
- 1 -

Oracle Optimizer – Practice 5

Data Science and Database Technology

Politecnico di Torino

Practice objective

Generate the execution plan for some SQL statements analyzing the following issues:

1. access paths

2. join orders and join methods

3. operation orders

4. exploitation of indexes defined by the user.

 The evaluation will be performed using Oracle Database 23c Express Edition (Oracle XE).

 You can download the software on your pc at the following link:

 https://www.oracle.com/database/sqldeveloper/technologies/download/

Database schema
The database consists of 3 tables: (EMP, DEPT e SALGRADE). The table schema and some records are

shown in the following.

Table EMP

EMPNO ENAME JOB MGR HIREDATE SAL COMM

DEPT

NO

1 COZZA MARIA PROFESSOR 0 09-JUN-81 1181

126

2 ECO LUIGI PHDSTUDENT 0 09-JUN-81 1360 189

3 CORONA CLARA PHDSTUDENT 2 09-JUN-81 624 15

Table DEPT Table SALGRADE

GRADE LOSAL HISAL

 1 478 1503

 2 661 1346

 3 489 1358

 4 942 1320

DEPTNO DNAME

1 INFORMATION

2 CHAIRMANSHIP

3 ENVIRONMENT

4 PHYSICS

https://www.oracle.com/database/sqldeveloper/technologies/download/
https://www.polito.it/
https://dbdmg.polito.it/dbdmg_web/

- 2 -

Connection to the database
Open Oracle SQL Developer e make a new connection following these credentials:

- Name: name chosen by user (esempio: lab5)
- Username: “C##” followed by your id (example: C##S123456)

- Password: DBDMG23

- Hostname: mp1.polito.it
- Port: 1521

- SID: FREE

Leave the other configurations as default

 If you have any issue with the connection, try to access internet via the hotspot of your smartphone.

Available materials
Some scripts with SQL statements are available to perform the following operations:

1. generate the database

2. create an index on a table column

3. compute statistics for the database

The scripts are available at the course website in the file zip. Inside you can find the Scripts folder and the

database in the Lab5Database folder.

The scripts can be loaded clicking on “Open” in the File Menu and selecting the .sql file. To execute the script
click on the “Execute Script” button as shown in the following figure.

To view the index statistics, execute the script show_indexes.sql (or copy the script content and paste it

as SQL command).

Setting up the optimizer environment
At the beginning of working session you need to perform the following steps:

1. Generate the database by running the scripts DEPT.sql, EMP.sql e SALGRADE.sql placed

inside the Lab5Database folder.

2. compute statistics on tables by means of the Web Interface or by the following script

comp_statistics_tables.sql. The generated statistics will be used by the optimizer to create

the execution plans. One execution of the script is sufficient for the entire lab.

3. check if there exist secondary indexes by means of the following SQL query by using the

show_indexes.sql script.

4. If secondary indexes (without considering system indexes, e.g., SYS_#) have been created, please,

drop them by means of the following SQL statement DROP INDEX ”IndexName”;

Preliminary steps

- 3 -

Execution plan computation for a query

 To obtain the execution plan for a query, it is necessary to:

• Add the prefix “EXPLAIN PLAN FOR”

• Insert the query

• Add the query “SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY);” in the row below.

 Example:

The execution plan will be shown with the following format:

OPERATION: operation to be performed on tables / indexes.

ROWS: table / index size.

COST: cost of the operation, estimated value proportional to the resources used (CPU, I / O, memory).

The cost refers to a specific node of the algebraic tree and is cumulative. This means that the cost of

a node includes, in addition to the cost of the operation considered, the costs of all its child nodes.

In the example image, a hash join is performed between the two tables DEPT and EMP. The cost of

accessing the EMP table is 138, that of the DEPT table is 3. The hash join node between the two tables

has a cumulative cost of 141 (138 + 3). The select has a cumulative cost of 124 because it does not

introduce additional operations after the hash join.

Types of operations that can be found in the execution plan:

- JOIN, GROUP BY, TABLE ACCESS, INDEX SCAN

- Access Predicates: indicate one or more conditions that the records must satisfy in order to be

selected. They are used on indexed (sorted) data. They allow you to specify the range (start,

stop) of sorted records that satisfy the condition.

It is possible to find this node in a join (specify the join conditions, as in the example

image) or in filter operations on the attributes of a table (WHERE conditions).
- Filter Predicates: indicate one or more conditions that the records must satisfy in order to be

selected. Unlike access predicates, the filter operation is performed as you scroll through the

sorted records. If both access and filter predicates are present, the former specify a range of

indexed records, the latter allow filtering in that range.

It is possible to find this node in the filtering operations on the attributes of a table

(WHERE conditions).

- 4 -

Useful SQL statements

o To view the table schema with all attributes:

 DESCRIBE TableName;

o To create an index:

 CREATE INDEX IndexName ON TableName(ColumnName);

o To compute statistics related to indexes:

 ANALYZE INDEX IndexName COMPUTE STATISTICS;

o To remove an index:
DROP INDEX IndexName;

o To view the indexes related to a table:

SELECT SELECTINDEX_NAME FROM USER_INDEXES

WHERE table_name='Table Name needs to be written in capital letters';

o Display statistics related to indexes:

SELECT USER_INDEXES.INDEX_NAME as INDEX_NAME, INDEX_TYPE,

USER_INDEXES.TABLE_NAME, COLUMN_NAME||'('||COLUMN_POSITION||')' as

COLUMN_NAME, BLEVEL, LEAF_BLOCKS, DISTINCT_KEYS, AVG_LEAF_BLOCKS_PER_KEY,

AVG_DATA_BLOCKS_PER_KEY, CLUSTERING_FACTOR

FROM user_indexes, user_ind_columns

WHERE user_indexes.index_name=user_ind_columns.index_name and

user_indexes.table_name=user_ind_columns.table_name;

o Display statistics related to tables:
SELECT TABLE_NAME, NUM_ROWS, BLOCKS, EMPTY_BLOCKS, AVG_SPACE, CHAIN_CNT,

AVG_ROW_LEN

FROM USER_TABLES;

o Display statistics related to table columns:
SELECT COLUMN_NAME, NUM_DISTINCT, NUM_NULLS, NUM_BUCKETS, DENSITY FROM

USER_TAB_COL_STATISTICS

WHERE TABLE_NAME = 'TableName' ORDER BY COLUMN_NAME;

o Display histograms:
SELECT *

FROM USER_HISTOGRAMS;

- 5 -

/*+ FIRST_ROWS(n) */

Queries
The following queries should be analyzed during the practice performing the following steps:

1. algebraic expression represented like a tree structure of the query

2. execution plan selected by Oracle optimizer when no physical secondary structures are defined

3. Only for queries from #4 to #6, Select one or more secondary physical structures to increase

query performance.

Resume of table structures
EMP (EMPNO, ENAME, JOB, MGR, HIREDATE, SAL, COMM, DEPTNO)

DEPT (DEPTNO, DNAME, LOC)

SALGRADE (GRADE, LOSAL, HISAL)

Query #1

SELECT *

FROM emp, dept

WHERE emp.deptno = dept.deptno AND emp.job = 'ENGINEER';

Change the optimizer goal from ALL ROWS (best throughput) to FIRST_ROWS (best response time)
by means of the following hint. Set different values for n.

SELECT *

FROM emp, dept

WHERE emp.deptno = dept.deptno AND emp.job = 'ENGINEER';

Query #2
Disable the hash join method by means of the following hint: (/*+ NO_USE_HASH(e d) */)

SELECT

FROM emp e, dept d

WHERE d.deptno = e.deptno

GROUP BY d.deptno;

d.deptno, AVG(e.sal)

Query #3
Disable the hash join method by means of the following hint: (/*+ NO_USE_HASH(e d) */)

SELECT ename, job, sal, dname

FROM emp e, dept d

WHERE e.deptno = d.deptno

AND NOT EXISTS

(SELECT * FROM salgrade WHERE e.sal = hisal);

/*+ NO_USE_HASH(e d) */

/*+ NO_USE_HASH(e d) */

- 6 -

Queries #4
Select one or more secondary structures to optimize the following query:

SELECT avg(e.sal)

FROM emp e

WHERE e.deptno <10 and e.sal > 100 and e.sal<200;

Compare query performance using distinct secondary structures on different attributes with the

one achieved by a unique secondary structure on multiple attributes.

Query #5
Select one or more secondary structures to optimize the following query:

SELECT dname

FROM dept

WHERE deptno in (select deptno

from emp

where job = 'PHILOSOPHER');

Query #6
Select one or more secondary structures to optimize the following query (remove already

existing indexes to compare query performance with and without indexes):

SELECT e1.ename, e1.empno, e1.sal, e2.ename, e2.empno, e2.sal from

emp e1, emp e2

WHERE e1.ename <> e2.ename and e1.sal < e2.sal

and e1.job = 'PHILOSOPHER' and e2.job = 'ENGINEER';

