
Database design

Logical Design

2

Logical Design (1/2)

• Introduction

• Restructuring of the Entity-Relationship schema

• Removing generalizations

• Partitioning of concepts

• Removing multivalued attributes

• Removing composed attributes

• Selection of primary identifiers

3

Logical Design (2/2)

• Translation into the relational model
• entity and many-to-many relationships

• one-to-many relationships

• one-to-one relationships

• entity with external identifier

• ternary relationships

Logical Design

Introduction

5

Logical Design

• Select a logical model

• in our case, the relational model

• Goal

• build a relational schema that correctly and
efficiently represents all the information described
by the ER schema

• Not just a simple translation

• simplification of the scheme to make it compatible
with the relational model

• optimization to increase the efficiency of queries

6

Logical design steps

ER Schema

7

Logical design steps

Restructuring the ER Schema

Restructured ER schema

ER Schema

8

Logical design steps

Translation

Restructured ER schema

Logical schema

Schema ER

Restructuring the ER Schema

Relational logical design

Translation in relational model:
entities and many to many relationships

10

Translation to the relational model

• It is executed on the restructured ER schema

• i.e., the schema without hierarchies, multivalued
attributes and compounds attributes

• Transformations

• Each entity is translated into a table with the same
attributes

• For relations we need to consider the maximum
cardinality

11

Entities translation

• Primary key underlined

• Optional attributes indicated by * (asterisk)

SSN

Job
(0,1)

Person
Surname

Name

Person(SSN, Name, Surname, Job*)

12

Translation: many to many binary relations

• Each many to many relationship is translated into
a table

• The primary key is the combination of the
identifiers of all the linked entities

• It is possible to rename the attributes of the table
that corresponds to the relation (needed in case of
recursive relations)

13

Many to many binary relationship

CourseId(0,N) (0,N)

Exam

StudentId

Mark

Student
Surname

Name
Course

Name

14

Many to many binary relationship: entity

Student(StudentId, Name, Surname)
Course(CourseId, Name)

CourseId(0,N) (0,N)

Exam

StudentId

Mark

Student
Surname

Name
Course

Name

15

Many to many binary relationship

Student(StudentId, Name, Surname)
Course(CourseId, Name)
Exam(StudentId, CourseId, Mark)

CourseId(0,N) (0,N)

Exam

Mark

Student
Surname

Name
Course

Name

16

Recursive many to many binary relationship

(0,N) (0,N)

Composition

PCod

Quantity

Product

Name Cost

CompoundComponent

17

Recursive many to many binary relationship

Product(PCod, Name, Cost)

(0,N) (0,N)

Composition

PCod

Quantity

Product

Name Cost

CompoundComponent

18

Recursive many to many binary relationship

Product(PCod, Name, Cost)
Composition(CompoundCod, ComponentCod, Quantity)

(0,N) (0,N)

Composition

PCod

Quantity

Product

Name Cost

CompoundComponent

Relational logical design

Translation to the relational model:
one to many relationship

20

One to many binary relationships

• Two alternative ways to translate them:

• By means of attributes

• By means of a new table

21

One to many binary relationship

MunicipalityName(1,N) (1,1)

Residence

Fiscal code

transferDate

Person
Surname

Name
Municipality

Province

22

One to many binary relationship: entity

Person(FiscalCode, Name, Surname)

Municipality(MunicipalityName, Province)

Municipality name(1,N) (1,1)

Residence

Fiscal code

Transfer date

Person
Surname

Name
Municipality

Province

23

One to many binary relationship

Person(FiscalCode, Name, Surname,
MunicipalityName)

Municipality(MunicipalityName, Province)

Municipality name(1,N) (1,1)

Residence

Fiscal code

Transfer date

Person
Surname

Name
Municipality

Province

24

Person(FiscalCode, Name, Surname,
MunicipalityName, TransferDate)

Municipality(MunicipalityName, Province)

One to many binary relationship

Municipality name(1,N) (1,1)

Residence

Fiscal code

Transfer date

Person
Surname

Name
Municipality

Province

25

Person(FiscalCode, Name, Surname,
MunicipalityName, TransferDate)

Municipality(MunicipalityName, Province)

One to many binary relationship

Municipality name(1,N) (1,1)

Residence

Fiscal code

Transfer date

Person
Surname

Name
Municipality

Province

Can be used when the
cardinality is (1,1)

26

UniversityName(0,N) (0,1)

Graduation

Graduation date

Student
Surname

Name
University

City

StudentId

One to many binary relationship

When the cardinality is (0,1), two
alternative representations are
possible...

27

Student(StudentId, Name, Surname)
University(UniversityName, City)

Alternative n.1: new table

(0,N) (0,1)

Graduation

Graduation date

Student
Surname

Name

City

StudentId

UniversityName
University

28

Student(StudentiId, Name, Surname)
University(UniversityName, City)
Graduation(StudentId, UniversityName, GraduationDate)

Alternative n.1: new table

UniversityName(0,N) (0,1)

Graduation

Graduation date

Student
Surname

Name
University

City

StudentId

29

Student(StudentId, Name, Surname, FacultyName*,
GraduationDate*)
University(UniversityName, City)

Alternative n.2: attributes

UniversityName(0,N) (0,1)

Graduation

Graduation date

Student
Surname

Name
University

City

StudentId

Relational logical design

Translation to the relational model:
one to one relationships

31

One to one binary relationships

• Different translations are possible

• Depending on the minimum cardinality value

32

One to one binary relationship: case 1

• Mandatory partecipation from both sides

UniversityName(1,1) (1,1)

Is rector

RectorId

Election date

Rector
Surname

Name
University

City

33

One to one binary relationship:alternative n.1

• Mandatory partecipation from both sides

Rector(RectorId, Name, Surname)

University(UniversityName, City)

UniversityName(1,1) (1,1)

Is rector

Election date

Rector
Surname

Name
University

City

RectorId

34

• Mandatory partecipation from both sides

Rector(RectorId, Name, Surname, UniversityName,
ElectionDate)
University(UniversityName, City)

One to one binary relationship:alternative n.1

UniversityName(1,1) (1,1)

Is rector

Election date

Rector
Surname

Name
University

City

RectorId

35

• Mandatory partecipation from both sides

Rector(RectorId, Name, Surname)
University(UniversityName, City)

One to one binary relationship:alternative n.2

UniversityName(1,1) (1,1)

Is rector

Election date

Rector
Name

University
City

RectorId

Surname

36

• Mandatory partecipation from both sides

Rector(RectorId, Name, Surname)

University(UniversityName, City, RectorId,
ElectionDate)

UniversityName(1,1) (1,1)

Is rector

Election date

Rector
Name

University
City

RectorId

Surname

One to one binary relationship:alternative n.2

37

One to one binary relationship: case 2

• Optional partecipation on one side

UniversityName(1,1) (0,1)

Rector

ProfessorId

Election date

Professor
Surname

Name
University

City

38

One to one binary relationship: entity

• Optional partecipation on one side

Professor(ProfessorId, Name, Surname)
University(UniversityName, City)

UniversityName(1,1) (0,1)

Rector

ProfessorId

Election date

Professor
Surname

Name
University

City

39

One to one binary relationship

• Optional partecipation on one side

Professor(ProfessorId, Name, Surname)

University(UniversityName, City, ProfessorId,
ElectionDate)

UniversityName(1,1) (0,1)

Rector

ProfessorId

Election date

Professor
Surname

Name
University

City

40

One to one binary relationship: case 3

• Optional partecipation from both sides

UniversityName(0,1) (0,1)

Rector

ProfessorId

Election date

Professor
Surname

Name
University

City

41

Professor(ProfessorId, Name, Surname)
University(UniversityName, City)

One to one binary relationship:alternative n.1

• Optional partecipation from both sides

UniversityName(0,1) (0,1)

Rector

ProfessorId

Election date

Professor
Surname

Name
University

City

42

Professor(ProfessorId, Name, Surname)
University(UniversityName, City)
Rector(ProfessorId, UniversityName, ElectionDate)

One to one binary relationship:alternative n.1

• Optional partecipation from both sides

UniversityName(0,1) (0,1)

Rector

ProfessorId

Professor
Name

University
City Surname

Election date

43

Professor(ProfessorId, Name, Surname)
University(UniversityName, City)
Rector(ProfessorId, UniversityName, ElectionDate)

• Optional partecipation from both sides

One to one binary relationship:alternative n.2

UniversityName(0,1) (0,1)

Rector

ProfessorId

Professor
Name

University
City Surname

Election date

44

Professor(ProfessorId, Name, Surname)
University(UniversityName, City)

One to one binary relationship:alternative n.3

• Optional partecipation from both sides

UniversityName(0,1) (0,1)

Rector

ProfessorId

Professor
Name

University
City Surname

Election date

45

Professor(ProfessorId, Name, Surname)
University(Name, City, ProfessorId* , ElectionDate*)

• Optional partecipation from both sides

One to one binary relationship:alternative n.3

UniversityName(0,1) (0,1)

Rector

ProfessorId

Professor
Name

University
City Surname

Election date

Relational logical design

Translation to the relational model:
entity with external identifier

47

Entity with external identifier

UniversityName

(0,N) (1,1)

enrollment

Student
Surname

Name
University

City

StudentId

48

Entity with external identifier

University(UniversityName, City)
Student(StudentId, UniversityName, Name, Surname)

UniversityName

(0,N) (1,1)

enrollment

Student
Surname

Name
University

City

StudentId

49

Entity with external identifier

• The relationship is represented along with the
external identifier

University(UniversityName, City)
Student (StudentId, UniversityName, Name, Surname)

UniversityName

(0,N) (1,1)

enrollment

Student
Surname

Name
University

City

StudentId

Relational logical design

Translation to the relational model:
ternary relationships

51

Ternary relationship

CourseCod

(0,N) (0,N)

Exam

Student
Surname

Name
Course

Name

StudentId

Date
Time

(1,N)
Mark

52

Ternary relationship: entity

Student(StudentId, Name, Surname)
Course(CourseCod, Name)
Time(Date)

CourseCod

(0,N) (0,N)

Exam

Student
Surname

Name
Course

Name

StudentId

Date
Time

(1,N)
Mark

53

Ternary relationship: identificator

Student(StudentId, Name, Surname)
Course(CourseCod, Name)
Time(Date)
Exam(StudentId, CourseCod, Date)

CourseCod

(0,N) (0,N)

Exam

Student
Surname

Name
Course

Name

StudentId

Date
Time

(1,N)
Mark

54

Ternary relationship: attributes

Student(StudentId, Name, Surname)
Course(CourseCod, Name)
Time(Date)
Exam(StudentId, CourseCod, Date, Mark)

CourseCod

(0,N) (0,N)

Exam

Student
Surname

Name
Course

Name

StudentId

Date
Time

(1,N)
Mark

Relational logical design

Referential integrity constraints

56

• Relationships represent referential constraints

Referential integrity constraints

CourseCode(0,N) (0,N)

Exam

StudentId

Mark

Student
Surname

Name
Course

Name

57

• Tables
Student(StudentId, Name, Surname)

Course(CourseCod, Name)

Exam(StudentId, CourseCod, Mark)

• Referential integrity constraints
Exam(StudentId) REFERENCES Student(StudentId)

Referential integrity: exam relationship

58

• Tables
Student(StudentId, Name, Surname)

Course(CourseCod, Name)

Exam(StudentId, CourseCode, Mark)

• Referential integrity constraints
Exam(StudentId) REFERENCES Student(StudentId)

Exam(CourseCod) REFERENCES Course(CourseCod)

Referential integrity: exam relationship

Logical Design

Restructuring
an ER schema

60

ER schema restructuring

• Implementation aspects

• This is not a conceptual schema

• Goals

• Removing costructs for which there is no direct
representation in the relational model

• Optimize data access

61

Restructuring tasks

• Analysis of redundancies

• Removing generalizations

• Partitioning and merging of entities and
relationships

• Selection of primary identifiers

62

Analysis of redundancies

• Issue

• To represent informations that can be derived
from other data

• To decide whether to keep or remove them

• Advantages

• Speed up and simplify queries

• Disadvantages

• Increased complexity of updates

• Slower updates

• More storage space required

63

Redundant attribute: example

• In this schema the attribute Average is
redundant

• It is useful for speeding up queries to calculate
students’ average grade.

• If kept, the redundancy indication must be added
in the relational schema.

Name

Student_Number

(0,N) (0,N)

Exam_Passed

Student Course
Name

Surname

Code

Mark
Average

Logical Design

Removing
generalizations

65

Removing Generalization

• The relational model does not allow direct
representation of generalizations of the ER model

• We need, therefore, to trasform these into
entities and relationships

• Possible methods:

• Child entities merged into parent entity

• Parent entity merged into child entities

• Generalization translated into relatioships

66

Example

SSN

Surname

Name

Address

Association (0,1)

(1,1) (1,N)

(t,e)
Works_in

Specialization
(1,N)

(1,1) (1,N)

Made By

Dept Staff

Doctor Volunteer
Specialistic

Exam

67

Child->Parent

SSN

Surname

Name

Address

(1,1) (1,N)
Works_In

Dept Staff

68

Child entities’ attributes

SSN

Surname

Name

Address

(1,1) (1,N)
Works_In

Dept Staff

Specializations
(0,N)

Association

(0,1)

69

Relations with child entities

(1,1)

Made_by

Specialistic
Exam

SSN

Surname

Name

Address

(1,1) (1,N)
Works_In

Dept Staff

Association

(0,1)

Specialization
(0,N)

70

Relations with child entities

(1,1)

Made_by

Specialistic
Exam

SSN

Surname

Name

Address

(1,1) (1,N)
Works_In

Dept Staff

Association

(0,1)

(0,N)
Specialization

(0,N)

71

The «Type» attribute

• «Type» indicates the original entity: doctor or
volunteer

Type

(1,1)

Made_by

Specialistic
Exam

SSN

Surname

Name

Address

(1,1) (1,N)
Works_In

Ward Staff

Association

(0,1)

Specializzation
(0,N)

(0,N)

72

Child->Parent

• Can be used for all type of generalization

• in case of overlapping entities, many
combinations are possible as Type values, e.g.,
skier and sailor

Type

(1,1)

Made_by

Specialistic
Exam

Surname

Name

Address

(1,1) (1,N)
Works_In

Dept Staff

Association

(0,1)

SSN

Specialization
(0,N)

(0,N)

73

Example

SSN

Surname

Name

Address

Association (0,1)

(1,1) (1,N)

(t,e)
Works_in

Specialization
(1,N)

(1,1) (1,N)

Made By

Dept Staff

Doctor Volunteer
Specialistic

Exam

74

Parent->Child

Association (0,1)Specialization
(1,N)

(1,1) (1,N)

Made By

Doctor Volunteer
Specialistic

Exam

75

Parent’s attributes

Surname

Association (0,1)Specialization
(1,N)

(1,1) (1,N)

Made_By

Doctor Volunteer
Specialistic

Exam

SSN

Name

Address

SSN

Surname

Name

Address

76

Relationships with parent

• Relationships with the parent entity need to be
split

(1,1)

Work_in 2

Dept

(1,1)

Work_in 1

Association (0,1)Specialization
(1,N)

(1,1) (1,N)

Made_By

Doctor Volunteer
Specialistic

Exam

SSN

Name

Address

SSN

Surname

Name

Address

Surname

77

Cardinality of «work in»

(0,N)(0,N)

(1,1)

Work in 2

Dept

(1,1)

Work in 1

Association (0,1)Specialization
(1,N)

(1,1) (1,N)

Made_By

Doctor Volunteer
Specialistic

Exam

SSN

Name

Address

SSN

Surname

Name

Address

Surname

78

Parent -> Child

(0,N)(0,N)

• Cannot be used for partial generalization

• However, we can trasform generalizations
from partial to total by adding a new entity
called «Others»

• Cannot be used for overlapping generalization

• Due to duplicate identifiers

(1,1)

Work_in 2

Dept

(1,1)

Work_in 1

Association (0,1)Specialization
(1,N)

(1,1) (1,N)

Made_By

Doctor Volunteer
Specialistic

Exam

SSN

Name

Address

SSN

Surname

Name

Address

Surname

79

Back to the original example

SSN

Surname

Name

Address

Association (0,1)

(1,1) (1,N)

(t,e)
Works_in

Specialization
(1,N)

(1,1) (1,N)

Made By

Dept Staff

Doctor Volunteer
Specialistic

Exam

80

Relationship: parent and child entities

SSN

Surname

Name

Address

Association (0,1)

(1,1) (1,N)
Works_in

Specialization
(1,N)

(1,1) (1,N)

Made By

Dept Staff

Doctor Volunteer
Specialistic

Exam

Is Is

81

Child entities’ identifier

Is Is

SSN

Surname

Name

Address

Association (0,1)

(1,1) (1,N)
Works_in

Specialization
(1,N)

(1,1) (1,N)

Made By

Dept Staff

Doctor Volunteer
Specialistic

Exam

82

Cardinality of «is» relationship

(0,1)

Is Is

SSN

Surname

Name

Address

Association (0,1)

(1,1) (1,N)
Works_in

Specialization
(1,N)

(1,1) (1,N)

Made By

Dept Staff

Doctor Volunteer
Specialistic

Exam

(1,1)

83

Cardinality of «is» relationship

(1,1)

(0,1)

Is Is

SSN

Surname

Name

Address

Association (0,1)

(1,1) (1,N)
Works_in

Specialization
(1,N)

(1,1) (1,N)

Made By

Dept Staff

Doctor Volunteer
Specialistic

Exam

(1,1)

(0,1)

84

Generalization translated into relatioships

• This solution is more general and can be used for
all generalizations

• But it may be expensive to reconstruct the original
data

Is Is

SSN

Surname

Name

Address

Association (0,1)

(1,1) (1,N)
Works_in

Specialization
(1,N)

(1,1) (1,N)

Made By

Dept Staff

Doctor Volunteer
Specialistic

Exam

(1,1)

(0,1)

(1,1)

(0,1)

85

Assessment of alternatives

• Merging child entities into parent entity is
appropriate when:

• Access operations apply to instances and attributes
of child and parent entitites more or less in the
same way (optimize data access).

• Child entities are mildly differentiated (few null
values)

86

Assessment of alternatives

• Merging parent entity into child entities is
appropriate when:

• The generalization is «total»

• There are operations that refer only to occurrences
of child entities and therefore it is useful to
distinguish between different child entities
(optimize data access).

87

Assessment of alternatives

• The various options can be combined

• there are operations that refer only to instances of
some child entities (optimize data access).

88

Assessment of alternatives

• In the presence of hierarchical generalization:

• Apply the same procedure

• Starting from the lower levels.

Logical Design

Partitioning of concepts

90

Partitioning of concepts

• Partitioning of entities and relationships

• Better representation of different concepts

• Separating attributes of the same concept that are
accessed by different operation.

• Improve the efficency of the operations.

91

Entity partitioning

EmployeeNumber

EmployeeSurname

Name

Address

Salary

Level

Tax

92

Entity partitioning

Employee_Data

Personal
Data

Employment
Data

EmployeeNumber

Surname

Name

Address

Salary

Level

Tax

EmployeeNumber

EmployeeSurname

Name

Address

Salary

Level

Tax

93

Cardinality of “Employment Data”

(1,1)

Employee_Data

Personal
Data

Employment
Data

EmployeeNumber

Surname

Name

Address

Salary

Level

Tax

EmployeeNumber

EmployeeSurname

Name

Address

Salary

Level

Tax

94

Cardinality of «Employement Data»

(1,1) (1,1)

Employee_Data

Personal
Data

Employment
Data

EmployeeNumber

Surname

Name

Address

Salary

Level

Tax

EmployeeNumber

EmployeeSurname

Name

Address

Salary

Level

Tax

95

Relationships’ partitioning

(0,N) (1,N)

in_the
Client Hotel_room

SSN

Surname

Name

Description

Number

Time Start_Date

(1,N)

Stop_Date
(0,1)

96

Relationships’ partitioning

Currently_in

Start_Date Stop_Date
(0,1)

(0,N) (1,N)

in_the
Client Hotel_room

SSN

Surname

Name

Description

Number

Time Start_Date

(1,N)

Stop_Date
(0,1)

Was_in
Client Hotel_room

SSN

Surname

Name

Description

Number

Time Start_Date

Stop_Date

97

Cardinality of «Was in»

Currently_in

Start_Date Stop_Date
(0,1)

(0,N) (1,N)

in_the
Client Hotel_room

SSN

Surname

Name

Description

Number

Time Start_Date

(1,N)

Stop_Date
(0,1)

Was_in
Client Hotel_room

SSN

Surname

Name

Description

Number

Time Start_Date

Stop_Date

(0,N)

98

Cardinality of «Was in»

Currently_in

Start_Date Stop_Date
(0,1)

(0,N) (1,N)

in_the
Client Hotel_room

SSN

Surname

Name

Description

Number

Time Start_Date

(1,N)

Stop_Date
(0,1)

Was_in
Client Hotel_room

SSN

Surname

Name

Description

Number

Time Start_Date

Stop_Date

(0,N) (0,N)

Cardinality of «Was in»

(0,N)

99

Currently_in

Start_Date Stop_Date
(0,1)

(0,N) (1,N)

in_the
Client Hotel_room

SSN

Surname

Name

Description

Number

Time Start_Date

(1,N)

Stop_Date
(0,1)

Was_in
Client Hotel_room

SSN

Surname

Name

Description

Number

Time Start_Date

Stop_Date

(1,N)

(0,N)

100

Cardinality of «Currently in»

(0,N)

Currently_in

Start_Date Stop_Date
(0,1)

(0,N) (1,N)

in_the
Client Hotel_room

SSN

Surname

Name

Description

Number

Time Start_Date

(1,N)

Stop_Date
(0,1)

Was_in
Client Hotel_room

SSN

Surname

Name

Description

Number

Time Start_Date

Stop_Date

(0,N)

(1,N)

(0,N)

101

Cardinality of «Currently in»

Currently_in

Start_Date Stop_Date
(0,1)

(0,N) (1,N)

in_the
Client Hotel_room

SSN

Surname

Name

Description

Number

Time Start_Date

(1,N)

Stop_Date
(0,1)

Was_in
Client Hotel_room

SSN

Surname

Name

Description

Number

Time Start_Date

Stop_Date

(0,N)

(1,N)

(0,N)

(0,N)

(0,N)

Logical Design

Removing composed attributes
Selection of primary identifiers

103

Removing composed attributes

• Composed (or compound) attributes are not
representable in the relational model

• Two options

• Split them in «individual» attributes

• useful if you need to access each attribute
separately

104

Split composed attributes

Addrss

Street#
Postal code

SSN

Occupation
(0,1)

Person
Surname

Name

Occupation
(0,1)

Address

Street#

Postal code

SSN

Person
Surname

Name

105

Removing composed attributes

• Composed (or compound) attributes are not
representable in the relational model

• Two ways:

• Split them in «individual» attributes.

• useful if you need to access each attribute
separately.

• Use one attribute as a «link»

• useful if access to comprehensive information is
enough

106

Example

Occupation
(0,1)

Address

Street#

Postal code

SSN

Person
Surname

Name

Occupation
(0,1)

SSN

Person
Surname

Name
Full_Address

Logical Design

Removing multivalued
attributes

108

Removing multivalued attributes

• Multi-valued attributes are not representable in
the relational model

• A multi-valued attribute is represented by a
relationship between

• the original entity

• a new entity

• Pay attention to the cardinality of the new
relationship

109

Removing multivalued attributes

Qualification
(1,N)

SSN

Occupation
(0,1)

Person
Surname

Name

110

Removing multivalued attributes

qualification

Obtained

Qualification

Qualification
(1,N)

SSN

Occupation
(0,1)

Person
Surname

Name

SSN

Occupation
(0,1)

Person
Surname

Name

111

Cardinality of «Obtained»

(1,N)

qualification

Obtained

Qualification

Qualification
(1,N)

SSN

Occupation
(0,1)

Person
Surname

Name

SSN

Occupation
(0,1)

Person
Surname

Name

112

Cardinality of «Obtained»

(1,N) (1,N)

qualification

Obtained

Qualification

Qualification
(1,N)

SSN

Occupation
(0,1)

Person
Surname

Name

SSN

Occupation
(0,1)

Person
Surname

Name

113

Removing multivalued attributes

SSN

Occupation
(0,1)

Phone_number
(1,N) Person

Surname

Name

114

Removing multivalued attributes

number

Has phone number

Phone

Phone#

(1,N)

SSN

Occupation
(0,1)

Person
Surname

Name

SSN

Occupation
(0,1)

Person
Surname

Name

115

Cardinality of «Has phone number»

(1,N)
number

Has phone number

Phone

Phone#

(1,N)

SSN

Occupation
(0,1)

Person
Surname

Name

SSN

Occupation
(0,1)

Person
Surname

Name

116

Cardinality of «Has phone number»

(1,1) (1,N)
number

Has phone number

Phone

Phone#

(1,N)

SSN

Occupation
(0,1)

Person
Surname

Name

SSN

Occupation
(0,1)

Person
Surname

Name

Logical Design

Selection of primary identifiers

118

Selection of primary identifiers

• It is necessary to define the primary key

• The criteria for this decision are as follows

• Attributes with null values cannot form primary
identifiers.

• Just one (better) or few attributes.

• An internal identifier is preferable to an external one

• It is used by many operations to access the
occurrences

• It may be useful to introduce an additional attribute
to represent the entity, often called code or ID, e.g.
«ProductCode»

	Slide 1
	Slide 2: Logical Design (1/2)
	Slide 3: Logical Design (2/2)
	Slide 4
	Slide 5: Logical Design
	Slide 6: Logical design steps
	Slide 7: Logical design steps
	Slide 8: Logical design steps
	Slide 9
	Slide 10: Translation to the relational model
	Slide 11: Entities translation
	Slide 12: Translation: many to many binary relations
	Slide 13: Many to many binary relationship
	Slide 14: Many to many binary relationship: entity
	Slide 15: Many to many binary relationship
	Slide 16: Recursive many to many binary relationship
	Slide 17: Recursive many to many binary relationship
	Slide 18: Recursive many to many binary relationship
	Slide 19
	Slide 20: One to many binary relationships
	Slide 21: One to many binary relationship
	Slide 22: One to many binary relationship: entity
	Slide 23: One to many binary relationship
	Slide 24: One to many binary relationship
	Slide 25: One to many binary relationship
	Slide 26: One to many binary relationship
	Slide 27: Alternative n.1: new table
	Slide 28: Alternative n.1: new table
	Slide 29: Alternative n.2: attributes
	Slide 30
	Slide 31: One to one binary relationships
	Slide 32: One to one binary relationship: case 1
	Slide 33: One to one binary relationship:alternative n.1
	Slide 34: One to one binary relationship:alternative n.1
	Slide 35: One to one binary relationship:alternative n.2
	Slide 36: One to one binary relationship:alternative n.2
	Slide 37: One to one binary relationship: case 2
	Slide 38: One to one binary relationship: entity
	Slide 39: One to one binary relationship
	Slide 40: One to one binary relationship: case 3
	Slide 41: One to one binary relationship:alternative n.1
	Slide 42: One to one binary relationship:alternative n.1
	Slide 43: One to one binary relationship:alternative n.2
	Slide 44: One to one binary relationship:alternative n.3
	Slide 45: One to one binary relationship:alternative n.3
	Slide 46
	Slide 47: Entity with external identifier
	Slide 48: Entity with external identifier
	Slide 49: Entity with external identifier
	Slide 50
	Slide 51: Ternary relationship
	Slide 52: Ternary relationship: entity
	Slide 53: Ternary relationship: identificator
	Slide 54: Ternary relationship: attributes
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60: ER schema restructuring
	Slide 61: Restructuring tasks
	Slide 62: Analysis of redundancies
	Slide 63: Redundant attribute: example
	Slide 64
	Slide 65: Removing Generalization
	Slide 66
	Slide 67: Child->Parent
	Slide 68: Child entities’ attributes
	Slide 69: Relations with child entities
	Slide 70: Relations with child entities
	Slide 71: The «Type» attribute
	Slide 72: Child->Parent
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80: Relationship: parent and child entities
	Slide 81: Child entities’ identifier
	Slide 82: Cardinality of «is» relationship
	Slide 83: Cardinality of «is» relationship
	Slide 84: Generalization translated into relatioships
	Slide 85: Assessment of alternatives
	Slide 86: Assessment of alternatives
	Slide 87: Assessment of alternatives
	Slide 88: Assessment of alternatives
	Slide 89
	Slide 90: Partitioning of concepts
	Slide 91: Entity partitioning
	Slide 92: Entity partitioning
	Slide 93: Cardinality of “Employment Data”
	Slide 94: Cardinality of «Employement Data»
	Slide 95: Relationships’ partitioning
	Slide 96: Relationships’ partitioning
	Slide 97: Cardinality of «Was in»
	Slide 98: Cardinality of «Was in»
	Slide 99: Cardinality of «Was in»
	Slide 100: Cardinality of «Currently in»
	Slide 101: Cardinality of «Currently in»
	Slide 102
	Slide 103: Removing composed attributes
	Slide 104: Split composed attributes
	Slide 105: Removing composed attributes
	Slide 106: Example
	Slide 107
	Slide 108: Removing multivalued attributes
	Slide 109: Removing multivalued attributes
	Slide 110: Removing multivalued attributes
	Slide 111: Cardinality of «Obtained»
	Slide 112: Cardinality of «Obtained»
	Slide 113: Removing multivalued attributes
	Slide 114: Removing multivalued attributes
	Slide 115: Cardinality of «Has phone number»
	Slide 116: Cardinality of «Has phone number»
	Slide 117
	Slide 118: Selection of primary identifiers

