
05/04/23, 17:00 Lab5_Scikit-Learn_clustering_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab5_Scikit-Learn_clustering_solutions.h… 1/23

Lab 5: Clustering with Scikit-Learn

The objective of this notebook is to learn about the Scikit-Learn library (official

documentation) and clustering. You can find a good guide at this link.

You can find an overview of all the available clustering algorithms in Scikit-Learn here.

Outline

1. Load Dataset

2. K-Means

3. Hierarchical Clustering

4. DBScan

5. Chameleon clusters data

First, run the following cell to import some useful libraries to complete this Lab. If not already

done, you must install them in your virtual environment

If the previous cell outputs one the following error: ModuleNotFoundError: No module 
named 'sklearn' , then, you have to install the Scikit-Learn package. If you don't

remember how to install a Python package, please retrieve the guide on Anaconda-

Navigator.

To install sklearn you can use one of the following commands from the terminal of your

virtual environment:

pip install -U scikit-learn
conda install -c intel scikit-learn

1. Load dataset

Exercise 1.1

Firstly, you will load the first dataset for this lab. Read the csv file from the following path

"data_lab5/lab5_data.csv"  into a DataFrame df . The separator of the csv file is the

comma , . You should skip the header of the first row (i.e., skip the first row) and set the

column names to the list stored in the variable columns .

Hints

In [1]: import pandas as pd
import numpy as np
import random
import matplotlib.pyplot as plt

from sklearn.cluster import KMeans, DBSCAN, AgglomerativeClustering
from sklearn.mixture import GaussianMixture
from sklearn.metrics import silhouette_score, adjusted_rand_score

In [49]: columns = ['x', 'y', 'gt']

https://scikit-learn.org/stable/
https://www.w3schools.com/python/python_ml_k-means.asp
https://scikit-learn.org/stable/modules/clustering.html


05/04/23, 17:00 Lab5_Scikit-Learn_clustering_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab5_Scikit-Learn_clustering_solutions.h… 2/23

x y gt

0 516.012706 393.014514 0

1 436.211762 408.656585 0

2 512.052601 372.022014 0

3 489.140464 401.807159 0

4 446.207986 338.516682 0

... ... ... ...

331 638.916471 323.569096 1

332 542.005901 347.527070 0

333 611.964612 377.254978 0

334 520.654168 455.996453 0

335 594.479314 392.901455 0

336 rows × 3 columns

Expected output

x             y     gt
0    516.012706  393.014514  0
1    436.211762  408.656585  0
2    512.052601  372.022014  0
3    489.140464  401.807159  0
4    446.207986  338.516682  0
...         ...         ...    ...
331  638.916471  323.569096  1
332  542.005901  347.527070  0
333  611.964612  377.254978  0
334  520.654168  455.996453  0
335  594.479314  392.901455  0
336 rows × 3 columns

The dataset is composed of the x  and y  coordinates for 336 points, and the True label in

the column gt . The next cell will create a DataFrame with the input features (i.e., all the

x  and y  coordinates of the points) into a new DataFrame df_X , and a Series containing

the ground-truth labels gt_series . Run the next cell to create the DataFrame and the

Series. Notice that, in this case, we also have the true labels. Normally, when using

clustering, the true labels are not available.

#### START CODE HERE ####
#### Approximately 1 line ####
df = pd.read_csv("data_lab5/lab5_data.csv", sep=",", names=columns, skiprows=

#### END CODE HERE ####

df

Out[49]:

In [4]: df_X = df[["x","y"]].copy()
gt_series = df["gt"].copy()



05/04/23, 17:00 Lab5_Scikit-Learn_clustering_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab5_Scikit-Learn_clustering_solutions.h… 3/23

The next cell defines a function that takes a DataFrames in input, and plots the scatter plot

(i.e., the points) contained in the x  and y  columns. Run the next cell to define the

function.

The next cell calls the previously defined function and plots all the points in the input

dataset in the plane. All points are plotted with the same color because you still have not

applied clustering. Run the next cell to plot all the points in the plane.

Notice that, with 2-dimensional data (like in this case), you can easily visualize the number

of clusters because you can plot the points in a plane. In this case, it is reasonable to think

that there are 3 distinct clusters. However, the procedure that we will apply in this notebook

can also be applied with higher dimensional data, which is not visualizable in a plane.

Therefore, for high dimensional data, it is challenging to visualize the correct number of

clusters. You have to select the best number of clusters based on the analysis of the data.

The next cell defines a function that visualizes each cluster in a plane with a different color. It

takes as parameters the points stored in a DataFrame df  with the  and  coordinates of

In [5]: def plot_2d_scatter(df, title=""): 
    """Display a 2D scatter plot
    :param df: input data points, DataFrame ('x' and 'y' coordinates in the fi
    :return: fig, ax, objects
    """
    fig, ax = plt.subplots(figsize=(6, 5), dpi=90) 
    ax.scatter(df.iloc[:,0], df.iloc[:,1])
    ax.set_xlabel("x", fontsize=14)
    ax.set_ylabel("y", fontsize=14)
    ax.set_title(title)
    ax.grid(True)
    return fig, ax # use them for further modifications

In [6]: _, _ = plot_2d_scatter(df_X, "Points in the plane")

x y



05/04/23, 17:00 Lab5_Scikit-Learn_clustering_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab5_Scikit-Learn_clustering_solutions.h… 4/23

points stored in the x  and y  columns, respectively, the list with the predicted cluster id for

each point y_pred , and an optional plot title title . Run the next cell to define the

function.

Firstly, we will plot the points with a different color based on the ground-truth labels

present in the dataset. As discussed before, this dataset contains the true labels. However,

the true labels are usually not available when performing clustering. We can see that there

are 3 well-separated different clusters. However, some noise is present in the clusters

(i.e., some green points are closer to the blue cluster than to the green one, etc.).

Run the next cell to plot the points based on the ground-truth.

In [7]: def plot_2d_scatter_with_clusters(df, y_pred, title=""): 
    """Display a 2D scatter plot with each cluster with a different color
    :param df: input data points, DataFrame ('x' and 'y' coordinates in the 'x
    :param y_pred: numpy array with the predicted label for each pointù
    :param title: string containing the title of the chart
    :return: fig, ax, objects
    """    
    fig, ax = plt.subplots(figsize=(6, 5), dpi=90) 
    ax.set_xlabel("x", fontsize=14)
    ax.set_ylabel("y", fontsize=14)
    
    n_clusters = list(set(y_pred)) 
    labels = [f"Cluster {c}" for c in n_clusters]
    
    for i, label in enumerate(n_clusters):
        
        if label == -1:
            label_name = "Outliers"
        else:
            label_name = labels[i]

        #add data points 
        ax.scatter(x=df.loc[y_pred==label, 'x'], 
                    y=df.loc[y_pred==label,'y'], 
                    alpha=0.7, label=label_name)
        
    ax.legend(loc=(1.1, 0.5))
    ax.set_title(title)
    ax.grid(True)
    
    return fig, ax # use them for further modifications

In [8]: _, _ = plot_2d_scatter_with_clusters(df_X, gt_series, "Ground-Truth")



05/04/23, 17:00 Lab5_Scikit-Learn_clustering_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab5_Scikit-Learn_clustering_solutions.h… 5/23

2. K-Means

Exercise 2.1

We know from the ground-truth plot that the best number of clusters is 3. Now you will

perform the K-Means algorithm with 3 as the number of clusters  to see if the algorithm

can correctly identify the clusters. Create a KMeans object into a variable called kmeans
with 3 as the number of clusters  and the number of initialization equal to 10 with the

n_init  parameter (the n_init parameter specifies the number of times the k-means

algorithm is run with different centroid seeds). Then, fit the KMeans algorithm and predict

the cluster label for the input points stored in df_X . Store the predicted label in a new

variable called y_pred_kmeans .

You can read the official documentation for the Scikit-Learn implementation of the K-Means

algorithm here.

Hints

Now, run the next cell to visualize the predicted clusters in the plane.

k

k

In [9]: #### START CODE HERE ####
#### Approximately 2 line ####

kmeans = KMeans(n_clusters=3, n_init=10)
y_pred_kmeans = kmeans.fit_predict(df_X)
#### END CODE HERE ####

In [10]: _, _ = plot_2d_scatter_with_clusters(df_X, y_pred_kmeans, "K-Means with $k=3$

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html


05/04/23, 17:00 Lab5_Scikit-Learn_clustering_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab5_Scikit-Learn_clustering_solutions.h… 6/23

The chart shows that the algorithm, with this data, can correctly identify the 3 clusters.

Exercise 2.2

Often, you cannot visualize the results of the clustering algorithm graphically because the

input features can be high-dimensional. Moreover, usually, the true labels are not

available when performing clustering (i.e., unsupervised learning). Now, you will evaluate

the performance of the K-Means algorithm with  with the silhouette metric.

Compute the average silhouette for the cluster division with  into a variable

silh_avg . Then, print the silhouette value. Remember, the silhouette is a score in the

range [-1, 1] that measures the cohesion and the separation of clusters (i.e., points within

the same cluster must be very cohesive with each other and well separated from points in

other clusters). The higher the value, the better the cluster. You can learn more about

silhouette here and here.

Hints

0.6112689520666093

Expected output

0.6112689520666093

The silhouette value shows that K-Means algorithm with  performs well with a value

that is approximately 0.61.

k = 3

k = 3

In [11]: #### START CODE HERE ####
#### Approximately 2 line ####
silh_avg = silhouette_score(df_X, y_pred_kmeans)
print(silh_avg)
#### END CODE HERE ####

k = 3

https://tushar-joshi-89.medium.com/silhouette-score-a9f7d8d78f29
https://towardsdatascience.com/silhouette-coefficient-validating-clustering-techniques-e976bb81d10c


05/04/23, 17:00 Lab5_Scikit-Learn_clustering_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab5_Scikit-Learn_clustering_solutions.h… 7/23

Exercise 2.3

Now, you will evaluate the predicted clusters with respect to the true labels. Again,

usually, the true labels are not available. Therefore, you cannot evaluate the clustering

algorithm with the true labels. However, the true labels can be available to some datasets

used to evaluate new clustering algorithms (e.g., if you want to propose a new clustering

algorithm). As a quantitative evaluation metric you can use the rand index. You can learn

more about rand index here.

The Rand index always takes on a value between 0 and 1, where 0 indicates that two

clustering methods do not agree on the clustering of any pair of elements, and 1 indicates

that two clustering methods perfectly agree on the clustering of every pair of elements (i.e.,

the higher the value, the better the performance of the algorithm).

Now, compute and print the rand index of the predicted cluster labels and the true labels.

Remember that the true labels are stored in the gt_series  variable.

Hints

0.9308764986695224

Expected output

0.9308764986695224

The rand index value shows that K-Means algorithm with  performs well. It correctly

assigns most of the cluster labels.

Exercise 2.4

Can we identify the best number of clusters  without visualizing the ground-truth or the

points in a plane?

As discussed before, ground-truth labels are usually not available. Moreover, clustering can

also be performed with high dimensional data where you can not visualize the samples in a

plane (i.e., identifying the number of clusters just by visualizing it will be difficult).

Now you will perform the KMeans algorithm for different values of . Then, you

will visualize and evaluate each  division to select the best  with the silhouette score

and the cluster charts.

Implement a loop for each value of  from min_k  to max_k  (both included). Then, for

each value of  (i.e., each iteration) create a KMeans object with the current number of

clusters and the parameter n_init  equal to 10. Predict the cluster labels for the points

stored in df_X  with the current  (i.e., using the current kmeans object). Append to

y_pred_list  the predicted cluster labels for the current . Compute the current

silhouette and append it to silh_list .

In [12]: #### START CODE HERE ####
#### Approximately 2 line ####
ars = adjusted_rand_score(gt_series, y_pred_kmeans)
print(ars)
#### END CODE HERE ####

k = 3

k

k ∈ [2, 10]

k k

k

k

k

k

https://www.statology.org/rand-index/


05/04/23, 17:00 Lab5_Scikit-Learn_clustering_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab5_Scikit-Learn_clustering_solutions.h… 8/23

You can read the official documentation for the Scikit-Learn implementation of the K-Means

algorithm here.

Replace None  with your code.

The next cell visualizes the plots of all the  values

In [34]: min_k = 2 # Starting from 2 clusters
max_k = 10 # Until 10 clusters

silh_list = [] # List of avg silouhette values for each cluster division (k)
y_pred_list = [] # list of numpy arrays containing the predicted clusters labe

#### START CODE HERE ####
for k in range(min_k, max_k+1): # Define a loop for each k in [2, 10] (both in
    kmeans_k = KMeans(n_clusters=k, n_init=10) # Create the K-Means object wi
    y_pred_kmeans_k = kmeans_k.fit_predict(df_X) # Predict the cluster labels 
    
    y_pred_list.append(y_pred_kmeans_k) # Append the list of predicted cluster
    
    silh_avg_k = silhouette_score(df_X, y_pred_kmeans_k) # Compute the average
    silh_list.append(silh_avg_k) # Append the average silhoette
    
#### END CODE HERE ####

k

In [36]: for k in range(min_k, max_k+1):
    _, _ = plot_2d_scatter_with_clusters(df_X, y_pred_list[k-min_k], f"K-Mean

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html


05/04/23, 17:00 Lab5_Scikit-Learn_clustering_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab5_Scikit-Learn_clustering_solutions.h… 9/23



05/04/23, 17:00 Lab5_Scikit-Learn_clustering_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab5_Scikit-Learn_clustering_solutions.… 10/23



05/04/23, 17:00 Lab5_Scikit-Learn_clustering_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab5_Scikit-Learn_clustering_solutions.… 11/23



05/04/23, 17:00 Lab5_Scikit-Learn_clustering_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab5_Scikit-Learn_clustering_solutions.… 12/23

What do you think is the best k-value? Why?

Now, you will plot the average silhouette value for each  value analyzed. Please, run the

next cell to visualize the plot.

In [15]: #### START ANSWER HERE ####

#### END ANSWER HERE ####

k

In [16]: fig, ax = plt.subplots(figsize=(7, 4))
x = range(len(silh_list))



05/04/23, 17:00 Lab5_Scikit-Learn_clustering_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab5_Scikit-Learn_clustering_solutions.… 13/23

From this silhouette graph, what do you think is the best k-value? Has your answer changed

since before?

3. Hierarchical Clustering
Here, is already provided to you the code to run the Hierarchical clustering. Run the next

cells to perform the hierarchical clustering. The dendrogram of the hierarchical clustering is

automatically cut to match the n_clusters  specified. You can read the documentation of

the agglomerative clustering here.

x_ticks = range(min_clusters, max_clusters+1)

ax.plot(x, silh_list, marker='*')
ax.set_xticks(x, x_ticks)
ax.set_xlabel("Number of clusters (k)")
ax.set_ylabel("Silhouette")
ax.grid(True)

In [17]: #### START ANSWER HERE ####

#### END ANSWER HERE ####

In [18]: n_clusters = 3
hc = AgglomerativeClustering(n_clusters)
y_pred_hc = hc.fit_predict(df_X)

In [19]: _, _ = plot_2d_scatter_with_clusters(df_X, y_pred_hc, f"Hierarchical Clusterin

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html


05/04/23, 17:00 Lab5_Scikit-Learn_clustering_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab5_Scikit-Learn_clustering_solutions.… 14/23

0.6110715619378334

You can see that the result is practically the same.

4. DBScan
Here, is already provided to you the code to run the Density-based clustering (dbscan).

Run the next cells to perform the dbscan clustering. The dbscan does not require the

specification of the number of clusters. Moreover, it also identifies the outliers. However, it

require the specification of two parameters: epsilon and the minimum number of points that

are often difficult to set. You can read the documentation of the dbscan clustering here.

In [50]: silh_avg_hc = silhouette_score(df_X, y_pred_hc)
print(silh_avg_hc)

In [21]: dbscan = DBSCAN(eps=20, min_samples=10)

In [22]: y_pred_dbscan= dbscan.fit_predict(df_X)

In [23]: _, _ = plot_2d_scatter_with_clusters(df_X, y_pred_dbscan, "DBScan Clustering"

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html


05/04/23, 17:00 Lab5_Scikit-Learn_clustering_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab5_Scikit-Learn_clustering_solutions.… 15/23

The red points are the outliers.

5. Chameleon clusters data
Now, you will move to another dataset, the chameleon_clusters  data. This time the true

labels are not available. The next cell loads the data into a DataFrame df_X_cc . Please run

the next cell to load the data.

x y

0 68.601997 102.491997

1 454.665985 264.808990

2 101.283997 169.285995

3 372.614990 263.140991

4 300.989014 46.555000

... ... ...

7995 442.420990 303.721985

7996 495.451996 288.502991

7997 267.605011 141.725006

7998 238.358002 252.729996

7999 159.242004 177.431000

8000 rows × 2 columns

Run the next cell to plot the points in the plane.

In [39]: df_X_cc = pd.read_csv("data_lab5/chameleon_clusters.csv", sep=",")
df_X_cc

Out[39]:



05/04/23, 17:00 Lab5_Scikit-Learn_clustering_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab5_Scikit-Learn_clustering_solutions.… 16/23

You can see that this time the points are distributed in a more complicated manner. It is also

more difficult to identify the best number of clusters. In addition, there are many points that

are outliers.

Exercise 5.1

Now, you will implement the same loop as for exercise 2.4. The loop iterates over different

values of  from min_k  to max_k . For each  value (i.e., each iteration) create a KMeans

object with the current number of clusters and the parameter n_init  equal to 10. Predict

the cluster labels for the points stored in df_X_cc  with the current  (i.e., using the current

kmeans object). Append to y_pred_list  the predicted cluster labels for the current .

Compute the current silhouette and append it to silh_list .

You can read the official documentation for the Scikit-Learn implementation of the K-Means

algorithm here.

Replace None  with your code.

In [40]: _, _ = plot_2d_scatter(df_X_cc, "Points in the plane")

k k

k

k

In [41]: min_k = 2 # Starting from 2 clusters
max_k = 10 # Until 10 clusters
silh_list = [] # List of avg silouhette values for each cluster division (k)
y_pred_list = [] # list of numpy arrays containing the predicted clusters labe

#### START CODE HERE ####
for k in range(min_k, max_k+1): # Define a loop for each k in [min_k, max_k]
    kmeans_k = KMeans(n_clusters=k, n_init=10) # Define the kmeans object with
    y_pred_kmeans_k = kmeans_k.fit_predict(df_X_cc) # Predict the cluster labe
    
    y_pred_list.append(y_pred_kmeans_k) # Append the predicted labels to the 
    

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html


05/04/23, 17:00 Lab5_Scikit-Learn_clustering_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab5_Scikit-Learn_clustering_solutions.… 17/23

The next cell visualizes the clusters plots of all the  values.

    silh_avg_k = silhouette_score(df, y_pred_kmeans_k) # Compute the average 
    silh_list.append(silh_avg_k) # Append the current average silhouette to th
#### END CODE HERE ####

k

In [42]: for k in range(min_k, max_k+1):
    _, _ = plot_2d_scatter_with_clusters(df_X_cc, y_pred_list[k-min_k], f"K-Me



05/04/23, 17:00 Lab5_Scikit-Learn_clustering_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab5_Scikit-Learn_clustering_solutions.… 18/23



05/04/23, 17:00 Lab5_Scikit-Learn_clustering_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab5_Scikit-Learn_clustering_solutions.… 19/23



05/04/23, 17:00 Lab5_Scikit-Learn_clustering_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab5_Scikit-Learn_clustering_solutions.… 20/23



05/04/23, 17:00 Lab5_Scikit-Learn_clustering_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab5_Scikit-Learn_clustering_solutions.… 21/23

In this case, KMeans performs worse. In fact, it fails to detect clusters correctly. You can see

that it tends to form spherical clusters. Moreover, it is not suitable for clusters and points

with different densities.

Now, you will plot the average silhouette value for each  value analyzed. Please, run the

next cell to visualize the plot.

k

In [28]: fig, ax = plt.subplots(figsize=(7, 4))
x = range(len(silh_list))
x_ticks = range(min_clusters, max_clusters+1)

ax.plot(x, silh_list, marker='*')
ax.set_xticks(x, x_ticks)
ax.set_xlabel("Number of clusters (k)")
ax.set_ylabel("Silhouette")
ax.grid(True)



05/04/23, 17:00 Lab5_Scikit-Learn_clustering_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab5_Scikit-Learn_clustering_solutions.… 22/23

From the silhouette graph, the best k-number seems to be 2. However, we can visually see

that it is not very effective.

Exercise 5.2

For this type of data with different densities, dbscan may be a better choice. Perform the

clustering with the dbscan algorithm for the data stored in df_X_cc . Store the predicted

labels in a variable y_pred_dbscan . Set the parameters of the DBSCAN object as follows:

eps =10 and min_samples =20. Go ahead and try changing the values to see how the

results change. You can read the documentation of the dbscan clustering here.

Now, run the next cell to plot the results.

In [47]: #### START CODE HERE ####
#### Approximately 2 line ####
dbscan = DBSCAN(eps=10, min_samples=20)
y_pred_dbscan = dbscan.fit_predict(df_X_cc)
#### END CODE HERE ####

In [45]: _, _ = plot_2d_scatter_with_clusters(df_X_cc, y_pred_dbscan, "DBScan Clusterin

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html


05/04/23, 17:00 Lab5_Scikit-Learn_clustering_solutions

file:///Users/salvatorephd/PycharmProjects/Data-Science-and-Machine-Learning-for-Engineering-Applications/Labs/Lab5_Scikit-Learn_clustering_solutions.… 23/23

Graphically, you can see that the DBScan seems to perform much better in this case. It can

identify clusters of points and also outliers.

In [ ]:  


