
15/03/23, 18:32 Lab2_Numpy_solutions

file:///Users/salvatorephd/Desktop/Lab2_Numpy_solutions.html 1/21

Lab 2: Numpy
The objective of this notebook is to learn about the Numpy library (official

documentation). You can find a good guide at this link.

Exploit the Numpy library and avoid explicit for loops and python lists for
all the exercises of this lab.

Outline

1. Numpy arrays creation

2. Operations with Numpy arrays

3. Accessing Numpy arrays

4. Min-Max normalization with numpy

First, run the following cell to import some useful libraries to complete this Lab. If not

already done, you must install them in your virtual environment

If the previous cell outputs one of the following errors: ModuleNotFoundError: No
module named 'numpy' or ModuleNotFoundError: No module named
'matplotlib' , then, you have to install the numpy or the matplotlib packages. If you

don't remember how to install a Python package, please retrieve the guide on

Anaconda-Navigator.

To install numpy you can use one of the following commands from the terminal of your

virtual environment:

conda install numpy
pip install numpy

To install matplotlib you can use one of the following commands from the terminal of

your virtual environment:

conda install matplotlib
pip install matplotlib

Please run the following cell containing useful functions already implemented for you to

plot some charts.

In [2]: import numpy as np
import matplotlib.pyplot as plt
import random

In [3]: def plot_distributions(my_list, names):
 fig, ax = plt.subplots(1, len(my_list), figsize=(14, 6))

 fig.suptitle("Frequency Histograms X, Y", fontsize=20)

 for i, x in enumerate(my_list):
 ax[i].hist(x, 25)
 ax[i].axvline(x.mean(), color='k', linestyle='dashed', linewidth=2)

https://numpy.org/doc/1.24/reference/index.html
https://www.w3schools.com/python/numpy/numpy_intro.asp

15/03/23, 18:32 Lab2_Numpy_solutions

file:///Users/salvatorephd/Desktop/Lab2_Numpy_solutions.html 2/21

1. Numpy arrays creation

Exercise 1.1

Create a Numpy array from the following list: [[1, 2, 3], [4, 5, 6], [7, 8,
9]] . Print the the values of the array and the shape.

 ax[i].set_xlabel(names[i], fontsize=14)
 ax[i].set_ylabel('Frequency', fontsize=14)

 plt.tight_layout()
 plt.show()
 return

def plot_2d_points(X,Y, norm_flag=False):
 fig, ax = plt.subplots(figsize=(10, 5))

 if norm_flag:
 ax.set_xlabel('Size of the house norm', fontsize=14)
 ax.set_ylabel('Price', fontsize=14)
 else:
 ax.set_xlabel('Size of the house', fontsize=14)
 ax.set_ylabel('Price', fontsize=14)
 ax.scatter(X, Y)

 plt.show()
 return

def plot_3d_points(X, Y, norm_flag=False):
 fig, ax = plt.subplots(figsize=(20, 10))
 ax = fig.add_subplot(projection='3d')

 if norm_flag:
 ax.set_xlabel('Size of the house norm', fontsize=14)
 ax.set_ylabel('Number of rooms norm', fontsize=14)
 ax.set_zlabel('Price', fontsize=14)
 else:
 ax.set_xlabel('Size of the house', fontsize=14)
 ax.set_ylabel('Number of rooms', fontsize=14)
 ax.set_zlabel('Price', fontsize=14)

 ax.scatter(X[:,0], X[:,1], Y)

 plt.tight_layout()
 plt.show()
 return

In [4]: #### START CODE HERE ####
Ideally 3 line
my_arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(my_arr)
print(my_arr.shape)
END CODE HERE

15/03/23, 18:32 Lab2_Numpy_solutions

file:///Users/salvatorephd/Desktop/Lab2_Numpy_solutions.html 3/21

[[1 2 3]
 [4 5 6]
 [7 8 9]]
(3, 3)

Expected output

[[1 2 3]
[4 5 6]
[7 8 9]]
(3, 3)

Exercise 1.2

Create a Numpy array my_arr filled with all ones with 3 rows and 4 columns.

Hints

[[1. 1. 1. 1.]
 [1. 1. 1. 1.]
 [1. 1. 1. 1.]]
(3, 4)

Expected output

[[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]]
(3, 4)

Exercise 1.3

Create a Numpy array my_arr filled with all zeros with 5 rows and 2 columns.

Hints

In [5]: #### START CODE HERE ####
Ideally 1 line
my_arr = np.ones((3, 4))
END CODE HERE

print(my_arr)
print(my_arr.shape)

In [6]: #### START CODE HERE ####
Ideally 1 line
my_arr = np.zeros((5, 2))
END CODE HERE

print(my_arr)
print(my_arr.shape)

15/03/23, 18:32 Lab2_Numpy_solutions

file:///Users/salvatorephd/Desktop/Lab2_Numpy_solutions.html 4/21

[[0. 0.]
 [0. 0.]
 [0. 0.]
 [0. 0.]
 [0. 0.]]
(5, 2)

Expected output

[[0. 0.]
[0. 0.]
[0. 0.]
[0. 0.]
[0. 0.]]
(5, 2)

Exercise 1.4

Create a Numpy array my_arr filled with all 0.5 with 2 rows and 2 columns.

Hints

[[0.5 0.5]
 [0.5 0.5]]
(2, 2)

Expected output

[[0.5 0.5]
[0.5 0.5]]
(2, 2)

2. Operations with Numpy arrays

Exercise 2.1

Add the value 5 to each element of the Numpy array my_arr .

In [7]: #### START CODE HERE ####
Ideally 1 line
my_arr = np.full((2, 2), 0.5)
END CODE HERE

print(my_arr)
print(my_arr.shape)

In [8]: my_arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
START CODE HERE
Ideally 1 line
my_arr = my_arr + 5
END CODE HERE
print(my_arr)

15/03/23, 18:32 Lab2_Numpy_solutions

file:///Users/salvatorephd/Desktop/Lab2_Numpy_solutions.html 5/21

[[6 7 8]
 [9 10 11]
 [12 13 14]]

Expected output

[[6 7 8]
[9 10 11]
[12 13 14]]

Exercise 2.2

Perform the element-wise logarithm of the Numpy array my_arr .

[[0. 0.69314718 1.09861229]
 [1.38629436 1.60943791 1.79175947]
 [1.94591015 2.07944154 2.19722458]]

Expected output

[[0. 0.69314718 1.09861229]
[1.38629436 1.60943791 1.79175947]
[1.94591015 2.07944154 2.19722458]]

Exercise 2.3

Compute the mean in arr_mean , the standard deviation in arr_std , the sum in

arr_sum , the max value in arr_max , and the index of the max value in

arr_max_idx of the array my_arr .

In [10]: my_arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
START CODE HERE
Ideally 1 line
my_arr = np.log(my_arr)
END CODE HERE
print(my_arr)

In [9]: my_arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
START CODE HERE
Ideally 5 line
arr_mean = np.mean(my_arr)
arr_std = np.std(my_arr)
arr_sum = np.sum(my_arr)
arr_max = np.max(my_arr)
arr_max_idx = np.argmax(my_arr)
END CODE HERE

print(f"mean: {arr_mean}")
print(f"standard deviation: {arr_std}")
print(f"sum: {arr_sum}")
print(f"max value: {arr_max}")
print(f"index of the max value: {arr_max_idx}")

15/03/23, 18:32 Lab2_Numpy_solutions

file:///Users/salvatorephd/Desktop/Lab2_Numpy_solutions.html 6/21

mean: 5.0
standard deviation: 2.581988897471611
sum: 45
max value: 9
index of the max value: 8

Expected output

mean: 5.0
standard deviation: 2.581988897471611
sum: 45
max value: 9
index of the max value: 8

Exercise 2.4

Compute the mean along the rows axis in arr_mean_rows of the array my_arr .

Hints

[[1 2 3]
 [4 5 6]
 [7 8 9]]

mean of the rows: [2. 5. 8.]

Expected output

[[1 2 3]
[4 5 6]
[7 8 9]]

mean of the rows: [2. 5. 8.]

Exercise 2.5

Compute the mean along the columns axis in arr_mean_cols of the array my_arr .

Hints

In [11]: my_arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(my_arr)

START CODE HERE
Ideally 1 line
arr_mean_rows = np.mean(my_arr, axis=1)
END CODE HERE

print(f"\nmean of the rows: {arr_mean_rows}")

In [12]: my_arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(my_arr)
START CODE HERE
Ideally 1 line
arr_mean_cols = np.mean(my_arr, axis=0)

15/03/23, 18:32 Lab2_Numpy_solutions

file:///Users/salvatorephd/Desktop/Lab2_Numpy_solutions.html 7/21

[[1 2 3]
 [4 5 6]
 [7 8 9]]

mean of the columns: [4. 5. 6.]

Expected output

[[1 2 3]
[4 5 6]
[7 8 9]]

mean of the columns: [4. 5. 6.]

You can see that both the mean along the rows axis and the mean along the columns

axis return a row vector.

3. Accessing Numpy arrays

Exercise 3.1

Assign the value of the element in the fourth row and the second column of the array

my_arr into a variable value .

Hints

[[1 2 3 4 5]
 [6 7 8 9 10]
 [11 12 13 14 15]
 [16 17 18 19 20]]

The element in the fourth row and second column is 17

Expected output

[[1 2 3 4 5]
[6 7 8 9 10]
[11 12 13 14 15]
[16 17 18 19 20]]

The element in the fourth row and second column is 17

END CODE HERE
print(f"\nmean of the columns: {arr_mean_cols}")

In [13]: my_arr = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15],
print(my_arr)

START CODE HERE
Ideally 1 line
value = my_arr[3, 1]
END CODE HERE

print(f"\nThe element in the fourth row and second column is {value}")

15/03/23, 18:32 Lab2_Numpy_solutions

file:///Users/salvatorephd/Desktop/Lab2_Numpy_solutions.html 8/21

Exercise 3.2

Assign the values of the slice corresponding to the rows from 0 to 2 (both included)

and the columns from 1 to 2 (both included) into a variable slice_arr .

Hints

[[1 2 3 4 5]
 [6 7 8 9 10]
 [11 12 13 14 15]
 [16 17 18 19 20]]

Slice:
[[2 3]
 [7 8]
 [12 13]]

Expected output

[[1 2 3 4 5]
[6 7 8 9 10]
[11 12 13 14 15]
[16 17 18 19 20]]

Slice:
[[2 3]
[7 8]
[12 13]]

Exercise 3.3

Assign the values of the slice with all the columns of the last 3 rows into a variable

slice_arr .

Hints

In [14]: my_arr = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15],
print(my_arr)

START CODE HERE
Ideally 1 line
slice_arr = my_arr[:3, 1:3]
END CODE HERE

print(f"\nSlice:")
print(slice_arr)

In [15]: my_arr = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15],
print(my_arr)

START CODE HERE
Ideally 1 line
slice_arr = my_arr[-3:, :]
END CODE HERE

15/03/23, 18:32 Lab2_Numpy_solutions

file:///Users/salvatorephd/Desktop/Lab2_Numpy_solutions.html 9/21

[[1 2 3 4 5]
 [6 7 8 9 10]
 [11 12 13 14 15]
 [16 17 18 19 20]]

Slice:
[[6 7 8 9 10]
 [11 12 13 14 15]
 [16 17 18 19 20]]

Expected output

[[1 2 3 4 5]
[6 7 8 9 10]
[11 12 13 14 15]
[16 17 18 19 20]]

Slice:
[[6 7 8 9 10]
[11 12 13 14 15]
[16 17 18 19 20]]

Exercise 3.4

Assign the values of the slice with all the columns of the last 3 rows into a variable

slice_arr . Then assign to all the elements of slice_arr the value -1 .

Hints

original array:
[[1 2 3 4 5]
 [6 7 8 9 10]
 [11 12 13 14 15]
 [16 17 18 19 20]]

 array after the modification of the slice:
[[1 2 3 4 5]
 [-1 -1 -1 -1 -1]
 [-1 -1 -1 -1 -1]
 [-1 -1 -1 -1 -1]]

Expected output

print(f"\nSlice:")
print(slice_arr)

In [16]: my_arr = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15],
print("original array:")
print(my_arr)

START CODE HERE
Ideally 2 line
slice_arr = my_arr[-3:, :]
slice_arr[:, :] = -1
END CODE HERE

print(f"\n array after the modification of the slice:")
print(my_arr)

15/03/23, 18:32 Lab2_Numpy_solutions

file:///Users/salvatorephd/Desktop/Lab2_Numpy_solutions.html 10/21

original array:
[[1 2 3 4 5]
[6 7 8 9 10]
[11 12 13 14 15]
[16 17 18 19 20]]

Slice:
[[1 2 3 4 5]
[-1 -1 -1 -1 -1]
[-1 -1 -1 -1 -1]
[-1 -1 -1 -1 -1]]

You can see that the modifications on the slice also affect the original array.

Exercise 3.5

Assign the values of the slice with all the columns of the last 3 rows into a variable

slice_arr . This time, slice_arr should not be a view but a new array (i.e., the

modification of slice_arr should not affect the original array). Then assign to all

the elements of slice_arr the value -1 .

Hints

original array:
[[1 2 3 4 5]
 [6 7 8 9 10]
 [11 12 13 14 15]
 [16 17 18 19 20]]

 slice:
[[-1 -1 -1 -1 -1]
 [-1 -1 -1 -1 -1]
 [-1 -1 -1 -1 -1]]

 array after the modification of the slice:
[[1 2 3 4 5]
 [6 7 8 9 10]
 [11 12 13 14 15]
 [16 17 18 19 20]]

Expected output

In [18]: my_arr = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15],
print("original array:")
print(my_arr)

START CODE HERE
Ideally 2 line
slice_arr = my_arr[-3:, :] .copy()
slice_arr[:, :] = -1
END CODE HERE

print(f"\n slice:")
print(slice_arr)
print(f"\n array after the modification of the slice:")
print(my_arr)

15/03/23, 18:32 Lab2_Numpy_solutions

file:///Users/salvatorephd/Desktop/Lab2_Numpy_solutions.html 11/21

original array:
[[1 2 3 4 5]
[6 7 8 9 10]
[11 12 13 14 15]
[16 17 18 19 20]]

slice
[[-1 -1 -1 -1 -1]
[-1 -1 -1 -1 -1]
[-1 -1 -1 -1 -1]]

array after the modification of the slice:
[[1 2 3 4 5]
[6 7 8 9 10]
[11 12 13 14 15]
[16 17 18 19 20]]

This time, the modifications of the slice do not affect anymore the original array.

Exercise 3.6

Define a mask of the array into a variable mask with all the elements greater or equal

than 5 and less or equal than 10. Then, assign to all the masked elements of the

original array the value -1 .

Hints

original array:
[[1 2 3 4 5]
 [6 7 8 9 10]
 [11 12 13 14 15]
 [16 17 18 19 20]]

 array after the modification of the masked elements:
[[1 2 3 4 -1]
 [-1 -1 -1 -1 -1]
 [11 12 13 14 15]
 [16 17 18 19 20]]

Expected output

In [19]: my_arr = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15],
print("original array:")
print(my_arr)

START CODE HERE
Ideally 2 line
mask = (my_arr >= 5) & (my_arr <= 10)
my_arr[mask] = -1
END CODE HERE

print(f"\n array after the modification of the masked elements:")
print(my_arr)

15/03/23, 18:32 Lab2_Numpy_solutions

file:///Users/salvatorephd/Desktop/Lab2_Numpy_solutions.html 12/21

[[1 2 3 4 5]
[6 7 8 9 10]
[11 12 13 14 15]
[16 17 18 19 20]]

array after the modification of the masked elements:
[[1 2 3 4 -1]
[-1 -1 -1 -1 -1]
[11 12 13 14 15]
[16 17 18 19 20]]

4. Min-Max normalization with numpy

In this exercise, you have to implement the Min-Max normalization. It is a simple

method that rescales the range of features into [0, 1] . The formula for the Min-Max

normalization is the following:

Some learning algorithms require input features to be normalized or standardized to

work correctly. In the next labs, we will learn some libraries (e.g., scikit-learn) that

perform normalization or standardization with one single line of code. These libraries

exploit Numpy internally. However, it is important to understand how to work with arrays.

4.1 Min-Max normalization of one-dimensional data

We first focus on a synthetic dataset (i.e., artificially generated) with one input feature

(i.e., X has shape (n_samples, 1)) and a continuous target variable Y (with

shape (n_samples, 1)).

We will use, as one-dimensional example, a dataset with n_samples (records)

composed of couples containing the size of the house and the relative price (in

thousands of €). We would like to train a Machine Learning model (we will learn how to

train a model in the next labs) that takes as input the size of the house and

predicts the most probable price . This paradigm is called supervised learning

because you provide to the model both the input features X and the expected output

Y . During learning, the model will try to predict, for each input the

corresponding output (e.g., for each house, it will try to predict the price given the

size). Then, the predicted output is compared with the real output by computing a

measure that quantifies the error of the model (e.g., a distance between the predicted

and real values). Then, the model will update the internal weights based on the error. For

example, if the error is very low, it means that the model is good at predicting the price

for that house. Therefore, it should not update its internal weights. If the error is high,

the model is not good at predicting the price of that house. Therefore, it should update

its internal weight. This procedure is repeated for all the samples in your dataset.

x_norm =
(x − xmin)

(xmax − xmin)

xi ∈ X

yi

ŷi yi

15/03/23, 18:32 Lab2_Numpy_solutions

file:///Users/salvatorephd/Desktop/Lab2_Numpy_solutions.html 13/21

This is just a simplification to understand how Machine Learning algorithms work.

However, we will learn more in the next labs. So, if it is not so clear to you, don't worry.

The purpose is to begin to understand why some exercises.

In this example, X is of shape (n_samples, 1) . It is one-dimensional because, for

each house, the model takes as input only the size of the house. For notation, we write

the input X as a column vector (i.e., (n_samples, 1) is a column vector with

n_samples rows).

Sythetic dataset generation: one-dimensional input features

Firstly, you will create a vector X containing the size of the houses with 500 samples

generated by a normal distribution given a mean mu and a standard deviation

sigma . This means that the sizes will have mean = mu and standard deviation =

sigma . The code for generating the samples is already available to you. Please run the

next cell to generate the samples.

X Shape (500,)
X Minimum value: 0.5025244923023138
X Maximum value: 285.6666080041605
X mean: 120.8444591505394
X standard deviation: 49.79067742074923
First ten element of x: [92.3703539 6.54663671 191.74560346 189.1849622
7 160.96362765]

Now compute the price of each house as a linear function of the input features X with

an error term. The price of the house is computed as follows:

Therefore:

Instead of computing Y with explicit for loops, we exploit Numpy.

Run the next cell to compute Y .

In [20]: mu, sigma = 120, 50 # mean and standard deviation
X = np.random.normal(mu, sigma, (500,)) # generate a gaussian distribution w
X = np.abs(X) # only positive values make sense for the size of the house

print("X Shape", X.shape)
print("X Minimum value:", X.min())
print("X Maximum value:", X.max())
print("X mean:", X.mean())
print("X standard deviation:", X.std())
print("First ten element of x: ", X[:5])

price = size ∗ (price_per_mq ± error)

yi = xi ∗ (price_per_mq ± error)

In [21]: price_per_mq = 3.5 # thousands of euros per square meter
error = np.random.random((500,)) - 0.5 # generate a random number in range [
Y = X*(price_per_mq + error) # compute the price for each house. Notice tha

print("Y Shape", Y.shape)
print("Y Minimum value: {:.2f}".format(Y.min()))
print("Y Maximum value: {:.2f}".format(Y.max()))
print("Y mean: {:.2f}".format(Y.mean()))

15/03/23, 18:32 Lab2_Numpy_solutions

file:///Users/salvatorephd/Desktop/Lab2_Numpy_solutions.html 14/21

Y Shape (500,)
Y Minimum value: 1.66
Y Maximum value: 1026.98
Y mean: 422.94
Y standard deviation: 177.55
First ten element of Y: [358.36393775 22.75803392 719.55747059 713.0445834
4 540.26841245]

Run the next cell to plot the generated points in the plane, with the size of the houses

on the x axis and the prices on the y axis.

You can notice that the value of X are in a range [0, 300] (with some randomness).

Run the next cell to plot the frequency histograms of the size of the houses and prices.

The values follow a normal distribution.

Exercise 4.1

print("Y standard deviation: {:.2f}".format(Y.std()))
print("First ten element of Y: ", Y[:5])

In [22]: plot_2d_points(X,Y)

In [24]: plot_distributions([X,Y], ["Size of the house", "price"])

15/03/23, 18:32 Lab2_Numpy_solutions

file:///Users/salvatorephd/Desktop/Lab2_Numpy_solutions.html 15/21

Now, you have to perform the Min-Max normalization of the input features. After the

normalization, all the values of X must be in the range [0, 1] .

Perform the Min-Max normalization of the vector X and assign the normalized vector

into a variable X_norm . Remember that the formula for the Min-Max normalization is

the following:

NOTE: Exploit Numpy instead of lists or explicit for loops!

Hints

Minimum value after norm: 0.00
Maximum value after norm: 1.00
Mean after norm: 0.42
Standard deviation after norm: 0.17
First ten element of X_norm: [0.32215778 0.02119521 0.67064224 0.6616627
0.56269745]

Expected output

Minimum value after norm: 0.0
Maximum value after norm: 1.0
Mean after norm: 0.5 (with some randomness)

Standard deviation after norm: 0.15 (with some randomness)

First ten element of X_norm: [list with 5 floats between 0 and 1]
(with some randomness)

If you implemented the normalization correctly, the min and the max values of X_norm
must be 0 and 1, respectively. Now, run the next cell to plot the normalized points in the

plane, with the size of the houses on the x axis and the prices on the y axis.

X_norm =
(x − xmin)

(xmax − xmin)

In [26]: #### START CODE HERE ####
Ideally 1 line
X_norm = (X - X.min()) / (X.max() - X.min())
END CODE HERE

print("Minimum value after norm: {:.2f}".format(X_norm.min()))
print("Maximum value after norm: {:.2f}".format(X_norm.max()))
print("Mean after norm: {:.2f}".format(X_norm.mean()))
print("Standard deviation after norm: {:.2f}".format(X_norm.std()))
print("First ten element of X_norm: ", X_norm[:5])

In [27]: plot_2d_points(X_norm,Y,True)

15/03/23, 18:32 Lab2_Numpy_solutions

file:///Users/salvatorephd/Desktop/Lab2_Numpy_solutions.html 16/21

You can notice that the values in the x axis are now in the range [0, 1] . But the

relations between data are preserved (i.e., the points are distributed in the same way in

the plane).

Run the next cell to plot the frequency histograms of the normalized size of the houses

and prices.

After the Min-Max normalization, the values of X are rescaled in the range [0, 1].

Again, the distribution is preserved.

Congratulations! you have correctly normalized a one-dimensional array of features

using Numpy.

Now let's try a two-dimensional array.

4.2 Min-Max normalization of two-dimensional data

Now we will move to a 2-dimensional case. We create an artificial dataset X with 2

dimensions: the size of the house (mq) (in the first column of X) and the number of

In [28]: plot_distributions([X_norm,Y], ["Size of the house norm", "price norm"])

15/03/23, 18:32 Lab2_Numpy_solutions

file:///Users/salvatorephd/Desktop/Lab2_Numpy_solutions.html 17/21

rooms (in the second column of X). The target amount that a Machine Learning

algorithm would like to estimate is still the price (in thousands of €) (in the Y). In this

case, the task of the algorithm is to predict the price given the size of the house and the

number of rooms. Therefore, the input features X is a two-dimensional array. We will

see how to train a Machine Learning algorithm to predict the price of the house Y given

the size of the house and the number of rooms X in the next lectures.

Firstly, you will create a 2-dimensional array X containing the size of the houses and

the number of rooms for 500 synthetic generated samples. The following cells will

create the dataset X and the target value of Y .

X Shape (500, 2)
X size of the house - Minimum value: 2.51
X size of the house - Maximum value: 274.84
X size of the house - mean: 122.90
X size of the house - standard deviation: 48.97
First ten element of X size of the house: [178.11975759 186.8402547 204.865
39829 169.39274102 141.94816472]
X n rooms - Minimum value: 1.00
X n rooms - Maximum value: 12.00
X n rooms - mean: 6.67
X n rooms - standard deviation: 1.86
First ten element of X n rooms: [5. 4. 5. 6. 10.]

Notice that the input features in X (i.e., the size of the house and the number of rooms)

have a different scale. This can be problematic when training a learning algorithm.

Now compute the price of each house as a linear function of the input features X with

an error term. The price of the house is computed as follows:

Therefore:

In [29]: n_samples = 500

mu, sigma = 120, 50 # mean and standard deviation
X_size = np.random.normal(mu, sigma, (500,)) # generate a gaussian distribut
X_size = np.abs(X_size) # only positive values make sense for the size of th

mu, sigma = 3, 2 # mean and standard deviation of the houses' number of room
X_rooms = np.random.normal(mu, sigma, n_samples) # Generate 500 samples (num
X_rooms = X_rooms.astype(int)
X_rooms = X_rooms+np.min(X_rooms)*-1+1 # move the samples with a minumum num

X = np.hstack((X_size.reshape(-1, 1), X_rooms.reshape(-1, 1)))

print("X Shape", X.shape)
print("X size of the house - Minimum value: {:.2f}".format(X[:,0].min()))
print("X size of the house - Maximum value: {:.2f}".format(X[:,0].max()))
print("X size of the house - mean: {:.2f}".format(X[:,0].mean()))
print("X size of the house - standard deviation: {:.2f}".format(X[:,0].std()
print("First ten element of X size of the house: {}".format(X[:5,0]))
print("X n rooms - Minimum value: {:.2f}".format(X[:,1].min()))
print("X n rooms - Maximum value: {:.2f}".format(X[:,1].max()))
print("X n rooms - mean: {:.2f}".format(X[:,1].mean()))
print("X n rooms - standard deviation: {:.2f}".format(X[:,1].std()))
print("First ten element of X n rooms: {}".format(X[:5,1]))

price = size ∗ (price_per_mq ± error_size) + n_rooms ∗ (increment_per_room ±

15/03/23, 18:32 Lab2_Numpy_solutions

file:///Users/salvatorephd/Desktop/Lab2_Numpy_solutions.html 18/21

Instead of computing Y with explicit for loops, we exploit Numpy.

Run the next cell to compute Y .

Y Shape (500,)
Y Minimum value: 9.23
Y Maximum value: 912.65
Y mean: 426.97
Y standard deviation: 170.64
First ten element of Y: [633.04293852 636.28084786 812.52547715 573.4092383
5 563.1302792]

Run the next cell to plot the generated points in the space, with the size of the houses

on the x axis, the number of rooms on the y axis, and the prices on the z axis.

Run the next cell to plot the frequency histograms of the size of the houses, the number

of rooms, and the prices. The values follow a normal distribution.

yi = xi[0] ∗ (price_per_mq ± error_size) + xi[1] ∗ (increment_per_room ± error_r

In [30]: price_per_mq = 3.5 # tousands of euros per square metre
increment_per_room = 0.05
error_size = np.random.random((500,)) - 0.5 # generate a random number in ra
error_rooms = (np.random.random((500,)) - 0.5)/10 # generate a random number
Y = X[:,0]*(price_per_mq + error_size) + X[:,1]*(increment_per_room + error

print("Y Shape", Y.shape)
print("Y Minimum value: {:.2f}".format(Y.min()))
print("Y Maximum value: {:.2f}".format(Y.max()))
print("Y mean: {:.2f}".format(Y.mean()))
print("Y standard deviation: {:.2f}".format(Y.std()))
print("First ten element of Y: ", Y[:5])

In [31]: plot_3d_points(X, Y)

In [32]: plot_distributions([X[:,0], X[:,1], Y], ["Size of the house", "Number of roo

15/03/23, 18:32 Lab2_Numpy_solutions

file:///Users/salvatorephd/Desktop/Lab2_Numpy_solutions.html 19/21

Exercise 4.2

Now, you have to perform the Min-Max normalization of the input features. After the

normalization, all the values of X (in both dimensions) must be in the range [0, 1] .

Perform the Min-Max normalization of the vector X and assign the normalized vector

into a variable X_norm . Remember that the formula for the Min-Max normalization is

the following:

Important: this time, you should normalize each column separately (i.e., the column

with the size of the houses must be normalized with the mean and the standard

deviation of the size of the houses in the dataset, while the column with the number of

rooms must be normalized with the mean and the standard deviation of the number of

rooms in the dataset).

NOTE: Exploit Numpy instead of lists or explicit for loops!

Hints

X_norm =
(x − xmin)

(xmax − xmin)

In [33]: #### START CODE HERE ####
Ideally 1 line
X_norm = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))
END CODE HERE

print("X_norm Shape", X.shape)
print("X_norm size of the house - Minimum value: {:.2f}".format(X_norm[:,0].
print("X_norm size of the house - Maximum value: {:.2f}".format(X_norm[:,0].
print("X_norm size of the house - mean: {:.2f}".format(X_norm[:,0].mean()))
print("X_norm size of the house - standard deviation: {:.2f}".format(X_norm[
print("First ten element of X_norm size of the house: {}".format(X_norm[:5,0
print("X_norm n rooms - Minimum value: {:.2f}".format(X_norm[:,1].min()))
print("X_norm n rooms - Maximum value: {:.2f}".format(X_norm[:,1].max()))
print("X_norm n rooms - mean: {:.2f}".format(X_norm[:,1].mean()))
print("X_norm n rooms - standard deviation: {:.2f}".format(X_norm[:,1].std()
print("First ten element of X_norm n rooms: {}".format(X_norm[:5,1]))

15/03/23, 18:32 Lab2_Numpy_solutions

file:///Users/salvatorephd/Desktop/Lab2_Numpy_solutions.html 20/21

X_norm Shape (500, 2)
X_norm size of the house - Minimum value: 0.00
X_norm size of the house - Maximum value: 1.00
X_norm size of the house - mean: 0.44
X_norm size of the house - standard deviation: 0.18
First ten element of X_norm size of the house: [0.64484042 0.67686293 0.7430
53 0.61279397 0.51201483]
X_norm n rooms - Minimum value: 0.00
X_norm n rooms - Maximum value: 1.00
X_norm n rooms - mean: 0.52
X_norm n rooms - standard deviation: 0.17
First ten element of X_norm n rooms: [0.36363636 0.27272727 0.36363636 0.454
54545 0.81818182]

If you implemented the normalization correctly, the min and the max values of X_norm
must be 0 and 1, respectively, for both dimensions (i.e., the size of the houses and the

number of rooms).

Now, run the next cell to plot the normalized points in the space, with the size of the

houses on the x axis, the number of rooms on the y axis, and the prices on the z axis.

You can notice that the values in the X axis are now in the range [0, 1] (i.e., x and y in

the space). But the relations between data are preserved (i.e., the points are distributed

in the same way in the plane).

Run the next cell to plot the frequency histograms of the normalized size of the houses,

number of rooms, and prices.

In [34]: plot_3d_points(X_norm, Y, True)

In [35]: plot_distributions([X_norm[:,0], X_norm[:,1], Y], ["Size of the house norm",

15/03/23, 18:32 Lab2_Numpy_solutions

file:///Users/salvatorephd/Desktop/Lab2_Numpy_solutions.html 21/21

After the Min-Max normalization, the values of X in both axis (i.e., size of the house

and number of rooms) are rescaled in the range [0, 1]. Again, the distributions are

preserved.

Congratulations! you have also correctly normalized a two-dimensional array of features

using Numpy.

In []:

