
Data Science and Machine Learning for Engineering

Applications

Lecture Notes 2: Numpy

March 15, 2023 - Politecnico di Torino

1 Numpy Introduction

Numpy [1] stands for Numerical Python and is a library that allows you to work with multidimensional
arrays. It is designed to store and operate with dense numerical data efficiently. The arrays are dense
because they are not represented with a sparse representation. All the dimensions of your multidimensional
arrays are filled with important data. It is optimized to work with dense matrices and not with sparse
matrices). For example, there are no zeros inside dense arrays. The library provides many built-in options
to access the data arrays efficiently and to perform math and logic operations. Most of the Machine
Learning libraries are based internally on Numpy. You can find a good guide here.

2 Numpy arrays

The main object the Numpy library provides is the array. Arrays represent the concept of tensors. A
tensor is a generic vector with n dimensions. Tensors’ elements have all the same type. This is the main
difference with respect to lists. Numpy arrays can represent multidimensional arrays such as vectors (1-dim
arrays), matrices (2-dim arrays), or tensors (n-dim arrays).

2.1 Numpy arrays vs lists

You can define multidimensional arrays with nested Python lists. For example, you can define a list of lists
to create a 2-dimensional array (matrix). Or a list of lists of lists to create a 3-dimensional array (tensor).
Python and Numpy are row-based. If you define a one-dimensional vector, it is a row vector.

The following code creates a vector (1-dim array) with Python lists:

1 my_matrix_from_list = [1, 2, 3]

2 print(my_matrix_from_list)

Output:

[1, 2, 3]

This list represents a row vector:

The following code creates a matrix (2-dim array) with Python lists:

1 my_matrix_from_list = [[1, 2, 3], [4, 5, 6]]

2 print(my_matrix_from_list)

1

https://www.w3schools.com/python/numpy/default.asp

Output:

[[1, 2, 3], [4, 5, 6]]

However, since lists can contain heterogeneous data types, they keep overhead information. For each
item, it should keep the reference to them. Moreover, each item is an object with some metadata (i.e., the
header), such as the type and the identifier. Instead, Numpy contains only fixed-type data. Therefore,
it doesn’t need the overhead to specify each item type (the type information is stored only once and is the
same for all the items). It also stores data in contiguous memory addresses, allowing faster indexing. In
conclusion, Numpy provides you with two main advantages:

• Higher flexibility of indexing methods and operands.

• Higher efficiency of operations

You can create Numpy arrays directly from lists. To create the same matrix with Numpy:

1 import numpy as np

2

3 my_np_matrix = np.array ([[1, 2, 3], [4, 5, 6]])

4 print(my_np_matrix)

Output:

[[1 2 3]

[4 5 6]]

The following figure shows how data is stored in lists vs Numpy arrays:

2.2 Numpy data types

Numpy defines its own data types:

2

• Numerical types: int8, int16, int32, int64, uint8, uint16, uint32, uint64, float16, float32, float64

• Boolean values: bool

The intX types are integers with different memory sizes (e.g., int64 occupies more memory space than int8
but can contain larger integer numbers). The uintX types are unsigned integers (i.e., without positive and
negative signs).

2.3 Multidimensional arrays

A multidimensional array is a collection of elements organized along an arbitrary number of dimensions.
The following figure shows an example of a 3-dimensional array.

If you want to create a 3-dimensional array directly from Python lists:

1 import numpy as np

2

3 my_np_matrix = np.array ([[[1, 2, 3], [4, 5, 6]],

4 [[7, 8, 9], [10, 11, 12]],

5 [[13, 14, 15], [16, 17, 18]]])

6 print(my_np_matrix)

Output:

[[[1 2 3]

[4 5 6]]

[[7 8 9]

[10 11 12]]

[[13 14 15]

[16 17 18]]]

The array will represent the following 3-dimensional tensor:

Numpy arrays are characterized by a set of axes and a shape. The axes define the number of
dimensions of an array. Given an n-dimensional array, axes range from 0 to n − 1. For example, for a row
vector, the axis is only 0 (x0); for a matrix, the axes are 0 and 1 (x0, x1); for a 3-dim tensor, the axes are
0, 1, 2 (x0, x1, x2).

3

For the row vector, xo is the only dimension, and it represents the horizontal axis. However, if we define
a matrix, the horizontal axis is no more xo, but it became x1. This is because every time a dimension
is added, the newly added dimension takes the name x0, and all the other previous dimensions
are shifted (or incremented) by one. For example, the horizontal axis is x0 for a 1-dim array, x1 for a
2-dim array, and x2 for a 3-dim array. You can also number the axis with a negative notation. This can be
useful because axis -1 always refers to the row axis (i.e., axis -1 refers to the axis with the highest positive
index of the array that is always the row dimension/horizontal axis).

The shape is a tuple that specifies the number of elements along each axis of a Numpy array (i.e.,
how many elements have each axis). When you add a dimension, it is added on the left of the shape tuple.

2.4 Column vectors vs Row vectors

Arrays with 1-dimension are always a row vector. If you want to create a column vector, you should
define a 2D matrix with 3 rows and 1 column.

1 import numpy as np

4

2

3 row_array = np.array ([0.1, 0.2, 0.3]) # Define a row vector

4 col_array = np.array ([[0.1] , [0.2], [0.3]]) # Define a column vector

5 print(f"Row vector: shape {row_array.shape}")

6 print(row_array)

7 print(f"\nColumn vector: shape {col_array.shape}")

8 print(col_array)

Output:

Row vector: shape (3,)

[0.1 0.2 0.3]

Column vector: shape (3, 1)

[[0.1]

[0.2]

[0.3]]

2.5 Create Numpy arrays

2.5.1 Creation from list

As shown before, you can directly create an array from a list with np.array(my list, dtype=np.float16).
You can also specify the data type in the construct with the dtype parameter. If not specified, the data
type will be automatically inferred.

1 import numpy as np

2 my_arr = np.array ([[1, 1], [2, 2]], dtype=np.float32)

3 print(my_arr)

Output:

[[1. 1.]

[2. 2.]]

2.6 Creation from scratch

You can also create an array with a given shape filled with all 0 np.zeros(shape), all 1 np.ones(shape),
or with a specific value np.full(shape, value). The shape is a tuple.

1 import numpy as np

2 my_arr_0 = np.zeros((3, 2)) # 3 rows and 2 columns filled with 0

3 my_arr_1 = np.ones((3, 2)) # 3 rows and 2 columns filled with 1

4 my_arr_full = np.full((3, 2), 0.5) # 3 rows and 2 columns filled with 0.5

5 print("Array with zeros:")

6 print(my_arr_0)

7 print("\nArray with ones:")

8 print(my_arr_1)

9 print("\nArray with full:")

10 print(my_arr_full)

5

Output:

Array with zeros:

[[0. 0.]

[0. 0.]

[0. 0.]]

Array with ones:

[[1. 1.]

[1. 1.]

[1. 1.]]

Array with full:

[[0.5 0.5]

[0.5 0.5]

[0.5 0.5]]

You can also create arrays with more complex functions:

• np.linespace(start, stop, n): generates n samples from start to stop (both included). The
generated samples are 1-dimensional (i.e., a row vector).

• np.arange(start, stop, step): generates numbers from start (included) to stop (excluded) with
a step (optional). The generated samples are 1-dimensional (i.e., a row vector). It is similar to the
range() function.

• np.random.normal(mean, std, shape): generates random data with a normal distribution with
a given mean, standard deviation, and shape. The dimensions of the array depend on the shape.

• np.random.random(shape): generates random data with a uniform distribution in [0,1] with a
given shape. The dimensions of the array depend on the shape.

1 import numpy as np

2 arr1 = np.linspace(0, 1, 11) = np.linespace (0, 1, 11)

3 arr2 = np.arange(1, 11, 2)

4 arr3 = np.random.normal(0, 1, (3,2))

5 arr4 = np.random.random ((3 ,2))

6 print("Linspace array:")

7 print(arr1)

8 print("\nArange array:")

9 print(arr2)

10 print("\nRandom Normal array:")

11 print(arr3)

12 print("\nRandom Uniform array:")

13 print(arr4)

Output:

6

Linespace array:

[0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.]

Arange array:

[1 3 5 7 9]

Random Normal array:

[[-1.08916723 0.77737725]

[-1.22526899 0.2342717]

[-0.50455924 1.1322722]]

Random Uniform array:

[[0.84256324 0.20861337]

[0.3547634 0.93538505]

[0.28628767 0.26374818]]

2.7 Attributes of Numpy arrays

There are also some attributes to inspect the properties of the arrays:

• arr.ndim: returns the number of dimensions of the array.

• arr.shape: returns the shape of the array as a tuple.

• arr.size: returns the size of the array (i.e., the total number of elements computed as the product of
the shape values).

1 import numpy as np

2 arr = np.array ([[1, 2, 3], [4, 5, 6]])

3 print("number of dimensions:", arr.ndim)

4 print("shape:", arr.shape)

5 print("number of elements (size):", arr.size)

Output:

number of dimensions: 2

shape: (2, 3)

number of elements (size): 6

3 Operations with Numpy arrays

You can perform many operations to manipulate arrays.

3.1 Universal functions

3.1.1 Binary operations

Universal functions binary operations are element-wise operations (performed element by element) with
arrays (2 or more) of the same shape. You can perform element-wise addition +, difference -, multipli-
cation *, etc., between each element of two arrays. The resulting array will have the same shape as
the two starting arrays. All the arrays involved in these operations must have the same shape.

1 import numpy as np

2

3 x = np.array ([[1, 1], [2, 2]])

4 y = np.array ([[3, 4], [6, 5]])

5 array_sum = x + y # element by element addition

6 array_mul = x * y # element by element multiplication

7 print("sum:\n", array_sum)

8 print("mul:\n", array_mul)

7

Output:

sum:

[[4 5]

[8 7]]

mul:

[[3 4]

[12 10]]

The following figure graphically shows how the element-wise multiplication is performed:

Notice that this kind of multiplication is different from matrices multiplication (i.e., rows times columns).

3.1.2 Unary operations

Universal functions unary operations are element-wise operations applied to each element of one ar-
ray. You can perform element-wise absolute value np.abs(arr), exponentiation np.exp(arr), logarithm
np.log(arr), etc., to each element of one array. The operation is applied separately to each element
of the array. The resulting array will have the same shape as the starting array. A new array will be
created with the same shape (i.e., the original array will remain unchanged).

Compute the absolute values of the array elements:

1 import numpy as np

2 x = np.array ([[1, -1], [2, -2]])

3 array_abs = np.abs(x) # element -wise absolute value of the array

4 print("array_abs :\n", array_abs)

Output:

array abs:

[[1 1]

[2 2]]

Compute the exponentiation of array elements:

1 import numpy as np

2 x = np.array ([[1, 1], [2, 2]])

3 array_exp = np.exp(x) # element -wise exponentiation of the array

4 print("array_exp:")

5 print(array_exp)

Output:

array exp:

[[2.718 2.718]

[7.389 7.389]]

8

3.2 Aggregate functions

Aggregate functions are operations that return a single value from an array. You can compute the minimum
np.min(arr) or arr.min(), the maximum np.max(arr) or arr.max(), the mean value np.mean(arr) or
mean.min(), the standard deviation np.std(arr) or arr.std(), the sum np.sum(arr) or arr.sum(), the
index of the element with the minimum value np.argmin(arr) or arr.argmin(), the index of the element
with maximum value np.argmax(arr) or arr.argmax(), etc.

1 import numpy as np

2 x = np.array ([[1, 1], [2, 2]])

3 array_sum = np.sum(x) # sum of all the elements in the array

4 print("array_sum:", array_sum)

Output:

array sum: 6

3.2.1 Aggregate functions along axis

You can specify the axis along with performing the operation. In this way, you apply the aggregate function
along a specified dimension of your array. For example, if you have a 2-d array (i.e., a matrix), and
you want to compute the sum separately for each column, you can specify axis=0 in the np.sum(arr,

axis=0) function or the arr.sum(axis=0) method. This will return a row vector (i.e., 1-dim array) with
the sums along the columns. Notice that a row vector is returned either if you reduce over the columns or
the rows (when you are computing aggregate functions for a 2-dimensional array, i.e., a matrix). You can
perform an aggregate function along each dimension even with n-dimensional arrays (with n > 2). This will
return an n− 1 dimensional array with the aggregated values.

For example, if you want to perform a sum of all the elements in the array along columns:

1 import numpy as np

2 x = np.array ([[1, 7], [2, 4]])

3 column_sums = np.sum(x, axis =0) # sum of all the elements in the array along columns

4 print("column_sums:", column_sums)

Output:

column sums: [3, 11]

We can see that it returns a row vector.

If, instead, you want to perform a sum of all the elements in the array along rows:

1 import numpy as np

2

3 x = np.array ([[1, 7], [2, 4]])

4 row_sums = np.sum(x, axis =1) # sum of all the elements in the array along rows

5 print("row_sums:", row_sums)

Output:

9

row sums: [8, 6]

We can see that it still returns a row vector.

3.3 Sorting functions

You can sort arrays with the np.sort(arr) function or the arr.sort()method. The np.sort(arr) function
creates a sorted copy of the array arr (i.e., the array arr is not modified). In contrast, the arr.sort()

method sorts the array arr inplace (i.e., arr is modified). If you don’t specify an axis, by default, the array
is sorted along the last axis (-1) corresponding to the row axis (i.e., the horizontal axis).

1 import numpy as np

2

3 x = np.array ([[1, 9, 8], [10, 4, 2]])

4 sorted_x_along_rows = np.sort(x) # sort along rows

5 print("sorted_x_along_rows: \n", sorted_x_along_rows)

Output:

sorted x along rows:

[[1 8 9]

[2 4 10]]

You can also specify the axis being sorted. For example, if you want to sort along columns:

1 import numpy as np

2 x = np.array ([[1, 9, 8], [10, 4, 2]])

3 sorted_x_along_cols = np.sort(x, axis =0) # sort along columns (vertical axis = 0)

4 print("sorted_x_along_cols: \n", sorted_x_along_cols)

Output:

sorted x along cols:

[[1 4 2]

[10 9 8]]

3.4 Algebraic operations

3.4.1 Inner product

You can compute the inner product of two vectors using np.dot(). Remember that the dot product between
two vectors −→x and −→y , with n elements, is computed with the following formula:

−→x · −→y =

n∑
i=1

xi ∗ yi = x1 ∗ y1 + x2 ∗ y2 + ...+ xn ∗ yn (1)

Notice that np.dot() works even if the second vector is not a column vector (i.e., it is a row vector).

1 import numpy as np

2 x = np.array([1, 2, 3])

3 y = np.array([0, 2, 1]) # works even if y is a row vector

4 print(np.dot(x,y))

10

Output:

7

3.4.2 Matrices multiplication

You can also perform matrix multiplication (i.e., rows times columns) with the same function np.dot().

Matrix times vector
When computing np.dot(x, y), this time, x is a matrix, and y is a vector (it also works with a row vector).
A matrix times a vector produces a new row vector with the matrix multiplication result.

1 import numpy as np

2 x = np.array ([[1, 1], [2, 2]])

3 y = np.array([2, 3]) # works even if y is a row vector

4 print(np.dot(x,y))

Output:

[5, 10]

Matrix times matrix
When computing np.dot(x, y), this time, either x and y are matrices. A matrix times a matrix will produce
another matrix with the matrix multiplication result.

1 import numpy as np

2 x = np.array ([[1, 1], [2, 2]])

3 y = np.array ([[2, 2], [1, 1]])

4 print(np.dot(x,y))

Output:

[[3, 3], [6, 6]]

11

4 Broadcasting

Broadcasting allows you to perform some operations between arrays with different shape. For example:

• a) Matrix +, -, *, / a scalar

• b) Matrix +, -, *, / a row vector

• c) Matrix +, -, *, / a column vector

• d) row vector +, -, *, / a column vector

If you remember, universal functions allow you to sum arrays with the same shape. However, Python
broadcasting allows you to perform this operation even with some arrays with a different shape. The basic
idea is to replicate the shape of the smaller array to match the shape of the other array. You
can image broadcasting like making a copy of the smaller array’s elements for matching the other array’s
size. However, internally, Numpy can operate without producing a copy (for efficiency reasons).

This is how broadcasting works for the examples in the previous Figure:

• a) The matrix remains the same, and the scalar is replicated to match the size of the matrix.

• b) The matrix remains the same, and the row vector is replicated (vertically) to match the size of the
matrix.

• c) The matrix remains the same, and the column vector is replicated (horizontally) to match the size
of the matrix.

• d) The row vector is replicated vertically, while the column vector is replicated horizontally.

12

Broadcasting is based on three rules:

• The shape of the array with fewer dimensions is padded with leading ones.
E.g., x.shape=(2, 3), y.shape=(3) -> y.shape=(1, 3)

• If the shape along a dimension is 1 for one of the arrays and > 1 for the other, the array with shape = 1
in that dimension is stretched to match the other array (copied).
E.g., x.shape=(2, 3), y.shape=(1, 3) -> stretch:y.shape=(2, 3)

• If there is a dimension where both arrays have shape > 1, then broadcasting cannot be performed.
Example where broadcasting does not works:
0. x.shape=(3, 2), y.shape=(3)

1. Rule 1 : y.shape=(3) -> y.shape=(1, 3)

2. Rule 3 : shapes of x.shape=(3, 2) and y.shape=(1, 3) are incompatibles (i.e., both arrays have
shape > 1 in the x1 dimension). This will raise an exception (i.e., an error).

5 Accessing Numpy arrays

You can access Numpy arrays in many ways:

• Simple indexing : access single elements of the array (Section 5.1).

• Slicing : access a slice of the array (5.2).

• Masking : access portions of the array based on a boolean mask (5.3).

• Fancy indexing (Not covered)

• Combined indexing (Not covered)

The main difference is that slicing provides views of the considered array. Views allow to read and write
data on the original array. If you modify some data in your view, the modification will also affect the
original array. In contrast, masking and fancy indexing provide copies of the array. If you modify some
data in your copy, the modification will not affect the original array.

13

5.1 Simple indexing

Simple indexing allows you to access one single element of the array. To do so, you should write in
square brackets [] the indices along each axis of the element that you want to access, separated with
commas. This example shows how to access the third element (i.e., column) in the second row (remember
that indices start from 0).

1 import numpy as np

2 x = np.array ([[1, 2, 3], [4, 5, 6]]) # define a matrix

3 el = x[1, 2] # x[second row , third column] -> index starts from 0

4 print(el)

Output:

6

If you want to modify the value of the second row and third column to 0, you can access that element
and assign a new value:

1 import numpy as np

2 x = np.array ([[1, 2, 3], [4, 5, 6]]) # define a matrix

3 x[1, 2] = 0 # modify the cell in the second row and third column

4 print(x[1, 2])

5 print(x)

Output:

0

[[1, 2, 3]

[4, 5, 0]]

You can also use negative indices (as for python lists):

1 import numpy as np

2 x = np.array ([[1, 2, 3], [4, 5, 6]]) # define a matrix

3 el = x[1, -1] # x[second row , last element of the horizontal axis] -> index -1 starts

counting from the end

4 print(el)

Output:

6

5.2 Slicing

Slicing allows access to contiguous elements of an array. It provides views on the array. Views allow to
read andwrite data on the original array. In other words, if you modify the view, the modification will affect
the original array. The syntax is similar to list slicing. For each dimension, you should specify, between
square brackets [], the start and stop indices, and the optional step as follows: [start:stop:step,

start:stop:step, ...]. You can also omit the start, stop, and/or step values.

For example, if you want to get the first three rows and two columns of an array:

1 import numpy as np

2 x = np.array ([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]) # define a matrix

3 print("full array:")

4 print(x)

5 print("\n First three rows and two columns of the array:")

6 print(x[:3, :2])

Output:

14

full array:

[[1 2 3]

[4 5 6]

[7 8 9]

[10 11 12]]

First three rows and two columns of the array:

[[1 2]

[4 5]

[7 8]]

If you want to modify a slice of the array, you should assign a value (or an array) to the accessed slice:

1 import numpy as np

2 x = np.array ([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]) # define a matrix

3 print("Original array:")

4 print(x)

5 x[:3, :2] = -1

6 print("\n Modified array")

7 print(x)

Output:

Original array:

[[1 2 3]

[4 5 6]

[7 8 9]

[10 11 12]]

Modified array:

[[-1 -1 3]

[-1 -1 6]

[-1 -1 9]

[10 11 12]]

This example shows you that it is only a view of the original array. Therefore, if you modify the view,
it also changes the original array:

1 import numpy as np

2 x = np.array ([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]) # define a matrix

3 print("Original array:")

4 print(x)

5 x_view = x[:3, :2] # slice of the original array (view)

6 print("\n View of the array:")

7 print(x_view)

8 x_view [:,:] = -1 # assing -1 to all the values of the view

9 print("\n View of the array after modification:")

10 print(x_view)

11 print("\n Original array after view modification")

12 print(x)

Output:

15

Original array:

[[1 2 3]

[4 5 6]

[7 8 9]

[10 11 12]]

View of the array:

[[1 2]

[4 5]

[7 8]

View of the array after modification:

[[-1 -1]

[-1 -1]

[-1 -1]

Original array after view modification:

[[-1 -1 3]

[-1 -1 6]

[-1 -1 9]

[10 11 12]]

You can also modify only an element or a slice of the view. For example, now, you want to assign −1
only to the first element of the view:

1 import numpy as np

2 x = np.array ([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]) # define a matrix

3 print("Original array:")

4 print(x)

5 x_view = x[:3, :2] # slice of the original array (view)

6 print("\n View of the array:")

7 print(x_view)

8 x_view [0,0] = -1 # assing -1 to the first element of the view

9 print("\n View of the array after modification:")

10 print(x_view)

11 print("\n Original array after view modification")

12 print(x)

Output:

16

Original array:

[[1 2 3]

[4 5 6]

[7 8 9]

[10 11 12]]

View of the array:

[[1 2]

[4 5]

[7 8]

View of the array after modification:

[[-1 2]

[4 5]

[7 8]

Original array after view modification:

[[-1 2 3]

[4 5 6]

[7 8 9]

[10 11 12]]

If you don’t want that modification on the view also affect the original array, you should do
a hard copy while selecting the slice (with the copy() method). After the copy method, the modification
on the slice will not affect the original array.

1 import numpy as np

2 x = np.array ([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]) # define a matrix

3 print("Original array:")

4 print(x)

5 x_view = x[:3, :2]. copy() # hard copy of the slice of the original array

6 print("\n View of the array:")

7 print(x_view)

8 x_view [:,:] = -1 # assing -1 to all the values of the view

9 print("\n View of the array after modification:")

10 print(x_view)

11 print("\n Original array after view modification")

12 print(x)

Output:

17

Original array:

[[1 2 3]

[4 5 6]

[7 8 9]

[10 11 12]]

View of the array:

[[1 2]

[4 5]

[7 8]

View of the array after modification:

[[-1 -1]

[-1 -1]

[-1 -1]

Original array after view modification:

[[1 2 3]

[4 5 6]

[7 8 9]

[10 11 12]]

5.3 Masking

Masking allows you to use masks to select the elements of the array. The syntax is similar: you have to
put between square brackets [] the mask. A mask is a Numpy array made of boolean values that
should have the same shape as the original array. The result will not be of the same shape as the original
vectors. But it will be a one-dimensional vector (a row vector) with a copy of all the selected elements
of the original array (elements where the mask is True or 1). Unlike slicing, masking provides copies of
the accessed data of the array. If you modify the accessed data, it will not affect the original array.

1 import numpy as np

2 x = np.array ([[1, -2, 3], [-4, 5, -6], [7, -8, 9], [-10, 11, -12]]) # define a matrix

3 print("Original array:")

4 print(x)

5 x_mask = x >= 0 # mask with True for the positive elements , False otherwise

6 print("\n Mask with the positive elements of the array:")

7 print(x_mask)

8 print("\n Masked elements of the array (row vector):")

9 print(x[x_mask])

Output:

Original array:

[[1 -2 3]

[-4 5 -6]

[7 -8 9]

[-10 11 -12]]

Mask with the positive elements of the array:

[[True False True]

[False True False]

[True False True]

[False True False]]

Masked elements of the array (row vector):

[1 3 5 7 9 11]

18

This can be useful to compute some statistics based on a condition. For example, if you want to compute
the mean of the positive elements:

1 import numpy as np

2 x = np.array ([[1, -2, 3], [-4, 5, -6], [7, -8, 9], [-10, 11, -12]]) # define a matrix

3 print("Original array:")

4 print(x)

5 x_mask = x >= 0 # mask with the boolean True for the positive elements , False otherwise

6 print("\n Mask with the positive elements of the array:")

7 print(x_mask)

8 print("\n Masked elements of the array (row vector):")

9 print(x[x_mask])

10 print("\n Mean of the positive elements:", x[x_mask].mean()) # compute the mean of positive

elements

Output:

Original array:

[[1 -2 3]

[-4 5 -6]

[7 -8 9]

[-10 11 -12]]

Mask with the positive elements of the array:

[[True False True]

[False True False]

[True False True]

[False True False]]

Masked elements of the array (row vector):

[1 3 5 7 9 11]

Mean of the positive elements: 6.0

Even if changes in the mask will not affect the original array, you can exploit the mask to access the
values of the original array you want to modify. Therefore, you can use the mask to modify elements
of the original vector based on a condition. For example, if you want to replace each negative number with
the value 0:

1 import numpy as np

2 x = np.array ([[1, -2, 3], [-4, 5, -6], [7, -8, 9], [-10, 11, -12]]) # define a matrix

3 print("Original array:")

4 print(x)

5 x_mask = x < 0 # mask with True for the negative elements , False otherwise

6 print("\n Mask with the negative elements of the array:")

7 print(x_mask)

8 x[x_mask] = 0

9 print("\n Modified array):")

10 print(x)

Output:

19

Original array:

[[1 -2 3]

[-4 5 -6]

[7 -8 9]

[-10 11 -12]]

Mask with the negative elements of the array:

[[True False True]

[False True False]

[True False True]

[False True False]]

Modified array:

[[1 0 3]

[0 5 0]

[7 0 9]

[0 11 0]]

6 Working with arrays

6.1 Array concatenation

You can concatenate arrays along an existing axis. The resulting array will have the same number of
dimensions of the input arrays. To this purpose, you can use the np.concatenate() function. You have
to specify the arrays and the axis where you perform the concatenation. If not specified, the default axis is
0.

This example shows you have to concatenate two arrays on the vertical axis (along columns):

1 import numpy as np

2 x = np.array ([[1, 2, 3], [4, 5, 6]])

3 y = np.array ([[11 , 12, 13], [14, 15, 16]])

4 my_arr = np.concatenate ((x,y))

5 print(my_arr)

Output:

[[1 2 3]

[4 5 6]

[11 12 13]

[14 15, 16]]

If you want to concatenate two arrays on the horizontal axis (along rows) you have to specify axis = 1:

20

1 import numpy as np

2 x = np.array ([[1, 2, 3], [4, 5, 6]])

3 y = np.array ([[11 , 12, 13], [14, 15, 16]])

4 my_arr = np.concatenate ((x,y), axis =1)

5 print(my_arr)

Output:

[[1 2 3 11 12 13]

[4 5 6 14 15 16]]

There are also two other equivalent functions for horizontal and vertical concatenations, called np.hstack()
and np.vstack(), respectively. With these functions, you don’t have to specify the axis.

1 import numpy as np

2 x = np.array ([[1, 2, 3], [4, 5, 6]])

3 y = np.array ([[11 , 12, 13], [14, 15, 16]])

4 h = np.hstack ((x, y))

5 v = np.vstack ((x, y))

6 print("Horizontal concatenation:")

7 print(h)

8 print("\nVertical concatenation:")

9 print(v)

Output:

Horizontal concatenation:

[[1 2 3 11 12 13]

[4 5 6 14 15 16]]

Vertical concatenation:

[[1 2 3]

[4 5 6]

[11 12 13]

[14 15, 16]]

The functions np.hstack() and np.vstack() allows concatenating also 1-dimensional vectors along
new axis. This is not possible with np.concatenate(). For example, you can’t vertically concatenate

21

(along the vertical dimension) two row vectors with the np.concatenate() function because you don’t have
the vertical dimension in the row vectors.

1 import numpy as np

2 x = np.array ([[1, 2, 3]])

3 y = np.array ([[11 , 12, 13]])

4 v = np.vstack ((x, y)) # vertical concatenation

5 print("\nVertical concatenation:")

6 print(v)

Output:

Vertical concatenation:

[[1 2 3]

[11 12 13]]

6.2 Array splitting

You can split an array into a list of arrays. To this purpose, you should use the np.split() function.
This function outputs a list of Numpy arrays. You have to pass the array and the list of split points as
parameters. Each element of the list is a point where performing a split (e.g., [2, 4] means you want to split
before element 2 and element 4).

1 import numpy as np

2 x = np.array([7, 7, 8, 8, 9, 9])

3 splitted_arrays = np.split(x, [2, 4]) # split before element 2 and 4

4 print(splitted_arrays)

Output:

[array([7, 7]), array([8, 8]), array([9, 9])]

You can also perform a horizontal or a vertical split before some indices with np.hsplit() and
np.vsplit, respectively.

22

6.3 Array reshaping

You can change the shape of a tensor with the arr.reshape() method. You will keep the same
elements while changing the shape of the array. You have to specify the new shape as a tuple. For
example, if you want to reshape a row vector with six elements into a matrix with two rows and three
columns:

1 import numpy as np

2 x = np.arange (6)

3 y = x.reshape ((2, 3))

4 print(y)

Output:

[[0 1 2]

[3 4 5]]

The new array is filled following the index order:

6.4 Adding new dimensions

You can also add a new dimension to an array. You can use the np.newaxis to add a new dimension with
shape=1 at the specified dimension position. For example, if you want to transform a row vector into a
column vector (i.e., a matrix with 1 in the columns’ dimension), you can do:

1 import numpy as np

2 arr = np.array ([1,2,3])

3 res = arr[:, np.newaxis] # output shape = (3,1)

4 print(res)

Output:

[[1]

[2]

[3]]

However, you can obtain the same result with arr.reshape(-1,1)

23

1 import numpy as np

2 arr = np.array ([1,2,3])

3 res = arr.reshape (-1,1)

4 print(res)

Output:

[[1]

[2]

[3]]

7 Computational efficiency

Numpy array operations are extremely faster and more efficient than operations performed with lists and
explicit for loops. Most libraries that implement Machine Learning algorithms, such as Scikit-Learn (which
we will see later), are based internally on Numpy to be executed efficiently and quickly. Next, we will learn
another library based on Numpy for manipulating large tabular data, namely Pandas. When working with
big data, you should use the Numpy or Pandas libraries for the data manipulation and avoid working with
lists and explicit for loops.

The following example shows the difference in execution time to perform a dot product between two
vectors with i) lists and explicit for loops implementation; and ii) the Numpy implementation. The Numpy
implementation is two orders of magnitude faster. The efficiency gain grows if using larger arrays and more
complex operations.

1 import time

2 import numpy as np

3

4 l1 = [1]* 1000000 # Create a list with 1M ones

5 l2 = [2]* 1000009 # Create a list with 1M twos

6 arr1 = np.ones ((1000000 ,)) # Create a Numpy array with 1M ones

7 arr2 = np.full ((1000000 ,) , 2) # Create a Numpy array with 1M twos

8

9 ## Dot product with lists and explicit for loops

10 # get the start time

11 st = time.time()

12 dot_product = 0

13 for x, y in zip(l1 , l2):

14 dot_product += x*y

15 # get the end time

16 et = time.time()

17

18 # get the execution time

19 elapsed_time = et - st

20 print('Lists and explicit for loops:')
21 print(f'Dot product: {dot_product}')
22 print('Execution time: {:.4f} seconds '.format(elapsed_time))
23

24 ## Dot product with Numpy

25 # get the start time

26 st = time.time()

27 dot_product = np.dot(arr1 , arr2)

28 et = time.time()

29

30 # get the execution time

31 elapsed_time = et - st

32 print('\nNumpy implementation:')
33 print(f'Dot product: {dot_product}')
34 print('Execution time: {:.4f} seconds '.format(elapsed_time))

Output:

24

Lists and explicit for loops:

Dot product: 2000000

Execution time: 0.1100 seconds

Numpy implementation:

Dot product: 2000000.0

Execution time: 0.0031 seconds

References

[1] Charles R. Harris et al. “Array programming with NumPy”. In: Nature 585.7825 (Sept. 2020), pp. 357–
362. doi: 10.1038/s41586-020-2649-2. url: https://doi.org/10.1038/s41586-020-2649-2.

25

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2

	Numpy Introduction
	Numpy arrays
	Numpy arrays vs lists
	Numpy data types
	Multidimensional arrays
	Column vectors vs Row vectors
	Create Numpy arrays
	Creation from list

	Creation from scratch
	Attributes of Numpy arrays

	Operations with Numpy arrays
	Universal functions
	Binary operations
	Unary operations

	Aggregate functions
	Aggregate functions along axis

	Sorting functions
	Algebraic operations
	Inner product
	Matrices multiplication

	Broadcasting
	Accessing Numpy arrays
	Simple indexing
	Slicing
	Masking

	Working with arrays
	Array concatenation
	Array splitting
	Array reshaping
	Adding new dimensions

	Computational efficiency

