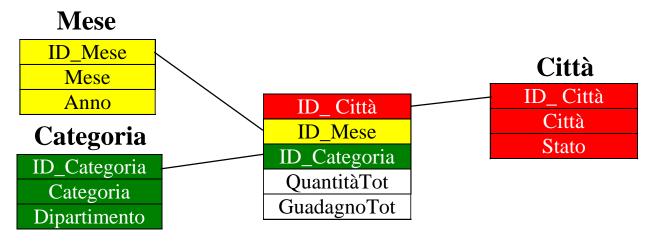
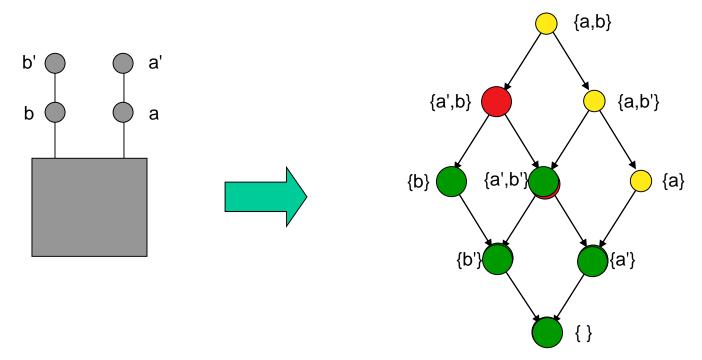


Elena Baralis Politecnico di Torino

- Sommari precalcolati della tabella dei fatti
 - memorizzati esplicitamente nel data warehouse
 - permettono di aumentare l'efficienza delle interrogazioni che richiedono aggregazioni

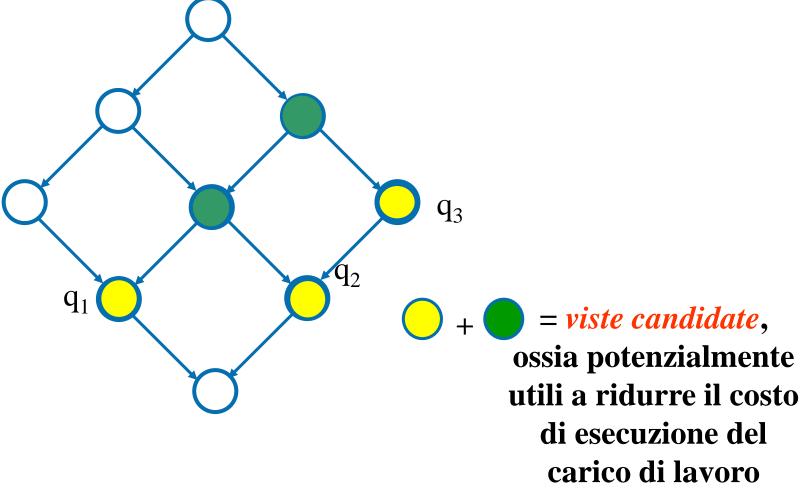


- Definite da istruzioni SQL
- Esempio: definizione di v₃
 - a partire da tabelle di base o viste di granularità superiore


group by Città, Mese, Categoria

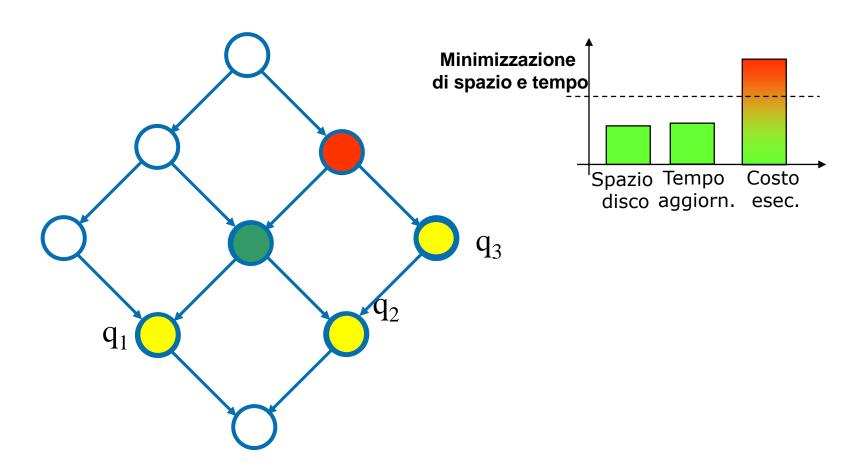
- aggregazione (SUM) sulle misure Quantità, Guadagno
- riduzione dettaglio delle dimensioni

- Una vista materializzata può essere utilizzata per rispondere a più interrogazioni diverse
 - attenzione al tipo di operatore di aggregazione richiesto

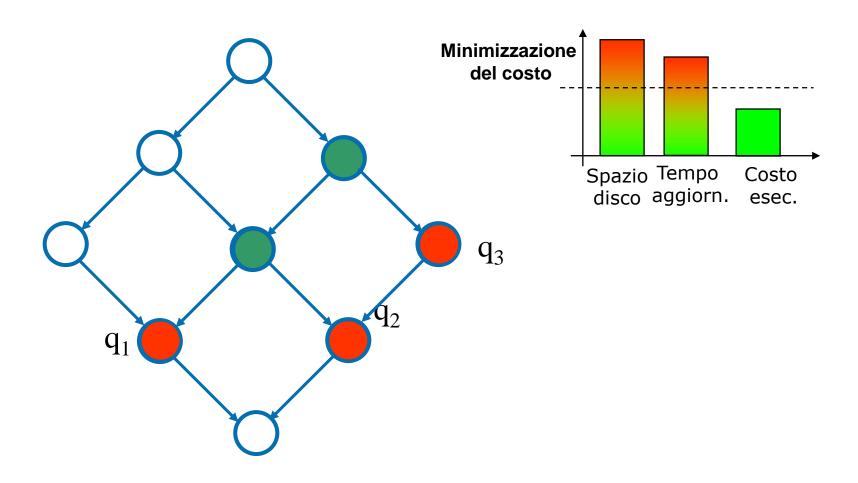


Reticolo multidimensionale

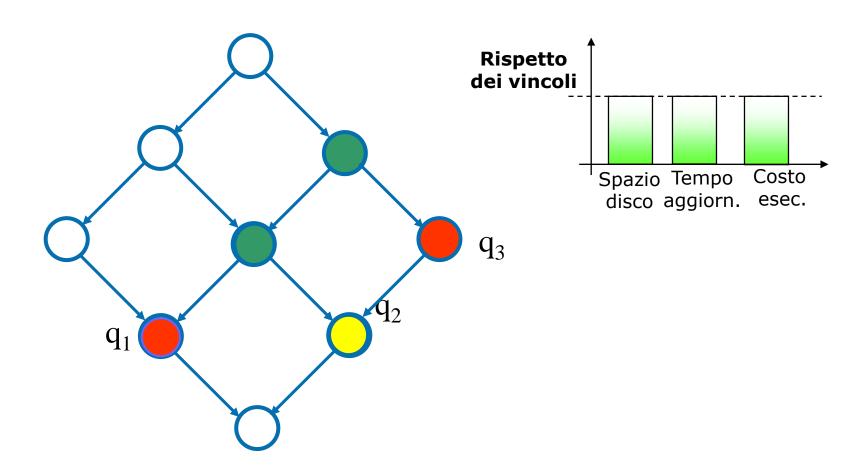
- Numero di possibili combinazioni di aggregazioni molto elevato
 - quasi tutte le combinazioni di attributi sono eleggibili
- Scelta dell'insieme "ottimo" di viste materializzate
- Minimizzazione di funzioni di costo
 - esecuzione delle interrogazioni
 - aggiornamento delle viste materializzate
- Vincoli
 - spazio disponibile
 - tempo a disposizione per l'aggiornamento
 - tempo di risposta
 - freschezza dei dati



Tratto da Golfarelli, Rizzi,"Data warehouse, teoria e pratica della progettazione", McGraw Hill 2006


Copyright – Tutti i diritti riservati

DATA WAREHOUSE: PROGETTAZIONE - 6



Elena Baralis Politecnico di Torino

- Caratteristiche del carico di lavoro
 - interrogazioni con aggregati che richiedono l'accesso a una frazione significativa di ogni tabella
 - accesso in sola lettura
 - aggiornamento periodico dei dati con eventuale ricostruzione delle strutture fisiche di accesso (indici, viste)
- Strutture fisiche
 - tipologie di indici diverse da quelle tradizionali
 - indici bitmap, indici di join, bitmapped join index, ...
 - l'indice B+-tree non è adatto per
 - attributi con dominio a cardinalità bassa
 - interrogazioni poco selettive
 - viste materializzate
 - richiedono la presenza di un ottimizzatore che le sappia sfruttare

- Caratteristiche dell'ottimizzatore
 - deve considerare le statistiche nella definizione del piano di accesso ai dati (cost based)
 - funzionalità di aggregate navigation
- Procedimento di progettazione fisica
 - selezione delle strutture adatte per supportare le interrogazioni più frequenti (o più rilevanti)
 - scelta di strutture in grado di contribuire al miglioramento di più interrogazioni contemporaneamente
 - vincoli
 - spazio su disco
 - tempo disponibile per l'aggiornamento dei dati

Tuning

- variazione a posteriori delle strutture fisiche di supporto
- richiede strumenti di monitoraggio del carico di lavoro
- spesso necessario per applicazioni OLAP

Parallelismo

- frammentazione dei dati
- parallelizzazione delle interrogazioni
 - inter-query
 - intra-query
- le operazioni di join e group by si prestano bene all'esecuzione parallela

Scelta degli indici

- Indicizzazione delle dimensioni
 - attributi frequentemente coinvolti in predicati di selezione
 - se il dominio ha cardinalità elevata, indice B-tree
 - se il dominio ha cardinalità ridotta, indice bitmap
- Indici per i join
 - raramente opportuno indicizzare solo le chiavi esterne della tabella dei fatti
 - consigliato bitmapped join index, se disponibile
- Indici per i group by
 - uso di viste materializzate

Alimentazione del data warehouse

Elena Baralis
Politecnico di Torino

DMG

Extraction, Transformation and Loading (ETL)

- Processo di preparazione dei dati da introdurre nel data warehouse
 - estrazione dei dati dalle sorgenti
 - pulitura
 - trasformazione
 - caricamento
- semplificato dalla presenza di una staging area
- eseguito durante
 - il primo popolamento del DW
 - l'aggiornamento periodico dei dati

Estrazione

- Acquisizione dei dati dalle sorgenti
- Modalità di estrazione
 - statica: fotografia dei dati operazionali
 - eseguita durante il primo popolamento del DW
 - incrementale: selezione degli aggiornamenti avvenuti dopo l'ultima estrazione
 - utilizzata per l'aggiornamento periodico del DW
 - immediata o ritardata
- Scelta dei dati da estrarre basata sulla loro qualità

Estrazione

- Dipende dalla natura dei dati operazionali
 - storicizzati: tutte le modifiche sono memorizzate per un periodo definito di tempo nel sistema OLTP
 - transazioni bancarie, dati assicurativi
 - operativamente semplice
 - semi-storicizzati: è conservato nel sistema OLTP solo un numero limitato di stati
 - operativamente complessa
 - transitori: il sistema OLTP mantiene solo l'immagine corrente dei dati
 - scorte di magazzino, dati di inventario
 - operativamente complessa

Estrazione incrementale

- Assistita dall'applicazione
 - le modifiche sono catturate da specifiche funzioni applicative
 - richiede la modifica delle applicazioni OLTP (o delle API di accesso alla base di dati)
 - aumenta il carico applicativo
 - necessaria per sistemi legacy
- Uso del log
 - accesso mediante primitive opportune ai dati del log
 - formato proprietario del log
 - efficiente, non interferisce con il carico applicativo

Estrazione incrementale

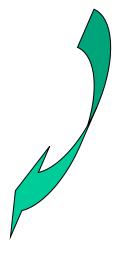
- Definizione di trigger
 - i trigger catturano le modifiche di interesse
 - non richiede la modifica dei programmi applicativi
 - aumenta il carico applicativo
- Basata su timestamp
 - i record operazionali modificati sono marcati con il timestamp dell'ultima modifica
 - richiede la modifica dello schema della base di dati OLTP (e delle applicazioni)
 - estrazione differita, può perdere stati intermedi se i dati sono transitori

Confronto tra le tecniche di estrazione

	Statica	Marche temporali	Assistita applicazione	Trigger	Log
Gestione dati transitori o semi-storicizzati	NO	Incompleta	Completa	Completa	Completa
Supporto per sistemi basati su file	SI	SI	SI	NO	Raro
Tecnica di realizzazione	Prodotti	Prodotti o sviluppo interno	Sviluppo interno	Prodotti	Prodotti
Costi di sviluppo interno	Nessuno	Medi	Alti	Nessuno	Nessuno
Utilizzo in sistemi legacy	SI	Difficile	Difficile	Difficile	SI
Modifiche ad applicazioni	Nessuna	Probabile	Probabile	Nessuna	Nessuna
Dipendenza delle proedure dal DBMS	Limitata	Limitata	Variabile	Alta	Limitata
Impatto sulle prestazioni del sistema operaz.	Nessuna	Nessuna	Medio	Medio	Nessuna
Complessità delle procedure di estrazione	Bassa	Bassa	Alta	Media	Bassa

Estrazione incrementale

4/4/2010


Cod	Prodotto	Cliente	Qtà
1	Greco di tufo	Malavasi	50
2	Barolo	Maio	150
3	Barbera	Lumini	75
4	Sangiovese	Cappelli	45

6/4/2010

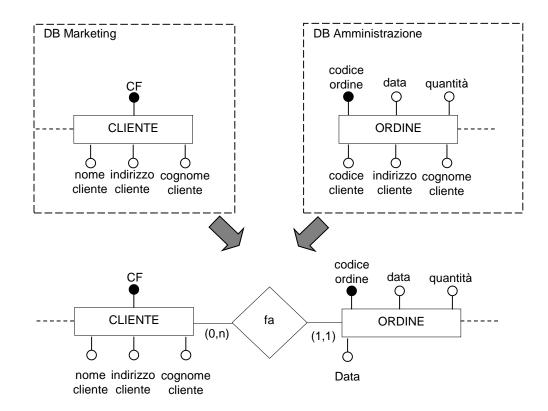
Cod	Prodotto	Cliente	Qtà
1	Greco di tufo	Malavasi	50
2	Barolo	Maio	150
4	Sangiovese	Cappelli	145
5	Vermentino	Maltoni	25
6	Trebbiano	Maltoni	150

Differenza incrementale

Cod	Prodotto	Cliente	Qtà	Azione
3	Barbera	Lumini	75	D
4	Sangiovese	Cappelli	145	U
5	Vermentino	Maltoni	25	
6	Trebbiano	Maltoni	150	

Pulitura

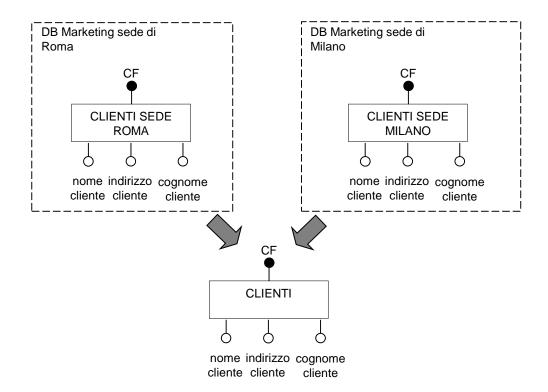
- Operazioni volte al miglioramento della qualità dei dati (correttezza e consistenza)
 - dati duplicati
 - dati mancanti
 - uso non previsto di un campo
 - valori impossibili o errati
 - inconsistenza tra valori logicamente associati
- Problemi dovuti a
 - errori di battitura
 - differenze di formato dei campi
 - evoluzione del modo di operare dell'azienda



Pulitura

- Ogni problema richiede una tecnica specifica di soluzione
 - tecniche basate su dizionari
 - adatte per errori di battitura o formato
 - utilizzabili per attributi con dominio ristretto
 - tecniche di fusione approssimata
 - adatte per riconoscimento di duplicati/correlazioni tra dati simili
 - join approssimato
 - problema purge/merge
 - identificazione di outliers o deviazioni da business rules
- La strategia migliore è la prevenzione, rendendo più affidabili e rigorose le procedure di data entry OLTP

Join approssimato



Tratto da Golfarelli, Rizzi,"Data warehouse, teoria e pratica della progettazione", McGraw Hill 2006

 Il join deve essere eseguito sulla base dei campi comuni, che non rappresentano un identificatore per il cliente

Problema purge/merge

Tratto da Golfarelli, Rizzi,"Data warehouse, teoria e pratica della progettazione", McGraw Hill 2006

- I record duplicati devono essere identificati ed eliminati
- E` necessario un criterio per valutare la somiglianza tra due record

Esempio di pulitura e trasformazione

Elena Baralis C.so Duca degli Abruzzi 24 20129 Torino (I)

nome: cognome: indirizzo:

CAP:

città: nazione: Elena **Baralis**

C.so Duca degli Abruzzi 24

20129 Torino

Elena nome: cognome: Baralis

indirizzo: Corso Duca degli Abruzzi 24

CAP: 20129 città: Torino **Italia** nazione:

Standardizzazione

Elena nome: cognome: Baralis

indirizzo: Corso Duca degli Abruzzi 24

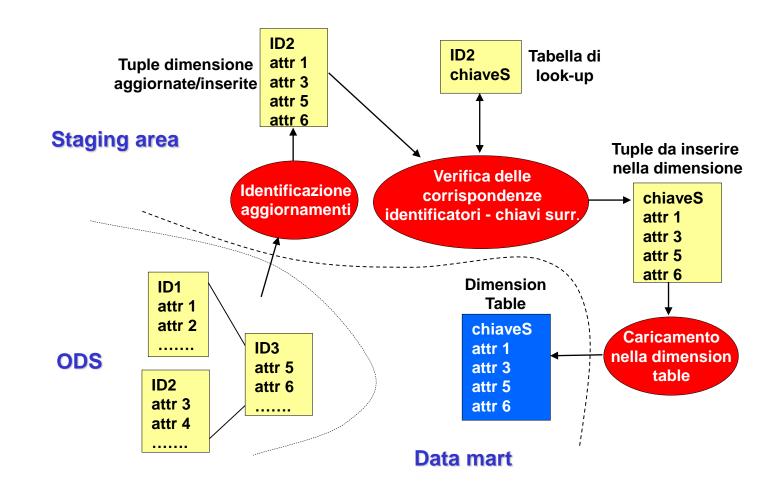
CAP: 10129 città: Torino Italia nazione:

Adattato da Golfarelli, Rizzi,"Data warehouse, teoria e pratica della progettazione", McGraw Hill 2006

DMG

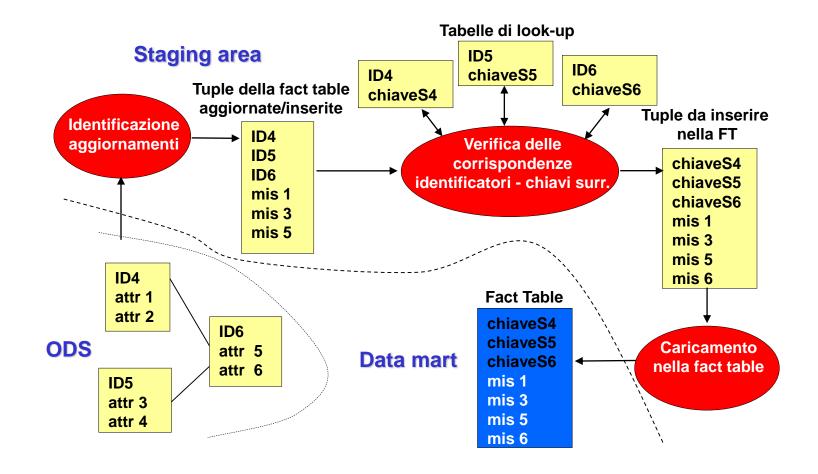
Trasformazione

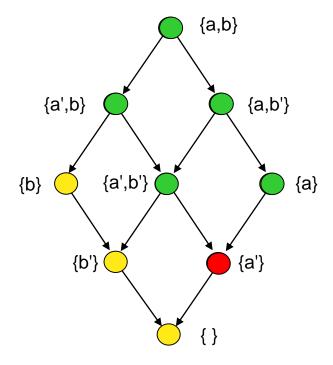
- Conversione dei dati dal formato operazionale a quello del data warehouse (integrazione)
- Richiede una rappresentazione uniforme dei dati operazionali (schema riconciliato)
- Può avvenire in due passi
 - dalle sorgenti operazionali ai dati riconciliati nella staging area
 - conversioni e normalizzazioni
 - matching
 - (eventuale) filtraggio dei dati significativi
 - dai dati riconciliati al data warehouse
 - generazione di chiavi surrogate
 - generazione di valori aggregati


DMG

Caricamento

- Propagazione degli aggiornamenti al data warehouse
- Per mantenere l'integrità dei dati, si aggiornano in ordine
 - 1. dimensioni
 - 2. tabelle dei fatti
 - viste materializzate e indici
- Finestra temporale limitata per eseguire gli aggiornamenti
- Richiede proprietà transazionali (affidabilità, atomicità)


Alimentazione delle dimensioni


DMG

Alimentazione delle fact table

Alimentazione delle viste materializzate

