
DataBase and Data Mining Group

Salvatore Greco
Andrea Pasini

Flavio Giobergia
Elena Baralis

Tania Cerquitelli

Data Science and Machine Learning
for Engineering Applications

Scikit-Learn Classification

Introduction to Scikit-learn

§ Scikit-learn
§ Machine learning library built on NumPy, SciPy and

Matplotlib

§ What Scikit-learn can do
§ Supervised learning

§ Regression, classification
§ Unsupervised learning

§ Clustering
§ Data preprocessing

§ Feature extraction, feature selection, dimensionality
reduction

2

Introduction to Scikit-learn

§ What Scikit-learn cannot do
§ Distributed computation on multiple computers

§ Only multi-core optimization
§ Deep learning

§ Use Keras and Tensorflow instead

3

Introduction to Scikit-learn

§ Scikit learn models work with structured data
§ Data must be in the form of 2D Numpy arrays

§ Rows represent the samples
§ Columns represent the attributes (or features)

§ This table is called features matrix

4

1.0 5 1.5

1.4 10 0.3

5.0 8 1

Price Quantity Liters

Sample 1

Sample 2

Sample 3

shape = (3, 3)

Introduction to Scikit-learn

§ Features can be
§ Real values
§ Integer values to represent categorical data

§ If you have strings in your data, you first have to
convert them to integers (preprocessing)

5

1.0 January 1.5

1.4 February 0.3

5.0 March 1

Input data

1.0 0 1.5

1.4 1 0.3

5.0 2 1

Features matrix

Introduction to Scikit-learn

§ Also missing values must be solved before
applying any model
§ With imputation or by removing rows

6

1.0 0.5 1.5

1.4 NaN 0.3

5.0 0.5 1

Input data

1.0 0.5 1.5

1.4 0.5 0.3

5.0 0.5 1

Features matrix

1.0 0.5 1.5

1.4 NaN 0.3

5.0 0.5 1

Input data

1.0 0.5 1.5

5.0 0.5 1

Features matrix

Introduction to Scikit-learn

§ For unsupervised learning you only need the
features matrix

§ For supervised learning you also need a target
array to train the model
§ It is typically one-dimensional, with length n_samples

§ May be 2-dimensional for multi-output models

7

1.0 5 1.5

1.4 10 0.3

5.0 8 1

A

A

B

Target array
shape = (n_samples,)

Features matrix
shape = (n_samples, n_features)

Introduction to Scikit-learn

§ The target array can contain
§ Integer values, each corresponding to a class label

§ Real values for regression

8

0.4

1.8

-6.9

Target array

Dog

Dog

Cat

Target labels

0

0

1

Target array

Introduction to Scikit-learn

§ Scikit-learn estimator API
§ All models are represented with Python classes
§ Their classes include

§ The values of the hyperparameters used to configure the
model

§ The values of the parameters learned after training
• By convention these attributes end with an underscore

§ The methods to train the model and make inference

§ Scikit-learn models are provided with sensible
defaults for the hyperparameters

9

Introduction to Scikit-learn

§ Scikit learn models follow a simple, shared
pattern

1. Import the model that you need to use
2. Build the model, setting its hyperparameters
3. Train model parameters on your data

§ Using the fit() method
4. Use the model to make predictions

§ Using the predict()/transform() methods

§ Sometimes fit and predict/transform are
implemented within the same class method

10

Introduction to Scikit-learn

§ fit(): learn model parameters from input data
§ E.g. train a classifier

§ predict(): apply model parameters to make
predictions on data
§ E.g. predict class labels

§ transform(): transform data into a different
representation
§ E.g. normalize test data

§ fit_predict(): fit model and make predictions
§ E.g. apply clustering to data

§ fit_transform(): fit model and transform data
§ E.g. apply PCA to transform data

11

Classification

§ Classification:
§ Given a 2D features matrix X

§ X.shape = (n_samples, n_features)

§ The task consists of assigning a class label y_pred to
each data sample
§ y_pred.shape = (n_samples)

12

1.0 5 1.5

1.4 10 0.3

...

A

B

B

X y_pred

Classification

By following the estimator API pattern:

§ Import a model

§ Build model object

13

from sklearn.tree import DecisionTreeClassifier

clf = DecisionTreeClassifier()

Classification

§ Important decision tree hyperparameters:

§ Hyperparameters:
§ max_depth: maximum tree height

§ Default = None

§ min_impurity_decrease: split nodes only if impurity
decrease above threshold
§ Default = 0.0

14

from sklearn.tree import DecisionTreeClassifier

clf = DecisionTreeClassifier(max_depth = 10,

min_impurity_decrease=0.01)

Classification

§ Train model with ground-truth labels

§ This operation builds the decision tree structure
§ X_train is the 2D Numpy array with input features (features

matrix)
§ y_train is a 1D array with ground-truth labels

15

clf.fit(X_train, y_train)In [1]:

6.1 3.1 2

1.8 12 0.15

...

0

2

1

X_train y_train

Classification

§ Predict class labels for new data

§ This operation shows the capability of classifiers to
make predictions for unseen data

16

y_pred = clf.predict(X_test)

1.0 5 1.5

1.4 10 0.3

...

1

3

3

In [1]:

[3, 1, 1, 1, 2, 2, 0]Out[1]:

X_test y_pred

Classification

§ Take a look at all the other models in the scikit-
learn documentation
§ https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

17

https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

Classification

§ To choose the most appropriate machine learning
model for your data you have to evaluate its
performance

§ Evaluation can be performed according to a
metric (scoring function)
§ E.g. accuracy, precision, recall

18

Classification

§ The data that you have in a dataset is only a
sample extracted from the distribution of real
world data

19

Data distribution Dataset

Classification

§ If you choose the best model for your dataset, it
may not perform so well for new data
§ This risk is called overfitting

20

Data distribution Dataset

Model

EvaluationTraining

Classification

§ To avoid overfitting evaluation must be performed
on data that is not used for training the model
§ Divide your dataset into training and test set to

simulate two different samples in the data distribution

21

Data distribution Dataset

Model

EvaluationTraining

Classification

§ This technique is called hold-out
§ Training set is typically 70/90% of your data

22

Data distribution Dataset

Training set

Test set

Classification

§ Hold-out with Scikit-learn

§ Default test_set size is 0.25 (25%)

23

Dataset

Training set
X_train, y_train

Test set
X_test, y_test

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

Classification

§ Evaluation = compare the following two vectors
§ y_test (𝑦): the expected result (ground truth)
§ y_test_pred ("𝑦): the prediction made by your model

§ Main evaluation metrics for classification:
§ Accuracy: % of correct samples
§ Precision(c): % of correct samples among those predicted

with class c
§ Recall(c); % of correct samples among those that belong

to class c in ground truth
§ F1 score(c): harmonic mean between precision and recall

24

Classification

§ Evaluation metrics with Scikit-learn
§ With precision_score(), recall_score(), f1_score(), …
§ Or, precision_recall_fscore_support()

§ Returns those metrics together

25

from sklearn.metrics import accuracy_score,

precision_recall_fscore_support

acc = accuracy_score(y_test, y_test_pred)

p, r, f1, s = precision_recall_fscore_support(y_test, y_test_pred)

Classification

§ p, r, f1, s are 1D Numpy arrays with the scores
computed separately for each class
§ Example

26

p, r, f1, s = precision_recall_fscore_support(y_test, y_test_pred)

0.99 0.99 0.5p =

class 0 class 1 class 2

0.77 0.97 0.99r =

many samples of class
2 are recognized, but
model is not precise
with this class

Classification

§ Macro average scores vs Micro average scores
§ Macro average f1:

§ Macro average gives the same importance to all
classes, even if they are unbalanced
§ If a class with few elements gets a low f1, the micro-

averaged score is affected with the same weight as another
with more samples

27

p, r, f1, s = precision_recall_fscore_support(y_test, y_test_pred)

macro_f1 = f1.mean()

Classification

§ Micro average scores

§ Micro average scores are computed by collecting all
the TP, FP, TN, FN independently of the class
§ micro-p = (total_TP) / (total_TP + total_FP)
§ micro-r = (total_TP) / (total_TP + total_FN)
§ micro-f1 = micro-p = micro-r

§ Classes with higher cardinality have higher impact
on these metrics

28

p, r, f1, s = precision_recall_fscore_support(y_test, y_test_pred,

average = ‘micro’)

Classification

§ Confusion matrix
§ Useful tool when you want to inspect with more details

the classification results

29

from sklearn.metrics import confusion_matrix

conf_mat = confusion_matrix(y_test, y_test_pred)

print(conf_mat)

predicted
0 1 2

In [1]:

[[45, 0, 1],

[0, 43, 0],

[0, 3, 42]]

Out[1]: 0
1
2ac

tu
al

Notebook Examples

§ 4a-Scikitlearn-
Classification.ipynb
§ 1. Classification and hold

out

30

Cross-validation

§ Divide your dataset into k partitions

§ At each iteration select a partition to be used as
test set and the others will be the training set

31

test

test

test

k=3 partitions

iteration 1

iteration 2

iteration 3

Cross-validation

§ At each iteration a different model is trained

§ After training a model compute a scoring metric
to the predictions for the test set

32

test

test

test

model 1

model 2

model 3

score (e.g. accuracy)

score

score

Cross-validation

§ At the end you can compute statistics on the
obtained scores

33

model 1

model 2

model 3

score (e.g. accuracy)

score

score

average(score),
std(score)

!
The average score computed

from each partition’s score is not
necessarily the same as the

overall accuracy.
We should weight the average
by the # of samples in each

partition

Cross-validation

§ Method 1: iterate across partitions

§ Shuffle specifies to shuffle data before creating
the k partitions (default is False)

34

from sklearn.model_selection import KFold

K-Fold with 5 splits

kfold = KFold(n_splits=5, shuffle=True)

for train_indices, test_indices in kfold.split(X, y):

... executed 5 times, 1 for each k-fold iteration ...

Cross-validation

§ Method 1: iterate across partitions

§ kfold.split() returns at each iteration a tuple with
two arrays:
§ train_indices: array of the indices (row number) of

the training samples
§ test_indices: array of the indices of the test samples

35

...

for train_indices, test_indices in kfold.split(X, y):

... executed 5 times, 1 for each k-fold iteration ...

Cross-validation

§ Method 1: iterate across partitions

§ At each iteration you can use fancy indexing to
select the samples from X and y

§ Then you can train a model and compute its
performances on the test set

36

...

for train_indices, test_indices in kfold.split(X, y):

train model on X[train_indices], y[train_indices]

test model on X[test_indices]

compute an evaluation score for this partition

Cross-validation

§ Method 2: use cross_val_score()

§ Parameters:
§ clf = the model that you want to be trained
§ X, y = your dataset, where cross-validation will be

performed

§ Important: this method does not shuffle data
§ Manually shuffle them when necessary (suggested)

37

from sklearn.model_selection import cross_val_score

clf = DecisionTreeClassifier()

acc = cross_val_score(clf, X, y, cv=5, scoring='accuracy')

Cross-validation

§ Method 2: use cross_val_score()

§ Parameters:
§ cv = number of partitions for cross-validation
§ scoring = scoring function for the evaluation

§ E.g. ‘f1_macro’, 'f1_micro', ‘accuracy’, 'precision_macro'

38

from sklearn.model_selection import cross_val_score

clf = DecisionTreeClassifier()

acc = cross_val_score(clf, X, y, cv=5, scoring='accuracy')

Cross-validation

§ Method 2: use cross_val_score()

§ Return value:

39

cross_val_score(clf, X, y, cv=3, scoring='accuracy')

model 1

model 2

model 3

score (e.g. accuracy)

score (e.g. accuracy)

score (e.g. accuracy)

(Numpy array)

score 1

score 2

score 3

array([0.85, 0.86, 0.833])Out[1]:

In [1]:

Cross-validation

§ Method 3: use cross_val_predict()

§ This method returns a Numpy array with the
predictions of the cv models trained during cross
validation

§ Data is not shuffled

40

from sklearn.model_selection import cross_val_predict

y_pred = cross_val_predict(clf, X, y, cv=3)

Cross-validation

§ Method 3: use cross_val_predict()

41

from sklearn.model_selection import cross_val_predict

y_pred = cross_val_predict(clf, X, y, cv=3)

model 1

model 2

model 3

Test set predictions y_pred (Numpy array)

Cross-validation

§ Method 3: use cross_val_predict()
§ Finally you can evaluate the predictions

42

y_pred (Numpy array) y_test (actual values)

acc = accuracy_score(y_test, y_test_pred)

Cross-validation

§ Difference between method 2 and method 3

43

y_pred (Numpy array) y_test (actual values)

y_pred (Numpy array) y_test (actual values)

method 2

method 3

score 1

score 2

score 3

score

avg

These values
are different!

Notebook Examples

§ 4a-Scikitlearn-
Classification.ipynb
§ 2. Cross validation

44

