

Distributed architectures for big data processing and analytics

July 19, 2023

Student ID __

First Name __

Last Name __

The exam lasts 90 minutes

Part I

Answer to the following questions. There is only one right answer for each question.

 1. (2 points) Consider the following Spark Streaming applications.

from pyspark.streaming import StreamingContext

Create a Spark Streaming Context object

ssc = StreamingContext(sc, 10)

Create a (Receiver) DStream that will connect to localhost:9999

inputDStream = ssc.socketTextStream("localhost", 9999)

Part A

Map input strings to integers

inputADStream = inputDStream\

.map(lambda value: int(value))

Compute the maximum value

inputAMaxDStream = inputADStream.reduce(lambda v1,v2:max(v1,v2))

#Apply a filter

filteredADStream = inputAMaxDStream.filter(lambda value: value>5)

Define windows, compute the maximum value, and then apply a filter

resADStream = filteredADStream\

.window(30, 10)\

.reduce(lambda v1,v2:max(v1,v2))\

.filter(lambda value: value<10)

Print the result on the standard output

resADStream.pprint()

Part B

Map input strings to integers

inputBDStream = inputDStream.map(lambda value: int(value))

#Apply a filter, compute max, define windows

filteredBDStream = inputBDStream\

.filter(lambda value: value>5)\

.reduce(lambda v1,v2:max(v1,v2))\

.window(30, 10)

Compute the maximum value again and finally apply another filter

resBDStream = filteredBDStream\

.reduce(lambda v1,v2:max(v1,v2))\

.filter(lambda value: value<10)

Print the result on the standard output

resBDStream.pprint()

Part C

Map input strings to integers and define windows

inputCWindowDStream = ssc.socketTextStream("localhost", 9999)\

.map(lambda value: int(value))\

.window(30, 10)

Apply a filter and then compute the maximum value

maxCWindowDStream = inputCWindowDStream\

.filter(lambda value: value>5)\

.reduce(lambda v1,v2:max(v1,v2))

Apply a filter

resCDStream = maxCWindowDStream\

.filter(lambda value: value<10)

Print the result on the standard output

resCDStream.pprint()

ssc.start()

ssc.awaitTerminationOrTimeout(360)

ssc.stop(stopSparkContext=False)

d

 Which one of the following statements is true?

 a) Independently of the content of inputDStream, resADStream, resBDStream, and

resCDStream always contain the same integer values.

 b) Independently of the content of inputDStream, resADStream and resBDStream

always contain the same integer values, while resCDStream may contain different

integer values with respect to resADStream and resBDStream.

 c) Independently of the content of inputDStream, resADStream and resCDStream

always contain the same integer values, while resBDStream may contain different

integer values with respect to resADStream and resCDStream.

 d) Independently of the content of inputDStream, resBDStream and resCDStream

always contain the same integer values, while resADStream may contain different

integer values with respect to resBDStream and resCDStream.

 2. (2 points) Consider the following Spark application.

HumRDD = sc.textFile("Humidity.txt")

TempRDD = sc.textFile("Temperature.txt")

Computes the number of lines of Humidity.txt

long numLinesHumidity = HumRDD.count();

Computes the number of lines of Temperature.txt

long numLinesTemperature = TempRDD.count();

Print on the standard output the difference between the number of lines of the two

files

print("Delta: " + str(numLinesHumidity - numLinesTemperature))

Create an RDD that contains the intersection of HumRDD and TempRDD

IntersectionRDD = HumRDD.intersection(TempRDD)

Store the content of IntersectionRDD in the output folder

IntersectionRDD.saveAsTextFile("outputFolder/")

Print on the standard output the elements in IntersectionRDD

print("Size IntersectionRDD: " + str(IntersectionRDD.count()))

 Suppose the input files Humidity.txt and Temperature.txt are read from HDFS.

Suppose this Spark application is executed only 1 time. Which one of the following

statements is true?

 a) This application reads the content of Humidity.txt 1 time and the content of

Temperature.txt 1 time.

 b) This application reads the content of Humidity.txt 3 times and the content of

Temperature.txt 3 times.

 c) This application reads the content of Humidity.txt 4 times and the content of

Temperature.txt 4 times.

 d) This application reads the content of Humidity.txt 5 times and the content of

Temperature.txt 5 times.

Part II

CoursesOnline is an international company that manages online courses attended by

students worldwide. Statistics about the organized courses, lectures, and students are

computed based on the following input data files, which have been collected in the

company's latest ten years of activity.

 Students.txt

o Students.txt is a textual file containing information about the students of

CoursesOnline. There is one line for each student. The total number of students

is greater than 100,000,000. This file is large and you cannot suppose the

content of Students.txt can be stored in one in-memory Java/Python variable.

o Each line of Students.txt has the following format

 SID,Name,Surname,Country

where SID is the user’s unique identifier, Name and Surname are his/her

name and surname, respectively, and Country is the country where

he/she lives.

 For example, the following line

SID10,Maria,Rossi,Italy

means that the name and surname of the user with identifier SID10 are

Maria and Rossi, respectively, and the user lives in Italy.

 OnlineCourses.txt

o OnlineCourses.txt is a textual file containing information about the online

courses organized by CoursesOnline. There is one line for each online course.

The total number of online courses stored in OnlineCourses.txt is greater than

100,000. This file is large and you cannot suppose the content of

OnlineCourses.txt can be stored in one in-memory Java/Python variable.

o Each line of OnlineCourses.txt has the following format

 CID,Title,MainTopic

where CID is the course’s unique identifier, Title is the title of the course,

and MainTopic is the main topic covered by the course.

 For example, the following line

CID3024,MapReduce and Hadoop,Big data

means that the course with CID CID3024 is titled “MapReduce and

Hadoop” and covers the “Big data” topic.

 VideoLectures.txt

o VideoLectures.txt is a textual file containing information about the video lectures

offered by CoursesOnline. There is one line for each video lecture. The total

number of video lectures stored in VideoLectures.txt is greater than 2,000,000.

This file is large and you cannot suppose the content of VideoLectures.txt can

be stored in one in-memory Java/Python variable.

o Each line of VideoLectures.txt has the following format

 CODL,Title,Duration,CID

where CODL is the video lecture’s unique identifier, Title is the video

lecture's title, Duration is its duration in minutes, and CID is the course

associated with this video lecture. Duration is an integer. Each video

lecture is associated with one single course, while each course is

associated with/is composed of many video lectures.

 For example, the following line

CODL24,Introduction to HDFS,30,CID3024

means that the video lecture identified by the code CODL24 is titled

“Introduction to HDFS”, lasts 30 minutes, and is associated with the

course with CID CID3024.

 UsersWatchedLectures.txt

o UsersWatchedLectures.txt is a textual file containing information about who

watched which video lectures. A new line is inserted in

UsersWatchedLectures.txt every time a student watches a video lecture.

UsersWatchedLectures.txt contains the historical data about the latest 10 years.

This file is big and you cannot suppose the content of UsersWatchedLectures.txt

can be stored in one in-memory Java/Python variable.

o Each line of UsersWatchedLectures.txt has the following format

 SID,StartTime,CODL

where SID is the identifier of the student who watched the video lecture

identified by CODL. The student SID started watching the video lecture

CODL at StartTime. StartTime is a timestamp in the format

YYYY/MM/DD-HH:MM.

 For example, the following line

SID10,CODL24,2023/02/07-20:40

means that the student SID10 watched the video lecture CODL24.

He/she started watching the video lecture on July 2, 2023, at 20:40.

Note that each student can watch many video lectures, and each video lecture can

be watched by many students. Moreover, the same student can watch each

video lecture several times (a new line is inserted in UsersWatchedLectures.txt

for each visualization). Note that each pair (SID, StartTime) occurs at most one time

in UsersWatchedLectures.txt.

Exercise 1 – MapReduce and Hadoop (8 points)

Exercise 1.1

The managers of CoursesOnline are interested in performing some statistics.

Design a single application based on MapReduce and Hadoop, and write the
corresponding Java code, to address the following point:

1. Long courses with many short lectures. This MapReduce application selects the long
courses associated with a number of short video lectures greater than 10. A course is
a long course if the sum of the duration of the video lectures of that course is more than

600 minutes. A video lecture is a short video lecture if its duration is less than 15

minutes. Store the identifiers (CIDs) of the long courses associated with a number of
short video lectures greater than 10 in the HDFS output folder (one CID per output

line).

Suppose that the input is VideoLectures.txt and has already been set. Suppose that also

the name of the output folder has already been set.

 Write only the content of the Mapper and Reducer classes (map and reduce methods.

setup and cleanup if needed). The content of the Driver must not be reported.

 Use the following two specific multiple-choice questions (Exercises 1.2 and 1.3) to

specify the number of instances of the reducer class for each job.

 If your application is based on two jobs, specify which methods are associated with the

first job and which are associated with the second job.

 If you need personalized classes, report for each of them:

o the name of the class
o attributes/fields of the class (data type and name)
o personalized methods (if any), e.g., the content of the toString() method if

you override it
o do not report the get and set methods. Suppose they are "automatically

defined"

Exercise 1.2 - Number of instances of the reducer - Job 1

Select the number of instances of the reducer class of the first Job

 (a) 0

 (b) exactly 1

 (c) any number >=1 (i.e., the reduce phase can be parallelized)

Exercise 1.3 - Number of instances of the reducer - Job 2

Select the number of instances of the reducer class of the second Job

 (a) One single job is needed

 (b) 0

 (c) exactly 1

 (d) any number >=1 (i.e., the reduce phase can be parallelized)

Exercise 2 – Spark (19 points)

The managers of CoursesOnline asked you to develop one single application to address

all the analyses they are interested in. The application has six arguments: the input files
Students.txt, OnlineCourses.txt, VideoLectures.txt, and UsersWatchedLectures.txt, and
two output folders “outPart1/” and “outPart2/”, which are associated with the outputs of

Points 1 and 2, respectively.

Specifically, design a single application based on Spark RDDs or Spark DataFrames, and

write the corresponding Python code, to address the following two points:

1. Main topics with a high percentage of long courses. The first part of the Spark

application selects the main topics characterized by a high percentage of long courses.
A course is a long course if the sum of the duration of the video lectures of that course

is more than 600 minutes. This first part of this application selects the main topics with
more than 80% of long courses (i.e., a main topic is selected if more than 80% of the

courses associated with that topic are long courses). Store the main topics with more
than 80% of long courses in the first HDFS output folder (one main topic per output
line).

You can suppose that each course has at least one video lecture.

2. Distribution of the number of distinct video lectures watched by each student in the

years 2021 and 2022 only for the students who are inactive in the year 2023. The

second part of this application considers only the visualizations related to the years

2021, 2022, and 2023 and focuses on the subset of inactive students. A student is
considered an inactive student if he/she watched no video lectures in the year 2023.
For each inactive student, computes the number of distinct video lectures he/she

watched in the year 2021 and the number of distinct video lectures he/she watched in
the year 2022. Store in the second HFDS output folder the identifiers (SIDs) of the
inactive users and, for each of them, the number of distinct video lectures he/she

watched in the year 2021 and the number of distinct video lectures he/she watched in
the year 2022. Specifically, the format of the output lines is

SID, number of distinct video lectures watched by SID in the year 2021, number of

distinct video lectures watched by SID in the year 2022

Note that if an inactive student did not watch any video lectures in 2021 or 2022 (or

both), a 0 value must be reported for the year(s) with no watched video lectures. See
the example.

I remind you that each user can watch the same video lectures many times.

Example Part 2

For the sake of simplicity, suppose there are only the following four students:

 SID1

 SID2

 SID3

 SID4

The following table reports the statistics about the number of distinct video lectures
watched by each student in the years 2021 and 2022, and the number of video lectures

watched by each student in the year 2023.

SID Number of distinct
video lectures watched

in the year 2021

Number of distinct video
lectures watched in the

year 2022

Number of video lectures
watched in the year 2023

SID1 5 1 0

SID2 3 1 5

SID3 0 2 0

SID4 0 0 0

Given this small example, SID1, SID3, and SID4 are inactive students. The second part
of this application selects SID1, SID3, and SID4 and stores in the second output folder

the following three lines:

SID1, 5, 1
SID3, 0, 2
SID4, 0, 0

The number of inactive students can be huge (too many to store them in a local

variable).

 You do not need to report the imports.

 Suppose both SparkContext sc and SparkSession ss have already been set.

