

Distributed architectures for big data processing and analytics

June 26, 2023

Student ID __

First Name __

Last Name __

The exam lasts 90 minutes

Part I

Answer to the following questions. There is only one right answer for each question.

 1. (2 points) Consider the following graph and suppose g is its instantiation in

GraphFrame.

 Schema of the vertexes: ["id", "name"]

 Schema of the edges: ["src", "dst", "relationship"]

Suppose the following commands are executed on g:

gfiltered=g.filterEdges(" relationship='vote' ")

motifs = gfiltered.find("(v1)-[]->(v2); !(v2)-[]->(v3)")

d
Which one of the following statements is false?

 a) One of the rows stored in the Dataframe motifs is

v1 v2 v3

[u3, Luca] [u2, Bob] [u1, Alice]

 b) One of the rows stored in the Dataframe motifs is

v1 v2 v3

[u6, Fanny] [u3, Luca] [u3, Luca]

 c) One of the rows stored in the Dataframe motifs is

v1 v2 v3

[u5, Esther] [u6, Fanny] [u6, Fanny]

 d) One of the rows stored in the Dataframe motifs is

v1 v2 v3

[u3, Luca] [u2, Bob] [u3, Luca]

 2. (2 points) Consider the input HDFS folder myFolder that contains the following three

files:

 ProfilesItaly.txt

o The text file ProfilesItaly.txt contains the following four lines:

Luca,Rome

Luca,Rome

Carmen,Naples

Luca,Turin

 ProfilesFrance.txt

o The text file ProfilesFrance.txt contains the following two lines:

Danilo,Paris

Carmen,Paris

 ProfilesSpain.txt

o The text file ProfilesSpain.txt contains the following two lines:

Carmen,Barcelona

Pablo,Barcelona

Suppose you are using a Hadoop cluster that can run up to 5 instances of the mapper

class in parallel. Suppose the HDFS block size is 1024MB. Suppose to execute a

MapReduce application for Hadoop that analyzes the content of myFolder. Suppose the

map phase emits, overall, the following key-value pairs (the key part is a name while the

value part is always 1):

(Luca, 1)

(Luca, 1)

(Carmen, 1)

(Luca,1)

(Danilo,1)

(Carmen,1)

(Carmen,1)

(Pablo,1)

Suppose the number of instances of the reducer class is set to 3 and suppose the

reduce method of the reducer class sums the values associated with each key and

emits one pair (name, sum values) for each key for which the sum is greater than 2.

Specifically, suppose the following pairs are overall emitted by the reduce phase:

(Luca, 3)

(Carmen, 3)

Considering all the reducer class instances, how many times is the reduce method

invoked?

 a) 2

 b) 3

 c) 4

 d) 8

Part II

PoliMeeting is an international company that manages online business meetings around

the world. Statistics about the organized meetings and users are computed based on the

following input data files, which have been collected in the company's latest 10 years of

activity.

 Customers.txt

o Customers.txt is a textual file containing information about the customers of

PoliMeeting. There is one line for each customer and the total number of

customers is greater than 200,000,000. This file is large and you cannot

suppose the content of Customers.txt can be stored in one in-memory

Java/Python variable.

o Each line of Customers.txt has the following format

 CID,Name,Surname, PricingPlan

where CID is the customer’s unique identifier, Name and Surname are

his/her name and surname, respectively, and PricingPlan is the type of

pricing plan (e.g., free, business, premium) he/she subscribed to.

 For example, the following line

Cust1000,Mario,Rossi,Business

means that the name and surname of the user with identifier Cust1000

are Mario and Rossi, respectively, and the customer has subscribed to a

Business pricing plan.

 Meetings.txt

o Meetings.txt is a textual file containing information about the meetings managed

by PoliMeeting. There is one line for each meeting. The total number of

meetings stored in Meetings.txt is greater than 1,000,000,000. This file is large

and you cannot suppose the content of Meetings.txt can be stored in one in-

memory Java/Python variable.

o Each line of Meetings.txt has the following format

 MID,Title,StartTime,Duration,OrganizerCID

where MID is the meeting’s unique identifier, Title is the title of the

meeting, StartTime is the start time of the meeting, Duration is its

duration in minutes, and OrganizerCID is the identifier of the customer

who organized the meeting. StartTime is a timestamp in the format

YYYY/MM/DD-HH:MM. Duration is an integer.

 For example, the following line

MID1034,Polito project kick-off,2023/02/07-20:40,60,Cust1000

means that the meeting with MID MID1034 was organized by Cust1000

and is titled “Polito project kick-off”. It is scheduled for July 2, 2023, at

20:40 and lasts 60 minutes.

 Invitations.txt

o Invitations.txt is a textual file containing information about invitations to

meetings. A new line is inserted in Invitations.txt every time someone is invited

to a meeting. Invitations.txt includes the historical data about the latest 10 years.

This file is big and you cannot suppose the content of Invitations.txt can be

stored in one in-memory Java/Python variable.

o Each line of Invitations.txt has the following format

 MID,CID,Accepted

where MID is the identifier of the meeting to which customer CID has

been invited. Accepted can assume two values: “Yes” (when the

customer accepted the invitation) or “No” (when the customer did not

accept the invitation).

 For example, the following line

MID1034,Cust23,Yes

means that Cust23 has been invited to the meeting MID1034, and

he/she has accepted to participate.

Note that the same customer can be invited to many meetings, and each

meeting can have many invited Customers. However, each combination

(MID, CID) occurs at most one time in Invitations.txt.

 Participations.txt

o Participations.txt is a textual file containing information about who participated in

the organized meetings. A new line is inserted in Participations.txt every time

someone joins (participates in) a meeting. Participations.txt includes the

historical data about the latest 10 years. This file is big and you cannot suppose

the content of Participations.txt can be stored in one in-memory Java/Python

variable.

o Each line of Participations.txt has the following format

 MID,CID,JoinTimestamp,LeaveTimestamp

where MID is the identifier of the meeting that customer CID joined at

JoinTimestamp. LeaveTimestamp is the timestamp at which CID left the

meeting MID. The format of the timestamps JoinTimestamp and

LeaveTimestamp is YYYY/MM/DD-HH:MM:SS.

 For example, the following line

MID1034,Cust23,2023/02/07-20:40:10, 2023/02/07-20:50:02

means that Cust23 joined the meeting MID1034 on July 2, 2023, at

20:40:10 and left on July 2, 2023, at 20:50:02.

Note that the same customer can participate in many meetings, and each

meeting can have many participants. Moreover, the same customer can

join and leave each meeting several times (a new line associated with a

different JoinTimestamp is inserted every time a customer joins or rejoins the

same meeting). Each triplet (MID, CID, JoinTimestamp) occurs at most one

time in Participations.txt.

Exercise 1 – MapReduce and Hadoop (8 points)

Exercise 1.1

The managers of PoliMeeting are interested in performing some statistics.

Design a single application based on MapReduce and Hadoop, and write the
corresponding Java code, to address the following point:

1. Organizer with the highest average meeting duration. For each customer, compute the

average duration of the meetings he/she organized and select the identifier

(OrganizerCID) of the customer with the highest average meeting duration. If many
customers are associated with the highest average meeting duration, select the one
with the first OrganizerCID according to the alphabetical order. Store the OrganizerCID

of the selected customer in the HDFS output folder.

Suppose that the input is Meetings.txt and has already been set. Suppose that also the

name of the output folder has already been set.

 Write only the content of the Mapper and Reducer classes (map and reduce methods.

setup and cleanup if needed). The content of the Driver must not be reported.

 Use the following two specific multiple-choice questions (Exercises 1.2 and 1.3) to

specify the number of instances of the reducer class for each job.

 If your application is based on two jobs, specify which methods are associated with the

first job and which are associated with the second job.

 If you need personalized classes, report for each of them:
o the name of the class

o attributes/fields of the class (data type and name)
o personalized methods (if any), e.g., the content of the toString() method if

you override it

o do not report the get and set methods. Suppose they are "automatically
defined"

Exercise 1.2 - Number of instances of the reducer - Job 1

Select the number of instances of the reducer class of the first Job

 (a) 0

 (b) exactly 1

 (c) any number >=1 (i.e., the reduce phase can be parallelized)

Exercise 1.3 - Number of instances of the reducer - Job 2

Select the number of instances of the reducer class of the second Job

 (a) One single job is needed

 (b) 0

 (c) exactly 1

 (d) any number >=1 (i.e., the reduce phase can be parallelized)

Exercise 2 – Spark (19 points)

The managers of PoliMeeting asked you to develop one single application to address all

the analyses they are interested in. The application has six arguments: the input files
Customers.txt, Meetings.txt, Invitations.txt, and Participations.txt, and two output folders
“outPart1/” and “outPart2/”, which are associated with the outputs of Points 1 and 2,

respectively.

Specifically, design a single application based on Spark RDDs or Spark DataFrames, and

write the corresponding Python code, to address the following two points:

1. Pricing plans with a high percentage of long meetings. For each pricing plan, compute

the percentage of long meetings its subscribers organized. A meeting is classified as
long if it lasts more than 60 minutes (duration>60 minutes). Select only the pricing

plans with at least 90% of long meetings. Store the pricing plans with at least 90% of

long meetings in the first HDFS output folder (one pricing plan per output line).

2. The customer(s) with the most “mismatches”. The second part of this application

considers only the meetings scheduled before January 1, 2023 (StartTime<2023/01/01-
00:00). Moreover, this second part considers only the customers invited to at least one

meeting scheduled before January 1, 2023 (i.e., the customers occurring in

Invitations.txt associated with at least one meeting scheduled before January 1, 2023).
For each of these customers, compute (i) how many times he/she accepted an
invitation for a meeting (Accept="Yes") but then he/she did not participate in that

meeting and (ii) how many times he/she declined an invitation for a meeting
(Accept="No") but then he/she participated in that meeting. Store in the second HFDS
output folder the customer(s) with the highest number of mismatches. The number of

mismatches for each customer is the sum of the two values computed before ((i)+(ii)).
The format of the output lines is

CID, the number of times CID accepted an invitation but then did not participate in

the meeting, the number of times CID declined an invitation but then participated in
the meeting

If multiple customers are associated with the highest number of mismatches, store all
these customers in the second output folder (one selected customer per output line).

Example Part 2

For the sake of simplicity, suppose there are only the following four customers:

 Cust1

 Cust2

 Cust3

 Cust4

The following table reports the statistics about the acceptance/decline of the invitations
and participations of each customer in the meetings scheduled before January 1, 2023.

CID Number of

invitations

Accepted

but did not
participate

Declined

but
participated

Accepted

and
participated

Declined

and did not
participate

Number of

mismatches

Cust1 10 3 2 4 1 5

Cust2 30 3 0 15 12 3

Cust3 15 0 5 9 1 5

Cust4 10 2 1 7 0 3

Given this small example, the second part of this application selects Cust1 and Cust3

and stores in the second output folder the following two lines:

Cust1, 3, 2
Cust3, 0, 5

Remember that there are more than 200,000,000 customers and more than

1,000,000,000 meetings in the actual files.

 You do not need to report the imports.

 Suppose both SparkContext sc and SparkSession ss have already been set.

