
Database design

Normalization

2

Normalization

• Introduction

• Normal form of Boyce Codd

• Decomposition in normal form

• Properties of decompositions

• Lossless decomposition

• Conservation of dependencies

Normalization

Introduction

4

Normalization

• Normalization is a process which, starting from a non-
normalized relational schema, obtains a normalized relational
schema.

• Normalization is not a design methodology, but a verification
tool.

5

Normalization and ER model

• The design methodology based on ER schemas normally
produces normalized relational schemas.

• Normalization checks can also be applied to ER schemas.

6

Example

StudentID Residence CodCourse CourseName Vote

s94539 Milan 04FLYCY Electronic calculators 30

s94540 Turin 01FLTCY Database design 26

s94540 Turin 01KPNCY Computer network 28

s94541 Pescara 01KPNCY Computer network 29

s94542 Lecce 04FLYCY Electronic calculators 25

Exam Passed

7

Example: constraints

• The primary key is the pair StudentID, CodCourse

• The residence of each student is unique and is an attribute of
the student alone, regardless of the exams he or she has
passed

• The name of the course is unique and is a function of the
course only, regardless of which students pass the
corresponding exam

8

Redundancy and Anomalies

• In all rows where a student appears, his or her residence is
repeated

• redundancy

9

Redundancy and Anomalies

• In all rows where a student appears, his or her residence is
repeated

• redundancy

• If a student's residence changes, all the rows in which it
appears must be modified at the same time

• update anomaly

10

Redundancy and Anomalies

• If a new student enrols at university, he or she cannot be
entered in the database until he or she passes the first exam

• insertion anomaly

11

Redundancy and Anomalies

• If a new student enrols at university, he or she cannot be
entered in the database until he or she passes the first exam

• insertion anomaly

• If a student withdraws from studies, it is not possible to keep
track of his residence

• deletion anomaly

12

Redundancy

• A single relation is used to represent heterogeneous
information

• some data are repeated in different tuples without adding new
information

• redundant data

13

Anomalies

• Redundant information must be updated atomically (all at the
same time)

14

Anomalies

• Redundant information must be updated atomically (all at the
same time)

• The deletion of a tuple implies the deletion of all concepts
represented in it

• including those that might still be valid

15

Anomalies

• Redundant information must be updated atomically (all at the
same time)

• The deletion of a tuple implies the deletion of all concepts
represented in it

• including those that might still be valid

• The insertion of a new tuple is only possible if at least the
complete information about the primary key exists

• it is not possible to insert the part of the tuple relating to only
one concept

Normalization

Boyce-Codd normal form

17

Functional dependence

• It is a special type of integrity constraint

• It describes functional links between the attributes of a
relation

18

Functional dependence

• It is a special type of integrity constraint

• It describes functional links between the attributes of a
relation

• Esxample: the residence is unique for each student

• each time the same student appears, the value is repeated

• the value of StudentID determines the value of Residence

19

Functional dependence

• A relation r satisfies the functional dependence X → Y if, for
each pair t1, t2 of tuples of r, having the same values for
attributes in X, t1 and t2 also have the same values for
attributes in Y

• X determines Y (in r)

20

Functional dependence

• A relation r satisfies the functional dependence X → Y if, for
each pair t1, t2 of tuples of r, having the same values for
attributes in X, t1 and t2 also have the same values for
attributes in Y

• X determines Y (in r)

• Examples

StudentID → Residence

StudentID CodCourse → NameCourse

21

Non-trivial dependence

• The dependence

StudentID CodCourse → CodCourse

The dependency is trivial because CodCourse is part of both
sides

• A functional dependence X → Y is non-trivial if no attribute in
X appears among the attributes in Y

22

Functional dependencies and keys

• Given a key K of a relation r

K → any other attribute of r

(or set of attributes)

• Examples

• StudentID CodCourse → Residence

• StudentID CodCourse → NameCourse

• StudentID CodCourse → Vote

23

Functional dependencies and anomalies

• Anomalies are caused by attribute properties involved in
functional dependencies

• Examples

• StudentID → Residence

• CodCourse → NameCourse

24

Functional dependencies and anomalies

• Anomalies are caused by attribute properties involved in
functional dependencies

• Examples

• StudentID → Residence

• CodCourse → NameCourse

• Functional dependencies on keys do not give rise to
anomalies

• Example

• StudentID CodCourse → Vote

25

Functional dependencies and anomalies

• The anomalies are caused by

• the inclusion of mutually independent concepts in the same
relation

26

Functional dependencies and anomalies

• The anomalies are caused by

• the inclusion of mutually independent concepts in the same
relation

• functional dependencies X → Y allowing for multiple tuples with
the same value of X

• X doesn’t contain a key

27

Boyce Codd normal form (BCNF)

• BCNF = Boyce Codd Normal Form

• A relation r is in BCNF if, for every (non-trivial) functional
dependency X → Y defined on it, X contains a key of r (X is
superkey of r)

• Anomalies and redundancies are not present in BCNF reports
because independent concepts are separated in different
reports

Normalization

Normal form decomposition

29

BCNF decomposition

• Normalization

• process of replacing a non-normalised relation by two or more
relations in BCNF

30

BCNF decomposition

• Normalization

• process of replacing a non-normalised relation by two or more
relations in BCNF

• Criteria

• a relation representing several independent concepts is
decomposed into smaller relations, one for each concept, by
means of functional dependencies

31

BCNF decomposition

• The new relationships are obtained by projections onto the
sets of attributes corresponding to the functional
dependencies

• The keys of the new relations are the left parts of the
functional dependencies

• the new relations are in BCNF

32

Example

• Functional dependencies in the example

• StudentID → Residence

• CodCourse → NameCourse

• StudentID CodCourse → Vote

33

Example

• By

R (StudentID, Residence, CodCourse NameCourse, Vote)

• The relations in BCNF are

R1 (StudentID, Residence) = πStudentID, ResidenceR

R2 (CodCourse, NameCourse) = πCodCourse, NameCourse R

R3 (StudentID, CodCourse, Vote) =

πStudentID, CodCourse, Vote R

34

Example

StudentID Residence

s94539 Milan

s94540 Turin

s94541 Pescara

s94542 Lecce

CodCourse NameCourse

04FLYCY Electronic calculators

01FLTCY Database design

01KPNCY Computer network

R3

StudentID CodCourse Vote

s94539 04FLYCY 30

s94540 01FLTCY 26

s94540 01KPNCY 28

s94541 01KPNCY 29

s94542 04FLYCY 25

R1 R2

35

Course

CodCourse NameCourse

Student

StudentIDResidence

Example: corresponding ER scheme

36

Exam Passed

Course

CodCourse NameCourse

Student

StudentIDResidence

Vote

Example: corresponding ER scheme

37

Example: corresponding ER scheme

Exam Passed

Course

CodCourse NameCourse

Student

StudentID

(0,N) (0,N)

Residence

Vote

38

Example: relational logic scheme

Exam Passed

Course

CodCourse NameCourse

Student

StudentID

(0,N) (0,N)

Residence

Vote

Student (StudentID, Residence)

Course (CodCourse, NameCourse)

Exam Passed (StudentID, CodCourse, Vote)

Normalization

Decomposition properties

40

Decomposition properties

• Are all decompositions acceptable?

• essential properties for “good” decomposition

• Problems

• information loss

• loss of dependencies

41

Example

R (Employee, Category, Salary)

Employee Category Salary

Rossi 2 1800

Verdi 3 1800

Bianchi 4 2500

Neri 5 2500

Bruni 6 3500

42

Example

R (Employee, Category, Salary)

Employee → Category

Employee Category Salary

Rossi 2 1800

Verdi 3 1800

Bianchi 4 2500

Neri 5 2500

Bruni 6 3500

43

Example

R (Employee, Category, Salary)

Employee → Category

Employee → Salary

Employee Category Salary

Rossi 2 1800

Verdi 3 1800

Bianchi 4 2500

Neri 5 2500

Bruni 6 3500

44

Example

R (Employee, Category, Stipendio)

Employee → Category

Employee → Salary

Category → Salary

Employee Category Salary

Rossi 2 1800

Verdi 3 1800

Bianchi 4 2500

Neri 5 2500

Bruni 6 3500

Normalization

Lossless Decomposition

46

Example: decomposition (n.1)

• Decomposition based on functional dependencies

Employee→ Salary

Category→ Salary

R (Employee, Category, Salary)

47

Example: decomposition (n.1)

• Decomposing
R1 (Employee, Salary) =

πEmployee, Salary R

R (Employee, Category, Salary)

48

Example: decomposition (n.1)

• Decomposing
R1 (Employee, Salary) =

πEmployee, Salary R

Employee Salary

Rossi 1800

Verdi 1800

Bianchi 2500

Neri 2500

Bruni 3500

R (Employee, Category, Salary)

49

Example: decomposition (n.1)

• Decomposing
R1 (Employee, Salary) = R2 (Category, Salary) =

πEmployee, Salary R πCategory, Salary R

Category Salary

2 1800

3 1800

4 2500

5 2500

6 3500

R (Employee, Category, Salary)

Employee Salary

Rossi 1800

Verdi 1800

Bianchi 2500

Neri 2500

Bruni 3500

50

Example: recomposition (n.1)

• Recomposing
R1 R2

51

Example: recomposition (n.1)

Employee Category Salary

Rossi 2 1800

• Recomposing
R1 R2

52

Example: recomposition (n.1)

• Recomposing
R1 R2

Employee Category Salary

Rossi 2 1800

Rossi 3 1800

53

Example: recomposition (n.1)

• Recomposing
R1 R2

Employee Category Salary

Rossi 2 1800

Rossi 3 1800

Verdi 2 1800

54

Example: recomposition (n.1)

• Recomposing
R1 R2

Employee Category Salary

Rossi 2 1800

Rossi 3 1800

Verdi 2 1800

Verdi 3 1800

55

Example: recomposition (n.1)

• Recomposing
R1 R2

Employee Category Salary

Rossi 2 1800

Rossi 3 1800

Verdi 2 1800

Verdi 3 1800

Bianchi 4 2500

… … …

56

Example: recomposition (n.1)

• Recomposing
R1 R2

“spurious”
tuples

Employee Category Salary

Rossi 2 1800

Rossi 3 1800

Verdi 2 1800

Verdi 3 1800

Bianchi 4 2500

… … …

57

Example: recomposition (n.1)

• Recomposing
R1 R2

• Reconstruction with loss of information

“spurious”
tuples

Employee Category Salary

Rossi 2 1800

Rossi 3 1800

Verdi 2 1800

Verdi 3 1800

Bianchi 4 2500

… … …

58

Decomposition without loss

• The decomposition of a relation r into two sets of attributes
X1 and X2 is lossless if the join of the projections of r into X1

and X2 is equal to r itself (no "spurious" tuples)

• A decomposition performed to normalize must be lossless

59

Decomposition without loss

• Given the relation r(X) and sets of attributes X1 and X2 such
that

X = X1 ∪ X2

X0 = X1 ∩ X2

if r satisfies the functional dependence

X0 → X1 o X0 → X2

the decomposition of r on X1 and X2 is lossless

• Common attributes form a key to at least one of the
decomposed relations

60

Example: loss of information

R1 (Employee, Salary) R2 (Category, Salary)

X1 = Employee, Salary

X2 = Category, Salary

• Verification of condition for lossless decomposition

61

Example: loss of information

R1 (Employee, Salary) R2 (Category, Salary)

X1 = Employee, Salary

X2 = Category, Salary

X0 = Salary

• Verification of condition for lossless decomposition

62

Example: loss of information

R1 (Employee, Salary) R2 (Category, Salary)

• The attribute Salary does not satisfy the condition for lossless
decomposition

• Verification of condition for lossless decomposition

X1 = Employee, Salary

X2 = Category, Salary

X0 = Salary

63

Example: decomposition (n.2)

• Decomposition based on functional dependencies

Employee→ Category

Employee→ Salary

R (Employee, Category, Salary)

64

R (Employee, Category, Salary)

Example: decomposition (n.2)

• Decomposing
R1 (Employee, Category) =

πEmployee, Salary R

65

R (Employee, Category, Salary)

Example: decomposition (n.2)

• Decomposing
R1 (Employee, Category) =

πEmployee, Salary R

Employee Category

Rossi 2

Verdi 3

Bianchi 4

Neri 4

Bruni 5

66

Example: decomposition (n.2)

• Decomposing
R1 (Employee, Category) = R2 (Employee, Salary) =

πEmployee, Salary R πCategory, Salary R

Employee Category

Rossi 2

Verdi 3

Bianchi 4

Neri 4

Bruni 5

Employee Salary

Rossi 1800

Verdi 1800

Bianchi 2500

Neri 2500

Bruni 3500

R (Employee, Category, Salary)

67

Example: decomposition without loss?

R1 (Employee, Category) R2 (Employee, Salary)

R1 R2

• Is decomposition without loss?

68

R1 (Employee, Category) R2 (Employee, Salary)

R1 R2

• Verifying the condition for lossless decomposition

X1 = Employee, Category

X2 = Employee, Salary

Example: decomposition without loss

69

Example: decomposition without loss

R1 (Employee, Category) R2 (Employee, Salary)

R1 R2

• Verifying the condition for lossless decomposition

X1 = Employee, Category

X2 = Employee, Salary

X0 = Employee

70

Example: decomposition without loss

R1 (Employee, Category) R2 (Employee, Salary)

R1 R2

• Verifying the condition for lossless decomposition

X1 = Employee, Category

X2 = Employee, Salary

X0 = Employee

• The attribute Employee satisfies the condition for lossless
decomposition

Normalization

Conservation of dependencies

72

Example: inserting a new tuple

R1 (Employee, Category) R2 (Employee, Salary)

• Inserting the tuple
Employee: Gialli – Category: 3 – Salary: 3500

73

Example: inserting a new tuple

R1 (Employee, Category) R2 (Employee, Salary)

• Inserting the tuple
Employee: Gialli – Category: 3 – Salary: 3500

Employee Category

Rossi 2

Verdi 3

Bianchi 4

Neri 4

Bruni 5

74

Example: inserting a new tuple

R1 (Employee, Category) R2 (Employee, Salary)

• Inserting the tuple
Employee: Gialli – Category: 3 – Salary: 3500

Gialli 3

Employee Category

Rossi 2

Verdi 3

Bianchi 4

Neri 4

Bruni 5

75

Example: inserting a new tuple

R1 (Employee, Category) R2 (Employee, Salary)

• Inserting the tuple
Employee: Gialli – Category: 3 – Salary: 3500

Employee Salary

Rossi 1800

Verdi 1800

Bianchi 2500

Neri 2500

Bruni 3500

Employee Category

Rossi 2

Verdi 3

Bianchi 4

Neri 4

Bruni 5

Gialli 3

76

R1 (Employee, Category) R2 (Employee, Salary)

• Inserting the tuple
Employee: Gialli – Category: 3 – Salary: 3500

Example: inserting a new tuple

Employee Category

Rossi 2

Verdi 3

Bianchi 4

Neri 4

Bruni 5

Gialli 3

Employee Salary

Rossi 1800

Verdi 1800

Bianchi 2500

Neri 2500

Bruni 3500

Gialli 3500

77

• What happens if I insert the tuple (Gialli,3500) in R2?

• in the original report insertion is prohibited because it causes the
violation of the dependency Category → Salary

• in the decomposition it is no longer possible to recognise any
violation, since the attributes Category and Salary are in
separate relationships

• The dependence between Category and Salary has been lost

Example: inserting a new tuple

78

Conservation of dependencies

• A decomposition preserves dependencies if each of the
functional dependencies of the original schema is present in
one of the decomposed relations

• Dependencies should be retained to ensure that the same
constraints are satisfied in the decomposed schema as in the
original schema

79

Example: decomposition (n.3)

• Decomposition based on functional dependencies

Employee → Category

Category → Salary

R (Employee, Category, Salary)

80

Example: decomposition (n.3)

• Decomposing
R1 (Employee, Category) =

πEmployee, Category R

R (Employee, Category, Salary)

Employee Category

Rossi 2

Verdi 3

Bianchi 4

Neri 5

Bruni 6

81

Example: decomposition (n.3)

• Decomposing
R1 (Employee, Category) = R2 (Category, Salary) =

πEmployee, Category R πCategory, Salary R

Employee Category

Rossi 2

Verdi 3

Bianchi 4

Neri 5

Bruni 6

Category Salary

2 1800

3 1800

4 2500

5 2500

6 3500

R (Employee, Category, Salary)

82

Example

• Recomposing
R1 R2

83

Example: decomposition without loss

• Recomposing

• Condition check for lossless decomposition

X1 = Employee, Category

X2 = Category, Salary

R1 R2

84

Example: decomposition without loss

• Recomposing

• Condition check for lossless decomposition
X1 = Employee, Category

X2 = Category, Salary

X0 = Category

R1 R2

85

Example: decomposition without loss

• Recomposing

• Condition check for lossless decomposition
X1 = Employee, Category

X2 = Category, Salary

X0 = Category

R1 R2

• The attribute Category satisfies the condition for lossless
decomposition

86

Example: Conservation of functional dependencies

• Recomposing

• Conserved functional dependencies

Employee → Category

Category → Salary

R1 R2

87

• Recomposing

• Conserved functional dependencies

Employee → Category

Category → Salary

• Functional dependency

Employee → Salary

can be reconstructed from

Employee → Category

Category → Salary

R1 R2

Example: Conservation of functional dependencies

88

Example: corresponding ER scheme

Employee

Employee

89

Example: corresponding ER scheme

Category

Category Salary

Employee

Employee

90

Example: corresponding ER scheme

By category

Category

Category Salary

Employee

Employee

91

By category

Category

Category Salary

Employee

Employee

(1,1) (0,N)

Example: corresponding ER scheme

92

By category

Category

Category Salary

Employee

Employee

(1,1) (0,N)

Employee (Employee, Category)

Category (Category, Salary)

Example: ER schema

93

Quality of a decomposition

• Decompositions must always satisfy the properties

• decomposition without loss

• ensures that the information in the original relation is accurately
reconstructed (without spurious tuples) from that in the
decomposed relations

• conservation of dependencies

• ensures that the decomposed relations have the same capacity as
the original relation to represent the integrity constraints

	Slide 1
	Slide 2: Normalization
	Slide 3
	Slide 4: Normalization
	Slide 5: Normalization and ER model
	Slide 6: Example
	Slide 7: Example: constraints
	Slide 8: Redundancy and Anomalies
	Slide 9: Redundancy and Anomalies
	Slide 10: Redundancy and Anomalies
	Slide 11: Redundancy and Anomalies
	Slide 12: Redundancy
	Slide 13: Anomalies
	Slide 14: Anomalies
	Slide 15: Anomalies
	Slide 16
	Slide 17: Functional dependence
	Slide 18: Functional dependence
	Slide 19: Functional dependence
	Slide 20: Functional dependence
	Slide 21: Non-trivial dependence
	Slide 22: Functional dependencies and keys
	Slide 23: Functional dependencies and anomalies
	Slide 24: Functional dependencies and anomalies
	Slide 25: Functional dependencies and anomalies
	Slide 26: Functional dependencies and anomalies
	Slide 27: Boyce Codd normal form (BCNF)
	Slide 28
	Slide 29: BCNF decomposition
	Slide 30: BCNF decomposition
	Slide 31: BCNF decomposition
	Slide 32: Example
	Slide 33: Example
	Slide 34: Example
	Slide 35: Example: corresponding ER scheme
	Slide 36: Example: corresponding ER scheme
	Slide 37: Example: corresponding ER scheme
	Slide 38: Example: relational logic scheme
	Slide 39
	Slide 40: Decomposition properties
	Slide 41: Example
	Slide 42: Example
	Slide 43: Example
	Slide 44: Example
	Slide 45
	Slide 46: Example: decomposition (n.1)
	Slide 47: Example: decomposition (n.1)
	Slide 48: Example: decomposition (n.1)
	Slide 49: Example: decomposition (n.1)
	Slide 50: Example: recomposition (n.1)
	Slide 51: Example: recomposition (n.1)
	Slide 52: Example: recomposition (n.1)
	Slide 53: Example: recomposition (n.1)
	Slide 54: Example: recomposition (n.1)
	Slide 55: Example: recomposition (n.1)
	Slide 56: Example: recomposition (n.1)
	Slide 57: Example: recomposition (n.1)
	Slide 58: Decomposition without loss
	Slide 59: Decomposition without loss
	Slide 60: Example: loss of information
	Slide 61: Example: loss of information
	Slide 62: Example: loss of information
	Slide 63: Example: decomposition (n.2)
	Slide 64: Example: decomposition (n.2)
	Slide 65: Example: decomposition (n.2)
	Slide 66: Example: decomposition (n.2)
	Slide 67: Example: decomposition without loss?
	Slide 68: Example: decomposition without loss
	Slide 69: Example: decomposition without loss
	Slide 70: Example: decomposition without loss
	Slide 71
	Slide 72: Example: inserting a new tuple
	Slide 73: Example: inserting a new tuple
	Slide 74: Example: inserting a new tuple
	Slide 75: Example: inserting a new tuple
	Slide 76: Example: inserting a new tuple
	Slide 77: Example: inserting a new tuple
	Slide 78: Conservation of dependencies
	Slide 79: Example: decomposition (n.3)
	Slide 80: Example: decomposition (n.3)
	Slide 81: Example: decomposition (n.3)
	Slide 82: Example
	Slide 83: Example: decomposition without loss
	Slide 84: Example: decomposition without loss
	Slide 85: Example: decomposition without loss
	Slide 86: Example: Conservation of functional dependencies
	Slide 87: Example: Conservation of functional dependencies
	Slide 88: Example: corresponding ER scheme
	Slide 89: Example: corresponding ER scheme
	Slide 90: Example: corresponding ER scheme
	Slide 91: Example: corresponding ER scheme
	Slide 92: Example: ER schema
	Slide 93: Quality of a decomposition

