
Web Applications



Web Applications
➢Introduction

➢Development

➢Interaction with the DBMS

1



Introduction
Web Applications

2



What is a web application?

An application hosted by a remote server and used by users via the 
internet through a browser (e.g., Chrome, Safari)

Pros

• User does not need to install or update the app

• The user can access the service from different devices and browsers

• Reduced compatibility issues

• Easy deployment and maintenance

3



Client-Server Architecture
Distributed architecture composed of a 
Client and a Server that communicate 
through a specific protocol

Client: requests a service or resource 
exposed by the Server

Server: provides the service, receiving and 
processing the Client's request

Protocol: standardized rules and procedures 
that define the communication between 
Client and Server (e.g., HTTP, FTP, SMTP...)

4



HTTP Protocol

5

• HyperText Transfer Protocol (HTTP) It is the most widespread for 
communication between web-server and web-client, based on the 
request-response paradigm

• Used by the Client to make the request to the Server

• The request consists (but not exclusively) of a method and the URI, a 
path that uniquely identifies the resource

GET POST PUT DELETE

Retrieve data Insert data Update data or 
insert it if it does 
not exist

Delete the 
specific resource

Main HTTP methods



HTTP Protocol

6

GET

POST

HTTP REQUEST

HTTP RESPONSE

SERVER

DATABASE

CLIENT

• When the server receives the request, it processes it and eventually 
returns the desired resource (e.g., HTML page)

Display page

TCP/IP



HTTP Protocol – URL Parameters

7

• URL parameters (also known as query strings) allow you to pass 
additional fields as web page input, to filter, complete queries, etc.

• Parameters start after the ‘?’ character and are separated by ‘&’ 

• They are structured in the form key = value

http://www.ecommerce.com/products/shoes?color=red&sort=latest

Parameter 1

Parameter 2



HTTP Protocol – HTTPS

8

• HyperText Transfer Protocol Secure: protocol for secure, encrypted 
communication between client and server

• Use TLS/SSL to encrypt information based on a certificate that 
authenticates the web server

• Protects sensitive data from hacker attacks (man in the middle, 
eavesdropping…)

• New standard, where browsers report sites that don't use HTTPS as 
insecure



HTTP Protocol – Status Code

9

• In addition to executing the task and providing the requested 
resource, the Server returns a Status Code indicating the outcome of 
the request made.

• There are different types of messages, in turn grouped into 5 distinct 
classes:

• Example. HTTP Status Code: 404 – “Not Found”

1xx 2xx 3xx 4xx 5xx

Informative Success Redirection Client-side error Server-side error



Development
Web Applications

10



Web application development

11

FRONTEND
The visible part of the 

application with which the 
user interacts directly.

BACKEND
It takes care of server 

operation, request 
processing, and database 

access.

DATABASE
It deals with the storage of 

data, preferences and 
information.

• The development of a web application is divided into several components 
(“separation of concerns”), each with its own specific languages and tools



Web application development

12

• For both frontends and backends, there are different development 
frameworks, software libraries that provide a common basis for 
developing an application in a more efficient and organized way.

FRONTEND BACKEND

REACT

ANGULAR

VUE JS

designER

Example: designer was developed in Vue JS

FLUTTER



Content Management System (CMS)

13

• Program for the management and creation of websites

• No need to write code or have special computer skills

• You can create websites, blogs, eCommerce, forums, etc...

• Popular: Wordpress, Wix, Drupal



The HTML language

14

• HTML: HyperText Markup Language

• Standard “de facto” 

• Purpose: to provide a structured description of a program-
independent hypertext document 

• Used to create web pages, defining their structure, content and 
layout

Markup language <> Programming language



The HTML language - Tags

15

• HTML allows you to annotate a text to mark the parts that compose it 
through tags

• Tags are expressions that are always enclosed between the minor (<) 
and major (>) symbols 

• Usually portions of text are delimited by pairs of tags (e.g., 
<h1>Title</h1>) 

• TAG UTILIZZO

<head> HTML document information

<body> Contents of the web page

<h1>, <h2>, <h3>, <h4> […] Section headings of different levels

<p> Paragraph

<table> Table



The HTML Language - Attributes

16

• Attributes can better characterize a tag

• attributes consist of a variable that is assigned a particular value

Example:



The HTML language - Overview

17

• HTML primarily allows you to create static web pages

• It allows you to include: images, audio, video, tables, forms, 
hyperlinks...

• Colors, fonts, backgrounds can also be managed by other languages 
such as CSS

• To create dynamic web pages (created “on the fly” in response to user 
input) you use languages such as JS

• In some cases, the web page is dynamically generated server-side 
which returns the static page to the client.



Style Sheets

18

Introduced with HTML 4 for:

• enhance the description of presentation/style aspects 

• allow separation between presentation and content

Style specifications can be indicated either in the HTML document or in 
separate files

• In-line Style Specifications: Style is specified directly within the HTML 
element

• Internal Style Specifications: the style is specified directly within the HTML 
document

• External Style Specifications: Style is specified outside the HTML 
document in separate style sheets 



Internal

Style Sheets - Hierarchies

19

The CSS rule hierarchy indicates that the rules are applied in the 
following order:

1. Through an external style file (external style)

2. Tagged <style> internal to the document HTML (internal 
style) 

3. Specifying style elements in any document tag using the 
style attribute (in-line style) 

In case of conflicts, the most internal one is applied!



Style Sheets - Bootstrap

20

• Open-source front-end framework that provides a collection of ready-to-
use CSS classes and JS functions  

Grid layouts, tables, forms, typography, panels, and more

• Follows the properties of responsive design
Use CSS and HTML to resize, hide, contract, enlarge, or move web page content

• Makes web development fast and customizable

https://getbootstrap.com/docs/4.0/getting-started/introduction/

https://getbootstrap.com/docs/4.0/getting-started/introduction/


Python Backend Framework

21

For web development in Python there are different frameworks and micro-
frameworks

• Micro-framework

• Jinja2 template

• ORM handled by other
packages

• No admin interface

• No authentication system

• Built-in tool for encoding, 
sessions, caching, 

authentication, static content

• ORM handled by other
packages

• Complex applications

• Object-Relational Mapping 
(ORM) 

• Model-Template-View

• Admin interface included

• Built-in authentication 
system



Object-Relational Mapping (ORM)

22

• Integrate RDBMS systems within the object-oriented programming 
(OOP) paradigm

• Enables high-level abstraction to simplify development instead of 
using SQL directly 

• Portability between DBMS

• Risk of performance degradation

https://www.fullstackpython.com/object-relational-mappers-orms.html

https://www.fullstackpython.com/object-relational-mappers-orms.html


Flask

23

• Micro-framework developed in Python to create web applications

• Includes a locally accessible web server

- localhost (http://127.0.0.1, http://localhost)

- default port 5000 

• Pythonic approach, flexible and easy to learn

app.py templates/hello.html

http://127.0.0.1/
http://localhost)/


Django

24

• Django is a high-level Python web framework that fosters rapid 
development and clean, pragmatic design1

• It is considered with “batteries included” as it is a complete framework of 
all the necessary elements for developers

• MVT design pattern (Model View Template)

1https://www.djangoproject.com

Models Views Templates URLs

Define data structure 
with database query 
mechanisms

Functions that receive 
an HTTP request and 
return the HTTP 
response

Describe the layout 
with which the results 
should be represented 
(e.g., HTML file)

Mapping to direct the 
HTTP request to the 
correct view

models.py views.py /templates urls.py

https://www.djangoproject.com/


Interaction with the DBMS
Web Applications

25



Overview

26

• A web application needs to interface with a database to perform 
queries

• Python has modules to interface with the main DBs: MySQL, 
PostgreSQL, Oracle, MariaDB...

• There is a common structuring of the interaction with the DBMS:
1. Opening the connection with the DBMS 

2. Executing SQL queries

3. Closing the connection 



SQLAlchemy

27

• SQLAlchemy is a Python library that allows you to interface with a 
database efficiently 

• Offers the flexibility and effectiveness of SQL within your Python 
application

• Supported features:

1. Connecting to the DB

2. Instant execution of SQL queries

3. Data acquisition and reading

4. Multiple queries and transactions



SQLAlchemy – Opening connection

28

• Starting point of applications that use SQLAlchemy, allows you to 
specify connection details 

• Requires five parameters:
1. dialect: name of the language that will be used for the connection 

2. username: username in DB

3. password: user password

4. host: name of the hosting machine
the DBMS 

5. dbname: DB name  

• Call to the function create_engine()

• Connection to the DB with the connect() function



SQLAlchemy – SQL query

29

• Immediate execution of the statement: The server immediately 
compiles and executes the received SQL statement 

• Call to the function execute()

• Requests as a parameter the query to be executed, in string format 

• If successful, it returns the result of the query, if it fails it raises an 
exception 

• The result is stored with a variable of type “cursor”



SQLAlchemy – Transactions

30

• Connections occur implicitly in auto-commit mode

After the successful execution of each 
SQL statement, the commit is 
automatically performed.

• You must set up a non-automatic commit to execute it after a 
sequence of SQL statements

Only one commit is executed at the 
end of the execution of all statements.



SQLAlchemy – Transactions

31

• Call to the function begin()

• When invoked, SQLAlchemy initializes a transaction and disables 
autocommit

• If successful, it returns an active transaction, otherwise it raises an 
exception



SQLAlchemy – Transactions

32

• If you disable autocommit, commit and rollback operations must be 
explicitly requested 

commit()
• Commits the current 

transaction 
• In case of failure raises an 

exception 

rollback()
• Rolls back the current 

transaction 
• In case of failure raises an 

exception 



SQLAlchemy – Transactions

33

• If you disable autocommit, commit and rollback operations must be 
explicitly requested 

• Using the construct with SQLAlchemy automatically handles commit
or rollback

• Commits if successful
• If it fails, rolls back raises an exception 



SQLAlchemy – Closing connection

34

• Must be run when you no longer need to interact with the DBMS 

• Closes the link with the DBMS and releases its resources 

• Call to the function close()


	Copertina
	Slide 0: Web Applications

	Materiale didattico
	Slide 1: Web Applications
	Slide 2: Introduction
	Slide 3: What is a web application?
	Slide 4: Client-Server Architecture
	Slide 5: HTTP Protocol
	Slide 6: HTTP Protocol
	Slide 7: HTTP Protocol – URL Parameters
	Slide 8: HTTP Protocol – HTTPS
	Slide 9: HTTP Protocol – Status Code
	Slide 10: Development
	Slide 11: Web application development
	Slide 12: Web application development
	Slide 13: Content Management System (CMS)
	Slide 14: The HTML language
	Slide 15: The HTML language - Tags
	Slide 16: The HTML Language - Attributes
	Slide 17: The HTML language - Overview
	Slide 18: Style Sheets
	Slide 19: Style Sheets - Hierarchies
	Slide 20: Style Sheets - Bootstrap
	Slide 21: Python Backend Framework
	Slide 22: Object-Relational Mapping (ORM)
	Slide 23: Flask
	Slide 24: Django
	Slide 25: Interaction with the DBMS
	Slide 26: Overview
	Slide 27: SQLAlchemy
	Slide 28: SQLAlchemy – Opening connection
	Slide 29: SQLAlchemy – SQL query
	Slide 30: SQLAlchemy – Transactions
	Slide 31: SQLAlchemy – Transactions
	Slide 32: SQLAlchemy – Transactions
	Slide 33: SQLAlchemy – Transactions
	Slide 34: SQLAlchemy – Closing connection


