Business Intelligence per Big Data

Tania Cerquitelli

AA. 2022-2023

Docente: Prof. Tania Cerquitelli

Dip. Automatica e Informatica

Tel: 011 090-7178

e-mail: tania.cerquitelli@polito.it

Esercitatore: Daniele Rege Cambrin

Dip. Automatica e Informatica

e-mail: daniele.regecambrin@polito.it

Esercitatrice: Eliana Pastor

Dip. Automatica e Informatica

e-mail: eliana.pastor@polito.it

Organizzazione del corso

Inizio lezioni: 27/02/2023

Fine lezioni: 09/06/2023

Orario delle lezioni ed esercitazioni

Giorno	Orario	Aula
Lunedì	13:00-16:00	Aula 4P
Giovedì	13:00-16:00	Aula R3

Obiettivi

- Business Intelligence: attività di gestione e analisi dei dati per il supporto delle decisioni aziendali
 - Data analytics
 - Data warehousing
 - Dashboard informative e tecniche di visualizzazione
 - No-SQL databases

- Business Intelligence: attività di gestione e analisi dei dati per il supporto delle decisioni aziendali
- Tecniche di analisi di dati
 - Tecniche ed algoritmi di data science e machine learning per trasformare la conoscenza a supporto del business
 - Tecniche di visualizzazione
- Studio delle basi di dati per il supporto decisionale (data warehouse)
 - Architettura dei sistemi di data warehouse e delle metodologie di progettazione e sviluppo
 - OLAP (On Line Analytical Processing) dei dati
 - Introduzione alle basi di dati non relazionali (no-relational databases) a supporto dei Big Data
- Sviluppo di casi applicativi mediante strumenti di data science e
 Rdata warehouse

Lezioni

- Business Intelligence: attività di gestione e analisi dei dati per il supporto delle decisioni aziendali
- Data analytics
 - Tecniche di preparazione dei dati
 - Tecniche di eplorazione dei dati
 - Processo di estrazione della conoscenza (data science pipeline)
 - Algoritmi di clustering ed indici di qualità
 - Algoritmi di estrazione di regole di associazione ed indici di qualità
 - Analisi di serie temporali e regressione
 - Algoritmi di classificazione e tecniche di validazione
 - Introduzione agli algoritmi di deep learning

Lezioni

- Data warehouse
 - architetture
 - progettazione e sviluppo
 - analisi OLAP (On Line Analytical Processing) dei dati
 - estensioni del linguaggio SQL per interrogare i data warehouse
 - Dashboard informative (basate su KPIs Key Performance Indicators)
 - Tecniche di data visualization
- Basi di dati NO-SQL
 - Tipi di basi di dati NO-SQL
 - Concetti di base
 - Esempi di interrogazioni

Lezioni: casi di studio

- Studio di casi applicativi di ampio interesse scientifico
 - Processo di estrazione della conoscenza mediante pipeline di data science
 - Dai dati alla conoscenza per trasformare il business (datadriven strategies & actions)
 - Presentazione di progetti di ricerca di data science
 - Progettazione di data warehouse
 - Analisi di requisiti per una corretta progettazione
 - Dashboard informative e infografiche
 - Interrogazioni di sistemi no relazionali

Esercitazioni in aula

- Discussione di come progettare un workflow di data science
- Progettazione concettuale, logica e fisica di un data warehouse
- Interrogazione di un data warehouse mediante il linguaggio SQL esteso
- Interrogazione di un sistema NO-SQL mediante paradigma Map-Reduce

Esercitazioni di laboratorio in Aula

- Applicazioni di tecniche di data analytics
 - Tool open source (i.e., RapidMiner)
- Interrogazione di una base di dati relazionale mediante il linguaggio SQL e le sue estensioni
 - DBMS: Oracle
- Progettazione di un data warehouse e analisi OLAP
 - Google Data Studio
- Progettazione di un sistema NO-SQL e analisi
 - Tool open source: Mongo DB

Esame

- Progetto
 - Caso di studio da analizzare in gruppo (5 persone)
 - Consegna di una relazione scritta (con descrizione del contributo individuale)
 - Compilazione di 1-2 questionari
- Prova scritta
 - Progettazione concettuale, logica e fisica di un data warehouse
 - Interrogazione del data warehouse progettato mediante il linguaggio SQL e definizione di viste materializzate
 - 3 domande teoria/esercizi su data analytics
- Consegna di 2 homework
 - Data science

Basi di dati no relazionale

Materiale

Sito web del corso

- https://dbdmg.polito.it/dbdmg_web/index.php/2023/02/2
 2/business-intelligence-per-big-data/
- Copia dei lucidi utilizzati a lezione
- Testi e risoluzioni di esercizi proposti in aula
- Testi e materiale utile per le esercitazioni in laboratorio
- Materiale utile per la risoluzione dei progetti
- Materiale integrativo
 - Modello relazionale e linguaggio SQL

Testi

Data warehousing

- Golfarelli, Rizzi. Data warehouse: teoria e pratica della progettazione, McGraw-Hill 2006
- Kimball e altri, numerosi testi su metodologia e casi di studio, Wiley
- Data mining
 - Han, Kamber. Data mining: concepts and techniques,
 Morgan Kaufmann 2006
 - Tan, Steinbach, Kumar. Introduction to data mining, Pearson 2006
- Basi di dati no relazionali
 - K. Chodorow and M. Dirolf. MongoDB: the definitive
- p.B. guide. O'Reilly Media, 2010

Link utili

- Data warehouse
 - http://www.dwinfocenter.org
 - http://www.dwreview.com
 - http://kimballuniversity.com
- Data mining
 - http://www.kdnuggets.com
- Tool open source
 - Pentaho: http://www.pentaho.com/
 - RapidMiner: http://rapid-i.com/
 - Mongo-DB: https://www.mongodb.com/it

