, complex products that require

- direct investment
 - purchase of the product
- Indirect investments
 - purchase of the necessary hardware and software resources
 - conversion of the applications
 - training of personnel
- \sum They provide a set of services in an integrated form

• it is not possible to separate out unused services that cause a reduction in performance