
NoSQL in MongoDB Compass

The practice purpose is to become familiar with MongoDB Compass tool. In this practice you are required
to explore data and write some queries to retrieve data from a NoSQL database based on MongoDB.

1. Problem specifications
The database contains Car Sharing information divided into two main collections: Bookings and Parkings. The
most relevant information for each collection is shown in Table 1 (Parkings) and 2 (Bookings).

Name Type Description

_id objectid Document identifier

address string Parking address of the vehicle

city string City location of the vehicle

engineType string Identifier of the engine type of
the vehicle

exterior string String describing the external
condition of the vehicle during
the parking

final_date date Date and hour of the end of the
parking period

fuel int32 Fuel level (0-100) during the
parking period

init_date date Date and hour of the beginning of
the parking period

interior string String describing the internal
condition of the vehicle during
the parking

loc coordinates Coordinates of the parking
location

plate int32 Identifier of the vehicle’s plate

smartphoneRequired Boolean Boolean value denoting if the
smartphone is required to

start/finish the parking

vendor string Company owner of the vehicle

vin string Identifier of the chassis of the
vehicle

Table 1: Parkings database info.

Name Type Description

_id objectid Document identifier

car_name string Vehicle’s model

city string City location where the vehicle has been booked

distance int32 Distance covered during the vehicle renting

driving object

distance int32 Distance covered during the
vehicle renting (in meters)

duration int32 Duration of the renting (in
seconds)

engineType string Identifier of the engine type of the vehicle

exterior string String describing the external condition of the
vehicle during the renting

final_address string Address of the final position of the renting period

final_date date Date and hour of the end of the renting period

final_fuel int32 Fuel level (0-100) at the end of the renting period

init_address int32 Address of the starting position of the renting
period

init_date date Date and hour of the beginning of the renting
period

init_fuel int32 Fuel level (0-100) at the beginning of the renting
period

interior string String describing the internal condition of the
vehicle during the renting

plate int32 Identifier of the vehicle’s plate

smartphoneRequired Boolean Boolean value denoting if the smartphone is
required to start/finish the parking

vendor string Company owner of the vehicle

walking object

distance int32 Walk distance to reach the
vehicle (in meters).

duration int32 Duration of the walking trip
to reach the vehicle (in
seconds).

Table 2: Bookings database info.

2. Database Connection

Remote database connection
1. Download MongoDB Compass at https://www.mongodb.com/try/download/compass
2. Install and open the application.
3. Create a free cluster (if you do not have already one)

a. create a MongoDB account (https://www.mongodb.com/cloud/atlas/register)
b. Select “Shared Cluster” option (free cluster). The default settings are the ones set to get the

account completely free.
c. give a name to your cluster
d. go to Database Access

i. click on “Add New Database User”
ii. select authentication method with password
iii. fill in the form
iv. leave all the default options

e. configure remote access
i. click on “Network Access”
ii. click on “Add IP Address”
iii. enter in the Access List Entry field 0.0.0.0/0

4. Get string connection from MongoDB Atlas server
a. go on the “Database Deployments” page from the side menu
b. click “Connect” near the newly created cluster
c. select “Compass”
d. copy the connection string

5. Paste the connection string into MongoDB Compass
6. Click on Connect

3. Create a database in MongoDB Compass

1. Click Create Database
a. Assign a name to the database
b. insert the name “Bookings” in the field “Collection Name”
c. leave all the default values for the other options

2. Add a new collection
a. click on “Create Collection” button

https://www.mongodb.com/try/download/compass
https://www.mongodb.com/cloud/atlas/register

b. enter the name “Parkings”
c. leave all the default values for the other options

3. Download collection data from the website
4. Add data to each collection

a. select one collection
b. click “Add Data” button, then Import file
c. select the file of the corresponding collection
d. select Json type
e. click Import

5. Select the Parkings collection
6. Go to the “Indexes” tab
7. Create a 2dsphere index on the loc field

4. Analyze the database using the Schema analyzer

1. (Bookings) Identify the most common percentage(s) of fuel level at the beginning of the renting
period.

2. (Bookings) Identify the most common percentage(s) of fuel level at the end of the renting period.
3. (Parkings) Identify the time range(s) with most parking requests (start parking).
4. (Parkings) Identify the time range(s) with most booking requests (end parking).
5. (Parkings) Visualize on the map the vehicles having the fuel level lower than 5%.

5. Querying the database

1. (Parkings) Find the plates and the parking addresses of the vehicles that begin the booking (end
parking) after 2017-09-30 at 6AM.
Hint: it is possible to use the function Date("<YYYY-mm-ddTHH:MM:ss>")

2. (Parkings) Find the addresses and the level of fuel of the vehicles that during the parking period had
at least 70% of fuel level. Order the results according to descending value of fuel level.

3. (Parkings) Find the plate, the engine type and fuel level for ‘car2go’ vehicles (vendor) with good
internal and external conditions.

4. (Bookings) For the renting that required a walking distance greater than 15 Km (to reach the
vehicle), find the hour and the fuel level at the beginning of the renting period. Order results
according to decreasing initial fuel level.

6. Data Aggregation

5. (Bookings) Group documents according to their fuel level at the end of the renting. For each group,
select the average fuel level at the beginning of the renting period.

6. (Bookings) Select the average driving distance for each vendor. On average, for which vendor the
users cover longer distances?

7. Bonus Queries

7. (Parkings) Find the vehicles parked less than a mile far from Piazza San Carlo (coordinates: 7.683016,
45.067764).
Hint: use the operators $geoWithin and $centerSphere.

8. (Parkings) Repeat the query at the previous step using the coordinates of a place of personal interest
in Turin (e.g. Politecnico di Torino) using Open Street Maps to find the exact coordinates
(www.openstreetmap.org, inverse the coordinates order).

