

Databases

Unit 3 **SQL language: basics**

Introduction

- □ Introduction to the SQL language
- □ Language commands

- □ A language for managing relational databases
 - Structured Query Language
- □ SQL provides commands to
 - define the schema of a relational database
 - read and write data
 - define the schema of derived tables
 - define user access privileges
 - manage transactions

- The SQL language may be used in two ways
 - interactive
 - compiled
 - a host language encapsulates the SQL commands
 - SQL commands can be distinguished from the host language commands by means of appropriate syntactic mechanisms

- □ SQL is a set-level language
 - operators are applied to relations (tables)
 - the result is always a relation (table)
- □ SQL is a *declarative* language
 - it describes what to do and not how to do it
 - it has a higher level of abstraction compared to traditional programming languages

Introduction

Language commands

∑ It can be subdivided into

- DML (Data Manipulation Language)
 - language for querying and updating the data
- DDL (Data Definition Language)
 - language for defining the database structure

Data Manipulation Language

- □ To query a database in order to extract the data of interest
 - SELECT
- To modify a database instance
 - insertion of new information into a table
 - INSERT
 - update of the information in the database
 - UPDATE
 - deletion of obsolete data
 - DELETE

Data Definition Language

- □ To define a database schema
 - creation, modification and deletion of tables
 - CREATE, ALTER, DROP TABLE
- \supset To define derived tables
 - creation, modification and deletion of tables whose content is obtained from other database tables
 - CREATE, ALTER, DROP VIEW
- To define complementary data structures for efficiently retrieving the data
 - creation and deletion of indices
 - CREATE, DROP INDEX

Data Definition Language

- □ To define user access privileges
 - grant and revocation of privileges on resources
 - GRANT, REVOKE
- □ To define transactions
 - termination of a transaction
 - COMMIT, ROLLBACK

Evolution of the SQL standard

Informal name	Official name	Features	
Basic SQL	SQL-86	Basic constructs	
Dasic SQL	SQL-89	Referential integrity	
		Relational model	
SQL-2	SQL-92	Several new constructs	
		3 levels: entry, intermediate, full	
		Object-relational model	
	SQL:1999	Organized into multiple parts	
COL 2		Triggers, external functions,	
SQL-3		Extensions to the object model	
	SQL:2003	Removal of unused constructs	
DBC		New parts: SQL/JRT, SQL/XML	

Introduzione

Notation

Syntax of SQL commands

- language keywords
 - upper case, dark blue color
- variable terms
 - italic font

Syntax of SQL commands

□ Grammar

- angle brackets < >
 - to isolate a syntactic term
- square brackets []
 - the enclosed term is optional
- braces { }
 - the enclosed term may not appear or may be repeated an arbitrary number of items
- vertical bar |
 - the term must be chosen among the options separated by the vertical bars

Example database

- ∑ Supplier and part DB
 - table P describes the available products
 - primary key: PId
 - table S describes the suppliers
 - primary key: SId
 - table SP describes supplies, by relating each product to the suppliers that provide it
 - primary key: (SId, PId)
 - PId(SP) REFERENCES PId(P)
 - SId(SP) REFERENCES SId(S)

Instance of the example database

<u>Pld</u>	PName	Color	Size	Store
P1	Jumper	Red	40	London
P2	Jeans	Green	48	Paris
P3	Blouse	Blue	48	Rome
P4	Blouse	Red	44	London
P5	Skirt	Blue	40	Paris
P6	Shorts	Red	42	London

<u>Sld</u>	SName	#Employees	City
S1	Smith	20	London
S2	Jones	10	Paris
S3	Blake	30	Paris
S4	Clark	20	London
S5	Adams	30	Athens

SP	Foreign keys		
<u>Sld</u>	<u>Pld</u>	Qty	
S1	P1	300	
S1	P2	200	
S1	P3	400	
S1	P4	200	
S1	P5	100	
S1	P6	100	
S2	P1	300	
S2	P2	400	
S3	P2	200	
S4	P3	200	
S4	P4	300	
S4	P5	400	

SQL language: basics

The SELECT statement: basics

The SELECT statement: basics

- □ Basic structure
- □ The WHERE clause
- □ Result ordering
- □ Aggregate functions
- □ The GROUP BY operator

Structure of the SELECT statement

SELECT [DISTINCT] ListOfAttributesToDisplay

FROM ListOfTablesToUse

[WHERE *TupleConditions*]

[GROUP BY ListOfGroupingAttributes]

[HAVING AggregateConditions]

[ORDER BY ListOfOrderingAttributes];

The SELECT statement: example

 □ Find the codes and the number of employees of the suppliers based in Paris

The SELECT statement: example

 □ Find the codes and the number of employees of the suppliers based in Paris

S

SId	SName	#Employees	City
S1	Smith	20	London
S2	Jones	10	Paris
S3	Blake	30	Paris
S4	Clark	20	London
S5	Adams	30	Athens

The SELECT statement: example

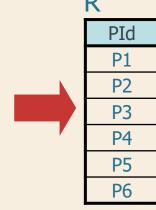
 □ Find the codes and the number of employees of the suppliers based in Paris

> SELECT SId, #Employees FROM S WHERE City='Paris';

S

<u>SId</u>	SName	#Employees	City		R
S1	Smith	20	London	SId	#Employees
S2	Jones	10	Paris	S2	10
S3	Blake	30	Paris	S3	30
S4	Clark	20	London		
S5	Adams	30	Athens		

Basic SELECT (no.1)


> Find the codes of all products in the database

SELECT PId FROM P;

 π_{PId}

н	
н	
н	
н	

<u>PId</u>	PName	Color	Size	Store
P1	Jumper	Red	40	London
P2	Jeans	Green	48	Paris
P3	Blouse	Blue	48	Rome
P4	Blouse	Red	44	London
P5	Skirt	Blue	40	Paris
P6	Shorts	Red	42	London

Basic SELECT (no.2)

□ Find the codes of the products supplied by at least one supplier

SP

<u>SId</u>	<u>PId</u>	Qty
S1	P1	300
S1	P2	200
S1	P3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S 3	P2	200
S4	P3	200
S4	P4	300
S 4	D5	400

SELECT PId FROM SP;

K
PId
P1
P2
P3
P4
P5
P6
P1
P2
P2
P3
P4
P5

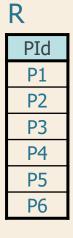
Basic SELECT (no.2)

□ Find the codes of the products supplied by at least one supplier

□ It does not eliminate duplicates

Elimination of duplicates

- □ DISTINCT keyword
 - elimination of duplicates
- □ Find the codes of the distinct products supplied
 by at least one supplier


Basic SELECT (no.2)

> Find the codes of the *distinct* products supplied by at least one supplier

SP

<u>SId</u>	<u>PId</u>	Qty
S1	P1	300
S1	P2	200
S1	P3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S4	P3	200
S4	P4	300

SELECT DISTINCT PId FROM SP;

Selection of all information

> Find all information related to products

SELECT PId, PName, Color, Size, Store FROM P;

or

SELECT * FROM P;

R

<u>PId</u>	PName	Color	Size	Store
P1	Jumper	Red	40	London
P2	Jeans	Green	48	Paris
P3	Blouse	Blue	48	Rome
P4	Blouse	Red	44	London
P5	Skirt	Blue	40	Paris
P6	Shorts	Red	42	London

Selection with an expression (1/3)

□ Find the codes of the products and the sizes expressed with the US standard

SELECT PId, Size-14 FROM P;

P

<u>PId</u>	PName	Color	Size	Store	
P1	Jumper	Red	40	London	
P2	Jeans	Green	48	Paris	
P3	Blouse	Blue	48	Rome	
P4	Blouse	Red	44	London	
P5	Skirt	Blue	40	Paris	
P6	Shorts	Red	42	London	

R

PId	
P1	26
P2	34
P3	34
P4	30
P5	26
P6	28
	P1 P2 P3 P4 P5

Selection with an expression (2/3)

- Definition of a new *temporary* column for the computed expression
 - the name of the temporary column may be defined by means of the AS keyword

Selection with an expression (3/3)

□ Find the codes of the products and the sizes expressed with the US standard

SELECT PId, Size-14 AS USSize FROM P;

R

PId	USSize
P1	26
P2	34
P3	34
P4	30
P5	26
P6	28

The SELECT statement: basics

The WHERE clause

The WHERE clause

- □ It allows expressing selection conditions applied to each tuple individually
- □ A Boolean expression composed by one or more predicates
- ⊃ Simple predicates
 - comparison between attributes and constants
 - text search
 - NULL values

The WHERE clause (no.1)

> Find the codes of the suppliers based in Paris

SELECT SId

FROM S

WHERE City='Paris';

S

<u>SId</u>	SName	#Employees	City
S1	Smith	20	London
S2	Jones	10	Paris
S3	Blake	30	Paris
S4	Clark	20	London
S5	Adams	30	Athens

SId S2 S3

The WHERE clause (no.2)

 □ Find the codes and the number of employees of the suppliers that are not based in Paris

> SELECT SId, #Employees FROM S WHERE City<>'Paris';

S

<u>SId</u>	SName	#Employees	City	
S1	Smith	20	London	
S2	Jones	10	Paris	
S3	Blake	30	Paris	
S4	Clark	20	London	
S5	Adams	30	Athens	

F

SId	#Employees
S1	20
S4	20
S5	30

Boolean expressions (no.1)

 □ Find the codes of the suppliers based in Paris that have more than 20 employees

SELECT SId

FROM S

WHERE City='Paris' AND #Employees>20;

S

SId	SName	#Employees	City		R
S1	Smith	20	London		SId
S2	Jones	10	Paris		S3
S3	Blake	30	Paris	,	33
S4	Clark	20	London		
S5	Adams	30	Athens		

Boolean expressions (no.2)

 □ Find the codes and the number of employees of the suppliers based in Paris or London

SELECT SId, #Employees

FROM S

WHERE City='Paris' OR City='London';

S

<u>SId</u>	SName	#Employees	City
S1	Smith	20	London
S2	Jones	10	Paris
S3	Blake	30	Paris
S4	Clark	20	London
S5	Adams	30	Athens

SId	#Employees
S1	2
S2	1
S3	3
S4	2

Boolean expressions (no.3)

- □ Find the codes and the number of employees of the suppliers based in Paris and in London
 - the query may not be satisfied
 - each supplier has only one city

S

<u>SId</u>	SName	#Employees	City
S1	Smith	20	London
S2	Jones	10	Paris
S3	Blake	30	Paris
S4	Clark	20	London
S5	Adams	30	Athens

Text search

□ LIKE operator

AttributeName LIKE CharacterString

- the _ character represents a single arbitrary character (non-empty)
- the % character represents an arbitrary sequence of characters (possibly empty)

Text search (no.1)

□ Find the codes and the names of the products whose name begins with the letter B

SELECT PId, PName FROM P WHERE PName LIKE 'B%';

P

<u>PId</u>	PName	Color	Size	Store
P1	Jumper	Red	40	London
P2	Jeans	Green	48	Paris
P3	Blouse	Blue	48	Rome
P4	Blouse	Red	44	London
P5	Skirt	Blue	40	Paris
P6	Shorts	Red	42	London

K	
PId	PName
P3	Blouse
P4	Blouse

Text search (no.2)

The Address attribute contains the string 'London'

Address LIKE '%London%'

Text search (no.3)

- The supplier identification number is 3 and
 - it is preceded by a single unknown character
 - it is exactly 2 characters long

SId LIKE '_3'

Text search (no.4)

The Store attribute does not have an 'e' in the second position

Store NOT LIKE '_e%'

Managing NULL values (no.1)

□ Find the codes and the names of products with a size greater than 44

SELECT PId, PName

FROM P

WHERE Size>44;

P

<u>PId</u>	PName	Color	Size	Store
P1	Jumper	Red	40	London
P2	Jeans	Green	48	Paris
P3	Blouse	Blue	48	Rome
P4	Blouse	Red	44	London
P5	Skirt	Blue	NULL	Paris
P6	Shorts	Red	42	London

PId	PName
P2	Jeans
P3	Blouse

The NULL value

- The tuples with a NULL size are not selected
 - the predicate Size>44 evaluates to false

Searching for NULL values

□ IS special operator

AttributeName IS [NOT] NULL

Searching for NULL values (no.1)

□ Find the codes and the names of the products whose size is unknown

SELECT PId, PName

FROM P

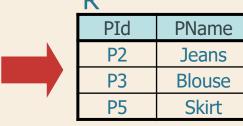
WHERE Size IS NULL;

P

<u>PId</u>	PName	Color	Size	Store
P1	Jumper	Red	40	London
P2	Jeans	Green	48	Paris
P3	Blouse	Blue	48	Rome
P4	Blouse	Red	44	London
P5	Skirt	Blue	NULL	Paris
P6	Shorts	Red	42	London

K			
PId	PName		
P5	Skirt		

Searching for NULL values (no.2)


Find the codes and the names of products with a size greater than 44, or that may have a size greater than 44

SELECT PId, PName

FROM P

WHERE Size>44 OR Size IS NULL;

<u>PId</u>	PName	Color	Size	Store
P1	Jumper	Red	40	London
P2	Jeans	Green	48	Paris
P3	Blouse	Blue	48	Rome
P4	Blouse	Red	44	London
P5	Skirt	Blue	NULL	Paris
P6	Shorts	Red	42	London

The SELECT statement: basics

Result ordering

Result ordering (no.1)

□ Find the codes of the products and their sizes, ordering the result by decreasing size

SELECT PId, Size FROM P ORDER BY Size DESC;

P

<u>PId</u>	PName	Color	Size	Store
P1	Jumper	Red	40	London
P2	Jeans	Green	48	Paris
P3	Blouse	Blue	48	Rome
P4	Blouse	Red	44	London
P5	Skirt	Blue	40	Paris
P6	Shorts	Red	42	London

F

PId	Size
P2	48
P3	48
P4	44
P6	42
P1	40
P5	40

Ordering

- ORDER BY clause
 ORDER BY AttributeName [ASC | DESC]
 {, AttributeName [ASC | DESC]}
 - the default ordering is ascending
 - if DESC is not specified
 - the ordering attributes must appear in the SELECT clause
 - even implicitly (as in SELECT *)

Result ordering (no.2)

➤ Find all information related to the products, ordering the result by increasing name and decreasing size

SELECT PId, PName, Color, Size, Store FROM P
ORDER BY PName, Size DESC;

P

<u>PId</u>	PName	Color	Size	Store	
P1	Jumper Red 40		40	London	
P2	Jeans	Green	48	Paris	
P3	Blouse	Blue	48	Rome	
P4	P4 Blouse Red 44		44	London	
P5	Skirt	Blue	40	Paris	
P6	Shorts	Red	42	London	

Result ordering (no.2)

Find all information related to the products, ordering the result by increasing name and decreasing size

SELECT PId, PName, Color, Size, Store FROM P
ORDER BY PName, Size DESC;

PId	PName	Color	Size	Store	
P3	Blouse	Blue	48	Rome	
P4	Blouse	Red	44	London	
P2	Jeans	Green	48	Paris	
P1	Jumper	Red	40	London	
P6	Shorts	Red	42	London	
P5	Skirt	Blue	40	Paris	

Result ordering (no.2)

➤ Find all information related to the products, ordering the result by increasing name and decreasing size

SELECT *
FROM P
ORDER BY PName, Size DESC;

PId	PName	Color	Size	Store	
P3	Blouse	Blue 48		Rome	
P4	Blouse	Red	44	London	
P2	2 Jeans Green		48	Paris	
P1	Jumper	Red	40	London	
P6	Shorts	Red	42	London	
P5	Skirt	Blue	40	Paris	

Result ordering (no.3)

Find the codes of the products and the sizes expressed with the US standard, ordering the result by increasing size

SELECT PId, Size-14 AS USSize FROM P ORDER BY USSize;

P

<u>PId</u>	PName	Color	Size	Store
P1	Jumper	ımper Red 40		London
P2	Jeans	Green	48	Paris
P3	Blouse	Blue	48	Rome
P4	Blouse	Red	44	London
P5	Skirt	Blue	40	Paris
P6	Shorts	Red	42	London

1 \	
PId	USSize
P5	26
P1	26
P6	28
P4	30
P2	34
P3	34

The SELECT statement: basics

Join

□ Find the names of the suppliers that provide product P2

Supplier and part DB

S

SId	SName	#Employees	City
S1	Smith	20	London
S2	Jones	10	Paris
S3	Blake	30	Paris
S4	Clark	20	London
S5	Adams	30	Athens

Supplier and part DB

S

SId	SName	#Employees	City
S1	Smith	20	London
S2	Jones	10	Paris
S3	Blake	30	Paris
S4	Clark	20	London
S5	Adams	30	Athens

SP

<u>SId</u>	<u>PId</u>	Qty
S1	P1	300
S1	P2	200
S1	P3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S4	P3	200
S4	P4	300
S4	P5	400

Cartesian product

□ Find the names of the suppliers that provide product P2

SELECT SName FROM S, SP;

Cartesian product

S.SId	S.SName	S.#Empl	S.City	SP.SId	SP.PId	SP.Qty
S1	Smith	20	London	S1	P1	300
S1	Smith	20	London	S1	P2	200
S1	Smith	20	London	S1	P3	400
S1	Smith	20	London	S1	P4	200
S1	Smith	20	London	S1	P5	100
S1	Smith	20	London	S1	P6	100
S1	Smith	20	London	S2	P1	300
S2	Jones	10	Paris	S1	P1	300
S2	Jones	10	Paris	S2	P1	300
<u>Ç</u>	•••	•••	•••	•••		

	~		=				
	S.SId	S.SName	S.#Empl	S.City	SP.SId	SP.PId	SP.Qty
	S 1	Smith	20	London	S1	P1	300
	S1	Smith	20	London	S1	P2	200
Ī	S1	Smith	20	London	S1	P3	400
Î	S1	Smith	20	London	S1	P4	200
Ī	S1	Smith	20	London	S1	P5	100
Ī	S1	Smith	20	London	S1	P6	100
Ī	S1	Smith	20	London	S2	P1	300
	S2	Jones	10	Paris	S1	P1	300
	S2	Jones	10	Paris	S2	P1	300
В	<u>G</u>						

□ Find the names of the suppliers that provide product P2

```
SELECT SName
FROM S, SP
WHERE S.SId = SP.SId
```

TableName.AttributeName

□ Find the names of the suppliers that provide product P2

SELECT SName FROM S, SP

1 KUN 3, 3F

WHERE S.SId = SP.SId

Join condition

	/		=				
	S.SId	s.SName	S.#Empl	S.City	SP.SId	SP.PId	SP.Qty
	S1	Smith	20	London	S1	P1	300
	S1	Smith	20	London	S1	P2	200
	S1	Smith	20	London	S1	P3	400
	S1	Smith	20	London	S1	P4	200
	S1	Smith	20	London	S1	P5	100
	S1	Smith	20	London	S1	P6	100
	S1	Smith	20	London	S2	P1	300
	:		:	:			
	S2	Jones	10	Paris	S1	P1	300
			:				
	S2	Jones	10	Paris	S2	P1	300
B	Ç						

S.SId	S.SName	S.#Empl	S.City	SP.SId	SP.PId	SP.Qty
S1	Smith	20	London	S1	P1	300
S1	Smith	20	London	S1	P2	200
S1	Smith	20	London	S1	P3	400
S1	Smith	20	London	S1	P4	200
S1	Smith	20	London	S1	P5	100
S1	Smith	20	London	S1	P6	100
S2	Jones	10	Paris	S2	P1	300
S2	Jones	10	Paris	S2	P2	400
S3	Blake	30	Paris	S3	P2	200
S4	Clark	20	London	S4	P3	200
S4	Clark	20	London	S4	P4	300
Ş4	Clark	20	London	S4	P5	400

□ Find the names of the suppliers that provide product P2

```
SELECT SName
FROM S, SP
WHERE S.SId=SP.SId AND
PId='P2';
```

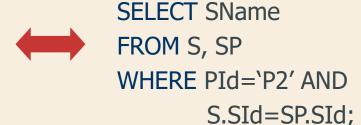

SP.PId='P2'

	S.SId	S.SName	S.#Empl	S.City	SP.SId	SP.PId	SP.Qty	
	S1	Smith	20	London	S1	P1	300	
	S1	Smith	20	London	S1	P2	200	
	S1	Smith	20	London	S1	P3	400	Γ
	S1	Smith	20	London	S1	P4	200	
	S1	Smith	20	London	S1	P5	100	
	S1	Smith	20	London	S1	P6	100	
	S2	Jones	10	Paris	S2	P1	300	
Г	S2	Jones	10	Paris	S2	P2	400	
	S3	Blake	30	Paris	S3	P2	200	П
	S4	Clark	20	London	S4	P3	200	Г
	S4	Clark	20	London	S4	P4	300	
E	CS4	Clark	20	London	S4	P5	400	
	7		-					_

S.SId	S.SName	S.#Empl	S.City	SP.SId	SP.PId	SP.Qty
S1	Smith	20	London	S1	P2	200
S2	Jones	10	Paris	S2	P2	400
S3	Blake	30	Paris	S3	P2	200

□ Find the names of the suppliers that provide product P2

SName
Smith
Jones
Blake


- □ Find the names of the suppliers that provide product P2
 - in relational algebra

□ Find the names of the suppliers that provide product P2

SELECT SName FROM S, SP WHERE S.SId=SP.SId AND PId='P2';

The result and the efficiency are independent of the order of predicates in the WHERE clause

□ Find the names of the suppliers that provide product P2

SELECT SName

FROM S, SP

FROM SP, S

WHERE S.SId=SP.SId

AND PId='P2';

AND PId='P2';

The result and the efficiency are independent of the order of tables in the FROM clause

- Declarativity of the SQL language
 - in relational algebra we define the order in which operators are applied
 - in SQL the best order is chosen by the optimizer independently of
 - the order of conditions in the WHERE clause
 - the order of tables in the FROM clause

□ Find the names of the suppliers that supply at least one red product

```
SELECT DISTINCT SName
FROM S, SP, P
WHERE S.SId=SP.SId AND P.PId=SP.PId
AND Color='Red';
```

- > FROM clause with N tables
 - at least N-1 join conditions in the WHERE clause

□ Find the pairs of supplier codes such that both suppliers are based in the same city

SELECT SX.SId, SY.SId FROM S AS SX, S AS SY WHERE SX.City=SY.City;

S AS SX

SId	SName	#Employees	City
S1	Smith	20	London
S2	Jones	10	Paris
S3	Blake	30	Paris
S4	Clark	20	London
S5	Adams	30	Athens

S AS SY

SId	SName	#Employees	City
S1	Smith	20	London
S2	Jones	10	Paris
S3	Blake	30	Paris
S4	Clark	20	London
S5	Adams	30	Athens

□ Find the pairs of supplier codes such that both suppliers are based in the same city

SELECT SX.SId, SY.SId FROM S AS SX, S AS SY WHERE SX.City=SY.City;

□ The result includes

- pairs of identical values
- permutations of the same pairs of values

R

SX.SId	SY.SId
S1	S1
S1	S4
S2	S2
S2	S3
S3	S2
S3	S3
S4	S1
S4	S4
S5	S5

□ Find the pairs of supplier codes such that both suppliers are based in the same city

SELECT SX.SId, SY.SId
FROM S AS SX, S AS SY
WHERE SX.City=SY.City AND
SX.SId <> SY.SId;

∑ It removes pairs of identical values

SX.SId	SY.SId	
\$1	\$1	
S1	S4	
S2	\$2	
52	52	
S2	S3	
S3	S2	
-		
S3	S3	
S4	S1	

S4

□ Find the pairs of supplier codes such that both suppliers are based in the same city

SELECT SX.SId, SY.SId
FROM S AS SX, S AS SY
WHERE SX.City=SY.City AND
SX.SId < SY.SId;

∑ It eliminates the permutations of the same pairs of values

	FX.CodF	FY.CodF	
-	F1	F1	_
	F1	F4	
_	F2	F2	H
	F2	F3	
	F3	F2	_
_	F3	F3	H
		F1	H
_	F4	F4	L
	F5	F5	H

□ Find the pairs of supplier codes such that both suppliers are based in the same city

SELECT SX.SId, SY.SId
FROM S AS SX, S AS SY
WHERE SX.City=SY.City AND
SX.SId < SY.SId;

R

SX.SId	SY.SId
S1	S4
S2	S3

Join: alternative syntax

- Different types of join may be specified
 - outer join
- □ It allows differentiating between
 - join conditions and
 - tuple selection conditions
- ☐ Introduced in SQL-2
 - not widely available in commercial products

Join: alternative syntax

SELECT [DISTINCT] Attributes
FROM Table JoinType JOIN Table ON
JoinCondition
[WHERE TupleConditions];

DinType = < INNER | [FULL | LEFT | RIGHT]
OUTER >

INNER join

□ Find the names of the suppliers that supply at least one red product

SELECT DISTINCT SName
FROM P INNER JOIN SP ON P.PId=SP.PId
INNER JOIN S ON S.SId=SP.SId
WHERE P.Color='Red';

OUTER join

Find the codes and the names of the suppliers together with the codes of the products they provide, also including the suppliers that are not supplying any product

SELECT S.SId, SName, PId FROM S LEFT OUTER JOIN SP ON S.SId=SP.SId;

OUTER join

R

K		
S.SId	S.SName	SP.PId
S1	Smith	P1
S1	Smith	P2
S1	Smith	P3
S1	Smith	P4
S1	Smith	P5
S1	Smith	P6
S2	Jones	P1
S2	Jones	P2
S3	Blake	P2
S4	Clark	P3
S4	Clark	P4
S4	Clark	P5
S5	Adams	NULL

The SELECT statement: basics

Aggregate functions

- □ An aggregate function
 - operates on a set of values
 - produces a single (aggregate) value as a result

- □ Aggregate functions available in SQL-2
 - COUNT: count of elements in a given attribute
 - SUM: sum of values for a given attribute
 - AVG: average of values for a given attribute
 - MAX: maximum value of a given attribute
 - MIN: minimum value of a given attribute

□ An aggregate function

- operates on a set of values
- produces a single (aggregate) value as a result
- is specified in the SELECT clause

- operates on a set of values
- produces a single (aggregate) value as a result
- is specified in the SELECT clause
 - non-aggregate attributes may not be specified at the same time
 - multiple aggregate functions may be specified simultaneously

The COUNT function

- Decounts the number of elements in a set
 - rows in a table
 - (possibly distinct) values for one or more attributes

COUNT (<* | [DISTINCT | ALL] ListOfAttributes >)

□ If the function argument is preceded by DISTINCT, it counts the number of distinct values of the argument

The COUNT function (no.1)

> Find the number of suppliers

SELECT COUNT(*)
FROM S;

S

SId	SName	#Employees	City	R
S1	Smith	20	London	
S2	Jones	10	Paris	
S3	Blake	30	Paris	
S4	Clark	20	London	
S5	Adams	30	Athens	

The COUNT function (no.2)

□ Find the number of suppliers that supply at least one product

SP

<u>SId</u>	<u>PId</u>	Qty
S1	P1	300
S1	P2	200
S1	P3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S4	P3	200
S4	P4	300
S 4	P5	400

SELECT COUNT(*)
FROM SP;

12

□ It counts the number of supplied products, not the suppliers

The COUNT function (no.2)

□ Find the number of suppliers that supply at least one product

SP

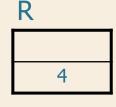
<u>SId</u>	<u>PId</u>	Qty	
S1	P1	300	
S1	P2	200	
S1	P3	400	
S1	P4	200	
S1	P5	100	
S1	P6	100	
S2	P1	300	
S2	P2	400	
S3	P2	200	
S4	P3	200	
S4	P4	300	
S4	P5	400	

SELECT COUNT(SId) FROM SP;

12

∑ It still counts the number of supplied products, not the suppliers

The COUNT function (no.2)


□ Find the number of suppliers that supply at least one product

SP

<u>SId</u>	<u>PId</u>	Qty
S1	P1	300
S1	P2	200
S1	P3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S4	P3	200
S4	P4	300
C/l	DE	400

SELECT COUNT(DISTINCT SId) FROM SP;

∑ It counts the number of distinct suppliers

Aggregate functions and WHERE

□ Find the number of suppliers providing product
 P2

SP

<u> </u>	<u> </u>			
<u>SId</u>	<u>PId</u>	Qty		
S1	P1	300		
S1	P2	200		
S1	P3	400		
S1	P4	200		
S1	P5	100		
S1	P6	100		
S2	P1	300		
S2	P2	400		
S3	P2	200		
S4	P3	200		
\$ 4	P4	300		
U 54	P5	400		

SELECT COUNT(*)

FROM SP

WHERE PId='P2';

<u>SId</u>	<u>PId</u>	Qty
S1	P2	200
S2	P2	400
S3	P2	200

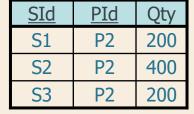
K	
	3
	3

Aggregate functions and WHERE

Aggregate functions are only evaluated once all predicates in the WHERE clause have been applied

The SUM, MAX, MIN, AVG functions

- SUM, MAX, MIN and AVG
 - they allow an attribute or an expression as argument
- SUM and AVG
 - they only allow numeric type or time interval attributes
- - they require an expression that can be ordered
 - may also be applied to character strings and time instants


The SUM function

□ Find the overall quantity of supplied pieces for product P2

SP

<u>SId</u>	<u>PId</u>	Qty
S1	P1	300
S1	P2	200
S1	P3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S4	P3	200
\$4	P4	300
4	P5	400

SELECT SUM(Qty) FROM SP WHERE PId='P2';

800

The SELECT statement: basics

The GROUP BY operator

Grouping

> For each product, find the overall quantity of supplied pieces

SP

<u>SId</u>	<u>PId</u>	Qty
S1	P1	300
S1	P2	200
S1	P3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S4	P3	200
S4	P4	300
RS4	P5	400

SP

	SId	<u>PId</u>	Qty	
	S1	P1	300	
L	S2	P1	300	
П	S1	P2	200	
	S2	P2	400	
Ц	S3	P2	200	
	S1	P3	400	
	S4	P3	200	
	S1	P4	200	
	S4	P4	300	
	S1	P5	100	
	S4	P5	400	
	S1	P6	100	

K	
PId	
P1	600
P2	800
P3	600
P4	500
P5	500
P6	100
· · · · · · · · · · · · · · · · · · ·	

Grouping

> For each product, find the overall quantity of supplied pieces

SELECT PId, SUM(Qty) FROM SP GROUP BY PId;

GROUP BY

□ Grouping clause

GROUP BY ListOfGroupingAttributes

- the order of grouping attributes is irrelevant
- □ Only
 - attributes specified in the GROUP BY clause
 - aggregate functions

are allowed to appear in the SELECT statement

➤ For each product, find the overall quantity of pieces supplied by suppliers based in Paris

S

SId	SName	#Employees	City
S1	Smith	20	London
S2	Jones	10	Paris
S3	Blake	30	Paris
S4	Clark	20	London
S5	Adams	30	Athens

SP

<u>SId</u>	<u>PId</u>	Qty
S1	P1	300
S1	P2	200
S1	P3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S 3	P2	200
S4	P3	200
S4	P4	300
S4	P5	400

> For each product, find the overall quantity of pieces supplied by suppliers based in Paris

```
SELECT ...
FROM SP, S
WHERE SP.SId=S.SId AND City='Paris'
```


> For each product, find the overall quantity of pieces supplied by suppliers based in Paris

S.SId	S.SName	S.#Empl	S.City	SP.SId	SP.PId	SP.Qty
S1	Smith	20	London	S1	P1	300
S1	Smith	20	London	S1	P2	200
S1	Smith	20	London	S1	P3	400
S1	Smith	20	London	S1	P4	200
S1	Smith	20	London	S1	P5	100
S1	Smith	20	London	S1	P6	100
S2	Jones	10	Paris	S2	P1	300
S2	Jones	10	Paris	S2	P2	400
S3	Blake	30	Paris	S3	P2	200
S4	Clark	20	London	S4	P3	200
S4	Clark	20	London	S4	P4	300
y S4	Clark	20	London	S4	P5	400

➤ For each product, find the overall quantity of pieces supplied by suppliers based in Paris

```
SELECT PId, SUM(Qty)
FROM SP, S
WHERE SP.SId=S.SId AND City='Paris'
GROUP BY PId;
```

□ Products that are not supplied by any supplier are not included in the result

> For each product, find the overall quantity of pieces supplied by suppliers based in Paris

SP.PId	SP.Qty
P1	300
P2	400
P2	200

K	
SP.PId	
P1	300
P2	600

GROUP BY and SELECT

 ➤ For each product, find the code, the name and the overall supplied quantity

SELECT P.PId, PName, SUM(Qty)

FROM P, SP

WHERE P.PId=SP.PId

GROUP BY P.PId, PName

- ∑ Syntactic mechanism
 - attributes that are unambiguously determined by other attributes already present in the GROUP BY clause may be added without altering the result

Group selection condition

- □ Find the overall quantity of supplied pieces for the products for which at least 600 pieces are supplied overall
 - the condition is defined on *aggregate values*
- The WHERE clause may not be used for this purpose

Group selection condition (no.1)

 □ Find the overall quantity of supplied pieces for the products for which at least 600 pieces are

SP supplied overall

SId	<u>PId</u>	Qty
S1	P1	300
S1	P2	200
S1	P3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S4	P3	200
S4	P4	300
J_{S4}	P5	400

(·	
	۲
_	

<u>SId</u>		<u>PId</u>	Qty
	S1	P1	300
	S2	P1	300
П	S1	P2	200
	S2	P2	400
Ц	<u>S3</u>	P2	200
П	S1	P3	400
	S4	P3	200
П	S1	P4	200
	S4	P4	300
П	S1	P5	100
	S4	P5	400
	S1	P6	100

-	<u>R</u>			
,	PId			
	P1	600		
	P2	800		
	P3	600		

Group selection condition (no.1)

 Find the overall quantity of supplied pieces for the products for which at least 600 pieces are supplied overall

SELECT PId, SUM(Qty)

FROM SP

GROUP BY PId

HAVING SUM(Qty)>=600;

The HAVING clause allows the specification of conditions on the aggregate functions

Group selection condition (no.2)

□ Find the codes of the red products supplied by more than one supplier

P

<u>PId</u>	PName	Color	Size	Store
P1	Jumper	Red	40	London
P2	Jeans	Green	48	Paris
P3	Blouse	Blue	48	Rome
P4	Blouse	Red	44	London
P5	Skirt	Blue	40	Paris
P6	Shorts	Red	42	London

SP

<u>SId</u>	<u>PId</u>	Qty
S1	P1	300
S1	P2	200
S1	P3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S4	P3	200
S4	P4	300
S4	P5	400

Group selection condition (no.2)

□ Find the codes of the red products supplied by more than one supplier

SELECT SP.PId
FROM SP, P
WHERE SP.PId=P.PId AND Color='Red'
GROUP BY SP.PId
HAVING COUNT(*)>1;

Group selection condition (no.2)

□ Find the codes of the red products supplied by more than one supplier

S.SId	S.PId	S.Qty	P.PId	P.PName	P.Color	P.Size	P.Store
S1	P1	300	P1	Jumper	Red	40	London
S2	P1	300	P1	Jumper	Red	40	London
S1	P6	100	P6	Shorts	Red	42	London

Structure of the SELECT statement

SELECT [DISTINCT] ListOfAttributesToDisplay

FROM ListOfTablesToUse

[WHERE *TupleConditions*]

[GROUP BY ListOfGroupingAttributes]

[HAVING AggregateConditions]

[ORDER BY ListOfOrderingAttributes];

