

Version #1

Big data processing and analytics
June 21, 2023

Student ID __

First Name __

Last Name __

The exam is open book

Part I

Answer to the following questions. There is only one right answer for each question.

1. (2 points) Consider the following Spark application.

package it.polito.bigdata.spark.exam;

import;
public class SparkDriver {

public static void main(String[] args) {

// Create a configuration object and set the name of the application
SparkConf conf = new SparkConf().setAppName("Spark Code");

// Create a Spark Context object
JavaSparkContext sc = new JavaSparkContext(conf);

JavaRDD<String> TempItalyRDD = sc.textFile("TemperatureItaly.txt");

JavaRDD<String> TempFranceRDD = sc.textFile("TemperatureFrance.txt");

// Compute the maximum value from TempItalyRDD
double maxValueItaly = TempItalyRDD.reduce((a, b) -> max(a, b));

// Compute the maximum value from TempFranceRDD
double maxValueFrance = TempFranceRDD.reduce((a, b) -> max(a, b));

// Create an RDD that contains the union of TempItalyRDD and TempFranceRDD.
// Then, apply distinct and compute the maximum value
JavaRDD<String> unionRDD = TempItalyRDD.union(TempFranceRDD);

double maxValueUnion = unionRDD.distinct().reduce((a, b) -> max(a, b));

// Print on the standard output the three maximum values
System.out.println(maxValueItaly +” “+maxValueFrance +” “+maxValueUnion);

// Store the content of unionRDD in the output folder
unionRDD.saveAsTextFile("outputFolder/");

Version #1

// Close the Spark context
sc.close();

}

}

Suppose the input files TemperatureItaly.txt and TemperatureFrance.txt are read from
HDFS. Suppose this Spark application is executed only once. Which one of the

following statements is true?

a) This application reads the content of TemperatureItaly.txt 1 time and the content of
TemperatureFrance.txt 1 times.

b) This application reads the content of TemperatureItaly.txt 2 times and the content of

TemperatureFrance.txt 2 times.

c) This application reads the content of TemperatureItaly.txt 3 times and the content of

TemperatureFrance.txt 3 times.

d) This application reads the content of TemperatureItaly.txt 4 times and the content of

TemperatureFrance.txt 4 times.

2. (2 points) Consider the HDFS folder “inputFolder” containing the following two files:

Filename Size Content of the file

HumidityA.txt 16 bytes 51.45

9.55
8.15

HumidityB.txt 18 bytes 40.53
12.98
52.99

Suppose that you are using a Hadoop cluster that can potentially run up to 4

mappers in parallel and suppose that the HDFS block size is 2048MB.

Suppose that the following MapReduce program is executed by providing the folder

“inputFolder” as input folder and the folder “results” as output folder. The number of

reducers is set to 3.

/* Driver */
import … ;

public class DriverBigData extends Configured implements Tool {
 @Override
 public int run(String[] args) throws Exception {

 Configuration conf = this.getConf();
 Job job = Job.getInstance(conf);
 job.setJobName("Exam question");

 int N = Integer.parseInt(args[2]);

 FileInputFormat.addInputPath(job, new Path(args[0]));

 FileOutputFormat.setOutputPath(job, new Path(args[1]));

Version #1

 job.setJarByClass(DriverBigData.class);

 job.setInputFormatClass(TextInputFormat.class);
 job.setOutputFormatClass(TextOutputFormat.class);

 job.setMapperClass(MapperBigData.class);
 job.setMapOutputKeyClass(NullWritable.class);
 job.setMapOutputValueClass(DoubleWritable.class);

 job.setReducerClass(ReducerBigData.class);
 job.setOutputKeyClass(NullWritable.class);

 job.setOutputValueClass(DoubleWritable.class);

 job.setNumReduceTasks(N);

 if (job.waitForCompletion(true) == true)
 return 0;

 else
 return 1;
 }

 public static void main(String args[]) throws Exception {

int res = ToolRunner.run(new Configuration(), new DriverBigData(),

args);
 System.exit(res);
 }

}

/* Mapper */
import …;

class MapperBigData extends Mapper<LongWritable, Text, NullWritable,
DoubleWritable> {
 protected void map(LongWritable key, Text value, Context context) throws

IOException, InterruptedException {
 Double val = new Double(value.toString());

 context.write(NullWritable.get(), new DoubleWritable(val));

 }
}

/* Reducer */
import …;

class ReducerBigData extends Reducer<NullWritable, DoubleWritable,
NullWritable, DoubleWritable> {

 protected void reduce(NullWritable key, Iterable<DoubleWritable> values,

Context context) throws IOException, InterruptedException {

double max = -1.0;

Version #1

for(DoubleWritable v : values) {
 if(v.get() > max)
 max = v.get();

}
context.write(NullWritable.get(), new DoubleWritable(max));

}

}

What is the output generated by the execution of the application reported above?

 a) Only one single part file containing 52.99

 b) Two part files

 One containing the value 52.99

 One containing the value 51.45

 c) Three part files

 One containing the value 52.99

 One containing the value 51.45

 One empty file

 d) Three part files

 One containing the value 52.99

 Two empty files

Part II

PoliMeeting is an international company that manages online business meetings around

the world. Statistics about the organized meetings and users are computed based on the

following input data files, which have been collected in the company's latest 10 years of

activity.

 Users.txt

o Users.txt is a textual file containing the information about the users who

participated to meetings organized by PoliMeeting. There is one line for each

user and the total number of users is greater than 200,000,000. This file is large

and you cannot suppose the content of Users.txt can be stored in one in-

memory Java variable.

o Each line of Users.txt has the following format

 UID,Name,Surname,DateOfBirth,PricingPlan

where UID is the user’s unique identifier, Name and Surname are his/her

name and surname, respectively, DateOfBirth is his/her date of birth, and

Version #1

Plan is the type of pricing plan (free, business, etc.). The DateOfBirth

format is YYYY/MM/DD.

 For example, the following line

User1000,Mario,Rossi,1988/06/01,Business

means that the name and surname of the user with identifier User1000

are Mario and Rossi, respectively, and that the customer was born on

June 1, 1988. He has subscripted a Business pricing plan.

 Meetings.txt

o Meetings.txt is a textual file containing the information about the events

managed by PoliMeeting. There is one line for each meeting. The total number

of meetings stored into Meetings.txt is greater than 1,000,000,000. This file is

large and you cannot suppose the content of Meetings.txt can be stored in one

in-memory Java variable.

o Each line of Meetings.txt has the following format

 MID,Title,StartTime,Duration,OrganizerUID

where MID is the item unique identifier, Title is the title of the meeting,

StartTime is the start time of the meeting, Duration is its duration in

minutes, and OrganizerUID is the identifier of the user who organized the

meeting.

StartTime and EndTime are timestamps. The format of those two

variables is YYYY/MM/DD-HH:MM:SS.

 For example, the following line

MID1034,Polito project kick-off,2023/02/07-20:40:00,90,User1000

means that the meeting with MID MID1034 was organized by User1000

and is titled “Polito project kick-off”. It is scheduled for 2023/02/07-

20:40:00 with a 90 minutes duration.

 Invitations.txt

o Invitations.txt is a textual file containing information about invitations to

meetings. A new line is inserted in Invitations.txt every time someone is invited

to a meeting. Invitations.txt includes the historical data about the latest 10 years.

This file is big and you cannot suppose the content of Purchases.txt can be

stored in one in-memory Java variable.

o Each line of Invitations.txt has the following format

 MID,UID,Accepted

where MID is the identifier of the meeting to which user UID has been

invited. Accepted can assume three values: Yes, No, and Unknown,

depending on the answer of the invited user.

 For example, the following line

MID1034,User1000,Yes

Version #1

means that User1000 has been invited to the meeting MID1034, and

he/she has accepted to participate.

Note that the same user can be invited to many meetings, and each meeting

can have many invited users. Each combination (MID, UID) occurs at most

one time in Invitations.txt.

Exercise 1 – MapReduce and Hadoop (8 points)

Exercise 1.1

The managers of PoliMeeting are interested in performing some analyses about the largest

meetings.

Design a single application, based on MapReduce and Hadoop, and write the

corresponding Java code, to address the following point:

1. The meeting with the largest number of expected participants. The application

selects the meeting with the largest number of expected participants, where the

number of expected participants is the number of users who answered “Yes” to the

invitation. If more than one meeting is associated with the largest number of

participants, the one with the last MID, considering the alphabetical order, is

selected. The MID of the selected meeting is stored in the output HDFS folder.

Suppose that the input is Invitations.txt and has been already set. Suppose that also the

name of the output folder has been already set.

 Write only the content of the Mapper and Reducer classes (map and reduce methods.

setup and cleanup if needed). The content of the Driver must not be reported.

 Use the following two specific multiple-choice questions (Exercises 1.2 and 1.3) to

specify the number of instances of the reducer class for each job.

 If your application is based on two jobs, specify which methods are associated with the

first job and which are associated with the second job.

 If you need personalized classes, report for each of them:

o the name of the class
o attributes/fields of the class (data type and name)
o personalized methods (if any), e.g., the content of the toString() method if

you override it
o do not report the get and set methods. Suppose they are "automatically

defined"

Exercise 1.2 - Number of instances of the reducer - Job 1

Select the number of instances of the reducer class of the first Job

 (a) 0

 (b) exactly 1

 (c) any number >=1 (i.e., the reduce phase can be parallelized)

Exercise 1.3 - Number of instances of the reducer - Job 2

Version #1

Select the number of instances of the reducer class of the second Job

 (a) One single job is needed

 (b) 0

 (c) exactly 1

 (d) any number >=1 (i.e., the reduce phase can be parallelized)

Exercise 2 – Spark and RDDs (19 points)

The managers of PoliMeeting are interested in analyzing the characteristics of the

meetings.

The managers of PoliMeeting asked you to develop one single application to address all

the analyses they are interested in. The application has five arguments: the input files

Users.txt, Meetings.txt, and Invitations.txt, and two output folders “outPart1/” and

“outPart2/”, which are associated with the outputs of the following points 1 and 2,

respectively.

Specifically, design a single application, based on Spark, and write the corresponding

code, to address the following two points:

1. Statistics on the duration of the meetings considering only the meetings organized by

users with a Business pricing plan. The first part of this application considers only the

users with a Business pricing plan (PrincingPlan="Business") who organized at least

one meeting. For each user with a Business pricing plan who organized at least one

meeting, compute (i) the average duration of the meetings he/she organized, (ii) the

maximum duration of the meetings he/she organized, and (iii) the minimum duration of

the meetings he/she organized. Store the result of this first part in the first HDFS output

folder. Specifically, store one output line for each user with a Business pricing plan who

organized at least one meeting. The format of each output line is as follows:

UID, the average duration of the meetings organized by user UID, the maximum

duration of the meetings organized by user UID, the minimum duration of the meetings

organized by user UID

2. Distribution of the number of invitations per meeting considering the users with a

Business pricing plan. Similarly to the first part, the second part of this application

considers only the users with a Business pricing plan who organized at least one

meeting. For each user with a Business pricing plan who organized at least one

meeting, the second part of this application computes the distribution of the number of

invitations per organized meeting. Specifically, calculate for each user with a Business

pricing plan the number of large, medium, and small meetings he/she organized. A

meeting associated with more than 20 invitations is classified as large. A meeting

associated with a number of invitations between 20 and 5 is classified as medium. A

meeting associated with fewer than 5 invitations is classified as small. For each user

with a Business pricing plan who organized at least one meeting, store in the second

HDFS the UID, the number of large meetings he/she organized, the number of medium

meetings he/she organized, and the number of small meetings he/she organized (one

output line per user).

Version #1

Note. There are meetings without invitations. A meeting without invitations is

considered a small meeting.

Example for the second part.

In this running example, suppose there are only two users with a Business pricing plan:

UID1 and UID2.

Suppose that UID1 organized

 One meeting with 15 invitations 1 medium meeting

 Two meeting with 16 invitations 2 medium meetings

 One meeting with 25 invitations 1 large meeting

 One meeting with 2 invitations 1 small meeting

Suppose that UID2 organized

 Two meeting with 23 invitations 2 large meeting

 One meeting with 4 invitations 1 small meeting

 One meeting without invitations 1 small meeting

The second output folder will contain the following two lines:

 UID1,1,3,1

 UID2,2,0,2

 You do not need to report imports. Focus on the content of the main method.

 Suppose both JavaSparkContext sc and SparkSession ss have been already set.

 If you need personalized classes, report for each of them:
o the name of the class

o attributes/fields of the class (data type and name)
o personalized methods (if any), e.g., the content of the toString() method if you

override it

o do not report the get and set methods. Suppose they are "automatically defined"

