
Introduction to databases SQL Language: Exercises

1

SQL Language: Exercises

1. Given the following relational schema (primary keys are underlined, optional

attributes are indicated by “*”)

WORKSHOP (WSID, Name, Address, City)

VEHICLE (LicensePlate, Model, Brand, Category, Power, YearRegistration, TaxCode)

CUSTOMER (TaxCode, Name, Surname, BirthDate, Address, City)

SERVICE (LicensePlate, WSID, Date, Cost)

For workshops that have serviced at least 200 different vehicles registered to customers born between

1970 and 1980, display the name and address of the workshop that carried out the most services

(including all services) among workshops located in the same city. Also view the total cost of services

carried out and the number of different vehicle models serviced.

WITH WORKSHOPS_200 AS (

SELECT WSID FROM SERVICE S, VEHICLE V, CUSTOMER C

WHERE S.LicensePlate = V.LicensePlate AND V.TaxCode = C.TaxCode

AND BirthDate > 1/1/1970 AND BirthDate < 31/12/1980

GROUP BY WSID

COUNT(DISTINCT LicensePlate) >= 200)

SELECT W.Name, W.Address, SUM(Cost), COUNT(DISTINCT Model)

FROM SERVICE S, WORKSHOP W, VEHICLE V

WHERE W.WID = S.WID AND V.LicensePlate = S.LicensePlate

AND W.WID IN (SELECT WISD FROM WORKSHOPS_200)

GROUP BY W.WID, W.Name, W.Address

HAVING COUNT(*) = (SELECT MAX(NumServices)

 FROM (SELECT City, COUNT(*) As NumServices

 FROM SERVICE S2, WORKSHOP W2

 WHERE O2.WID = W2.WID AND W2.City = W.City <-correlation condition

 GROUP BY W2.WID, City) AS NumServicesCity

 WHERE NumServicesCity.City = W.City <- correlation condition

)

SELECT W.Name, W.Address, SUM(Cost), COUNT(DISTINCT Model)

FROM SERVICE S, WORKSHOP W, VEHICLE V

WHERE W.WID = S.WID AND V.LicensePlate = S.LicensePlate

AND W.WID IN

 (SELECT WSID FROM SERVICE S, VEHICLE V, CUSTOMER C

 WHERE S.LicensePlate = V.LicensePlate AND V.TaxCode = C.TaxCode

 AND BirthDate > 1/1/1970 AND BirthDate < 31/12/1980

 GROUP BY WSID

 COUNT(DISTINCT LicensePlate) >= 200)

Introduction to databases SQL Language: Exercises

2

GROUP BY W.WID, W.Name, W.Address

HAVING COUNT(*) = (SELECT MAX(NumServices)

 FROM (SELECT City, COUNT(*) As NumServices

 FROM SERVICE S2, WORKSHOP W2

 WHERE O2.WID = W2.WID AND W2.City = W.City <-correlation condition

 GROUP BY W2.WID, City) AS NumServicesCity

 WHERE NumServicesCity.City = W.City <- correlation condition

)

2. Given the following relational schema (primary keys are underlined, optional

attributes are indicated by “*”)

TECHNICIAN (ID, Name, Surname, BirthDate, Gender, Type)

INTERVENTION (IntID, Name, Description, HourlyCost)

BUILDING (BuildingID, Address, City, Province, Region, Type)

PERFORM_INTERVENTION (ID, IntID, Date, BuildingID, Duration)

Considering only the buildings located in the province of Turin, view the date in March 2022 in

which the highest number of interventions was carried out in the buildings considered.

WITH BUILDING_TURIN AS

(SELECT BuildingID

FROM BUILDING

WHERE Province=’Turin’)

NUM_INTERVENTIONS_DATE AS

(SELECT Date, COUNT(*) As NumInt

FROM PERFORM_INTERVENTION

WHERE Date >= 1/3/2022 AND Date < 1/04/2022

AND Building IN (SELECT BuildingID FROM BUILDING_TURIN)

GROUP BY Date)

SELECT Date FROM NUM_INTERVENTIONS_DATE

WHERE NumInt = (SELECT MAX(NumInt)

 FROM NUM_INTERVENTIONS_DATE)

SELECT Date

FROM PERFORM_INTERVENTION P, BUILDING B

WHERE P.BuildingID = B.BuildingID AND

Date >= 1/3/2022 AND Date < 1/04/2022 AND Province = ‘Turin’

GROUP BY Date

HAVING NumInt = (SELECT MAX(NumInt)

 FROM (SELECT Date, COUNT(*) As NumInt

 FROM PERFORM_INTERVENTION P2, BUILDING B2

 WHERE P2.BuildingID = B2.BuildingID AND Province = ‘Turin’

 GROUP BY Date))

Introduction to databases SQL Language: Exercises

3

3. Given the following relational schema (primary keys are underlined, optional

attributes are indicated by “*”)

LOCATION (LocID, Name, City, Region, CapacityMax)

EVENT (EvID, Title, Type)

EDITION (EvID, Date, LocID, NumberParticipants)

Among the events for which editions have been organized in at least 3 different cities, view the title

of the event in which the largest number of people participated overall (considering all editions of

the event).

4. Given the following relational schema (primary keys are underlined, optional

attributes are indicated by “*”)

FILM (CodF, Title, ReleaseDate, Genre, DurationMinutes)
CINEMA (CodC, Name, Address, City)
HALL(CodC, HallNumber, Capacity)
SCREENING (CodC, HallNumber, Date, StartTime, EndTime, CodF)

a) View the title of each film that has a shorter duration than the average duration of films, and that has been

screened a number of times greater than the average number of screenings of films.

Solution 1

SELECT Title
FROM FILM F1, SCREENING F
WHERE DurationMinutes <
 (
 SELECT AVG(DurationMinutes)
 FROM FILM F2
)
AND F.CodF = F1.CodF
GROUP BY F1.CodF, Title
HAVING COUNT(*) >
--compute the average number of screening across all films
 (
 SELECT AVG(Partial)
 FROM (
 SELECT CodF, COUNT(*) AS Partial
 FROM SCREENING
 GROUP BY CodF)
)

Solution 2 (CTE)

WITH SCREENING-FILM AS
(SELECT F.CodF, Genre, DurationMinutes, COUNT(*) AS N
FROM FILM F, SCREENING S
WHERE F.CodF = S.CodF
GROUP BY F.CodF, Genre, DurationMinutes)

AVG_DURATION AS
(SELECT Genre, AVG(DurationMinutes) AS AvgDurationGenre

Introduction to databases SQL Language: Exercises

4

FROM FILM)

AVG_SCREENING_NUMBER AS
(SELECT Genre, AVG(N) AS AvgScreening
FROM SCREENING-FILM)

SELECT Title
FROM AVG_DURATION AD, SCREENING-FILM SF, AVG_SCREENING_NUMBER-GENRE ASG
WHERE SF.DurationMinutes < AD.AvgDurationGenre AND SF.N > ASG.AvgScreening

b) View the title of each film that has a shorter duration than the average duration of films in the same genre, and

that has been screened a number of times greater than the average number of screenings of films in the same

genre.

Solution 1

SELECT Title
FROM FILM F1, SCREENING F
WHERE DurationMinutes <
 (
 SELECT AVG(DurationMinutes)
 FROM FILM F2

 WHERE F2.Genre = F1.Genre -- correlation condition

)
AND F.CodF = F1.CodF
GROUP BY F1.CodF, Title
HAVING COUNT(*) >
--compute the average number of screening ins the same genre
 (
 SELECT AVG(Partial)
 FROM (
 SELECT CodF, COUNT(*) AS Partial
 FROM SCREENING
 GROUPBY CodF) AS PS, FILM F2 -- AS PS assigns a name to the inner query
 WHERE F2.CodF = PS.CodF AND F2.Genre = F1.Genre – correlation condition in bold
)

Solution 2 (CTE)

WITH SCREENING-FILM AS
(SELECT F.CodF, Genre, DurationMinutes, COUNT(*) AS N
FROM FILM F, SCREENING S
WHERE F.CodF = S.CodF
GROUP BY F.CodF, Genre, DurationMinutes)

AVG_DURATION AS
(SELECT Genre, AVG(DurationMinutes) AS AvgDurationGenre
FROM FILM
GROUP BY Genre)

AVG_SCREENING_NUMBER AS
(SELECT Genre, AVG(N) AS AvgScreening

Introduction to databases SQL Language: Exercises

5

FROM SCREENING-FILM
GROUP BY Genre)

SELECT Title
FROM AVG_DURATION AD, SCREENING-FILM SF, AVG_SCREENING_NUMBER-GENRE ASG
WHERE AD.Genre = SF.Genre AND SF.Genre = ASG.Genre
AND SF.DurationMinutes < AD.AvgDurationGenre
AND SF.N > ASG.AvgScreening

Alternative solution:

Combining AVG_DURATION and AVG_SCREENING_NUMBER in a single CTE

WITH SCREENING-FILM AS
(SELECT F.CodF, Genre, DurationMinutes, COUNT(*) AS N
FROM FILM F, SCREENING S
WHERE F.CodF = S.CodF
GROUP BY F.CodF, Genre, DurationMinutes)

AVG_GENRE AS
(SELECT Genre, AVG(DurationMinutes) AS AvgDurationGenre, AVG(N) AS AvgScreening
FROM SCREENING-FILM
GROUP BY Genre)

SELECT Title
FROM SCREENING-FILM SF, AVG_GENRE AG
WHERE SF.Genre = AG.Genre
AND SF.DurationMinutes < AG.AvgDurationGenre
AND SF.N > AG.AvgScreening

