

•

Data Science and Machine Learning for Engineering Applications Scikit-Learn Classification

Salvatore Greco Andrea Pasini Flavio Giobergia Elena Baralis Tania Cerquitelli

DataBase and Data Mining Group

Introduction to Scikit-learn

Scikit-learn

- Machine learning library built on NumPy, SciPy and Matplotlib
- What Scikit-learn can do
 - Supervised learning
 - Regression, classification
 - Unsupervised learning
 - Clustering
 - Data preprocessing
 - Feature extraction, feature selection, dimensionality reduction

What Scikit-learn cannot do

- Distributed computation on multiple computers
 - Only multi-core optimization
- Deep learning
 - Use Keras and Tensorflow instead

- Scikit learn models work with structured data
 - Data must be in the form of 2D Numpy arrays
 - Rows represent the samples
 - Columns represent the attributes (or features)
 - This table is called features matrix

- Features can be
 - Real values
 - Integer values to represent categorical data
- If you have strings in your data, you first have to convert them to integers (preprocessing)

Input data

1.0	January	1.5	
1.4	February	0.3	
5.0	March	1	

Features matrix

1.0	0	1.5
1.4	1	0.3
5.0	2	1

- Also missing values must be solved before applying any model
 - With imputation or by removing rows

Input data

1.0	0.5	1.5	
1.4	NaN	0.3	
5.0	0.5	1	

Features matrix

1.0	0.5	1.5
1.4	0.5	0.3
5.0	0.5	1

PoliTo

Input data

1.0	0.5	1.5	
1.4	NaN	0.3	
5.0	0.5	1	

Features matrix

1.0	0.5	1.5
5.0	0.5	1

- For unsupervised learning you only need the features matrix
- For supervised learning you also need a target array to train the model
 - It is typically one-dimensional, with length n_samples
 - May be 2-dimensional for multi-output models

Features matrix shape = (n_samples, n_features)

1.0	5	1.5
1.4	10	0.3
5.0	8	1

Target array shape = (n_samples,)

А	
А	
В	

- The target array can contain
 - Integer values, each corresponding to a class label

Real values for regression

Target array

0.4
1.8
-6.9

- Scikit-learn estimator API
 - All models are represented with Python classes
 - Their classes include
 - The values of the hyperparameters used to configure the model
 - The values of the parameters learned after training
 - By convention these attributes end with an underscore
 - The methods to train the model and make inference
 - Scikit-learn models are provided with sensible defaults for the hyperparameters

- Scikit learn models follow a simple, shared pattern
 - 1. Import the model that you need to use
 - 2. Build the model, setting its hyperparameters
 - 3. Train model parameters on your data
 - Using the fit() method
 - 4. Use the model to make predictions
 - Using the predict()/transform() methods
- Sometimes fit and predict/transform are implemented within the same class method

- **fit():** learn model parameters from input data
 - E.g. train a classifier
- predict(): apply model parameters to make predictions on data
 - E.g. predict class labels
- transform(): transform data into a different representation
 - E.g. normalize test data
- fit_predict(): fit model and make predictions
 - E.g. apply clustering to data
- fit_transform(): fit model and transform data
 - E.g. apply PCA to transform data

- Classification:
 - Given a 2D features matrix X
 - X.shape = (n_samples, n_features)
 - The task consists of assigning a class label y_pred to each data sample

1.0	5	1.5
1.4	10	0.3
	Х	

y_pred

By following the estimator API pattern:

Import a model

from sklearn.tree import DecisionTreeClassifier

Build model object

clf = DecisionTreeClassifier()

Important decision tree hyperparameters:

```
from sklearn.tree import DecisionTreeClassifier
```

```
clf = DecisionTreeClassifier(max_depth = 10,
```

```
min_impurity_decrease=0.01)
```

- Hyperparameters:
 - max depth: maximum tree height

Default = None

- min_impurity_decrease: split nodes only if impurity decrease above threshold
 - Default = 0.0

Train model with ground-truth labels

In [1]: clf.fit(X_train, y_train)

- This operation builds the decision tree structure
 - X_train is the 2D Numpy array with input features (features matrix)
 - y_train is a 1D array with ground-truth labels

6.1	3.1	2
1.8	12	0.15

X_train

y_train

Predict class labels for new data

 This operation shows the capability of classifiers to make predictions for unseen data

X_test

y_pred

Take a look at all the other models in the scikitlearn documentation

https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

To choose the most appropriate machine learning model for your data you have to evaluate its performance

- Evaluation can be performed according to a metric (scoring function)
 - E.g. accuracy, precision, recall

The data that you have in a dataset is only a sample extracted from the distribution of real world data

- If you choose the best model for your dataset, it may not perform so well for new data
 - This risk is called overfitting

- To avoid overfitting evaluation must be performed on data that is not used for training the model
 - Divide your dataset into training and test set to simulate two different samples in the data distribution

- This technique is called hold-out
 - Training set is typically 70/90% of your data

Hold-out with Scikit-learn

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

Default test_set size is 0.25 (25%)

- Evaluation = compare the following two vectors
 - y_test (y): the expected result (ground truth)
 - y_test_pred (\hat{y}) : the prediction made by your model
- Main evaluation metrics for classification:
 - Accuracy: % of correct samples
 - Precision(c): % of correct samples among those predicted with class c
 - Recall(c); % of correct samples among those that belong to class c in ground truth
 - F₁ score(c): harmonic mean between precision and recall

- Evaluation metrics with Scikit-learn
 - With precision_score(), recall_score(), f1_score(), ...
 - Or, precision_recall_fscore_support()
 - Returns those metrics together

```
from sklearn.metrics import accuracy_score,
```

```
precision_recall_fscore_support
```

```
acc = accuracy_score(y_test, y_test_pred)
```

```
p, r, f1, s = precision_recall_fscore_support(y_test, y_test_pred)
```


p, r, f1, s = precision_recall_fscore_support(y_test, y_test_pred)

- p, r, f1, s are 1D Numpy arrays with the scores computed separately for each class
 - Example

p, r, f1, s = precision_recall_fscore_support(y_test, y_test_pred)

- Macro average scores vs Micro average scores
 - Macro average f1:

```
macro_f1 = f1.mean()
```

- Macro average gives the same importance to all classes, even if they are unbalanced
 - If a class with few elements gets a low f1, the microaveraged score is affected with the same weight as another with more samples

Micro average scores

 Micro average scores are computed by collecting all the TP, FP, TN, FN independently of the class

micro-f1 = micro-p = micro-r

 Classes with higher cardinality have higher impact on these metrics

Confusion matrix

 Useful tool when you want to inspect with more details the classification results

In [1]: from sklearn.metrics import confusion_matrix

```
conf_mat = confusion_matrix(y_test, y_test_pred)
```

```
print(conf_mat)
```

predicted 0 1 2 Out[1]: 0 [[45, 0, 1], 1 [0, 43, 0], 2 [0, 3, 42]]

- 4a-Scikitlearn-Classification.ipynb
 - 1. Classification and hold out

- Divide your dataset into k partitions
- At each iteration select a partition to be used as test set and the others will be the training set

- At each iteration a **different model** is trained
- After training a model compute a scoring metric to the predictions for the test set

At the end you can compute statistics on the obtained scores

Method 1: iterate across partitions

```
from sklearn.model_selection import KFold
# K-Fold with 5 splits
kfold = KFold(n_splits=5, shuffle=True)
for train_indices, test_indices in kfold.split(X, y):
    ... executed 5 times, 1 for each k-fold iteration ...
```

 Shuffle specifies to shuffle data before creating the k partitions (default is False)

Method 1: iterate across partitions

```
...
for train_indices, test_indices in kfold.split(X, y):
    ... executed 5 times, 1 for each k-fold iteration ...
```

- kfold.split() returns at each iteration a tuple with two arrays:
 - train_indices: array of the indices (row number) of the training samples
 - test_indices: array of the indices of the test samples

Method 1: iterate across partitions

```
...
for train_indices, test_indices in kfold.split(X, y):
    train model on X[train_indices], y[train_indices]
    test model on X[test_indices]
    compute an evaluation score for this partition
```

- At each iteration you can use fancy indexing to select the samples from X and y
- Then you can train a model and compute its performances on the test set

Method 2: use cross val score()

```
from sklearn.model_selection import cross_val_score
```

```
clf = DecisionTreeClassifier()
```

```
acc = cross_val_score(clf, X, y, cv=5, scoring='accuracy')
```

Parameters:

- clf = the model that you want to be trained
- X, y = your dataset, where cross-validation will be performed
- Important: this method does not shuffle data
 - Manually shuffle them when necessary (suggested)

Method 2: use cross_val_score()

```
from sklearn.model_selection import cross_val_score
clf = DecisionTreeClassifier()
acc = cross_val_score(clf, X, y, cv=5, scoring='accuracy')
```

- Parameters:
 - cv = number of partitions for cross-validation
 - scoring = scoring function for the evaluation
 - E.g. 'f1_macro', 'f1_micro', 'accuracy', 'precision_macro'

Method 3: use cross_val_predict()

```
from sklearn.model_selection import cross_val_predict
y_pred = cross_val_predict(clf, X, y, cv=3)
```

- This method returns a Numpy array with the predictions of the *cv* models trained during cross validation
- Data is not shuffled


```
y_pred = cross_val_predict(clf, X, y, cv=3)
```


- Method 3: use cross_val_predict()
 - Finally you can evaluate the predictions

Difference between method 2 and method 3

- 4a-Scikitlearn-Classification.ipynb
 - 2. Cross validation

